
The Waiting Time Distribution for a TDMA Model
with a Finite Buffer

Marcel F. Neuts∗, Jun Guo†, Moshe Zukerman† and Hai Le Vu†

∗ Department of Systems and Industrial Engineering, The University of Arizona, Tucson, AZ, 85721, USA
Email: marcel@mindspring.com

This research has been conducted while M. F. Neuts was visiting
the ARC Special Research Center for Ultra-Broadband Information Networks, University of Melbourne.

† ARC Special Research Centre for Ultra-Broadband Information Networks
Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia

Email: j.guo@ee.mu.oz.au; m.zukerman@ee.mu.oz.au; h.vu@ee.mu.oz.au
M. Zukerman and J. Guo are visiting the Department of Electronic Engineering,

City University of Hong Kong, between November 2002 and July 2003.

Abstract— We obtain detailed analytic formulas for the density
and probability distribution of the waiting time in a TDMA
model with a finite buffer. On successive intervals of length equal
to the duration of a slot, the density is expressed as (infinite)
linear combinations of beta densities with positive coefficients.
A recursive scheme, obtained by a matrix-analytic derivation,
allows for the highly efficient computations of the coefficient
sequences.

I. INTRODUCTION

TDMA (Time Division Multiple Access) systems are widely
used in various telecommunication applications. Given the
wide applicability of TDMA, models for TDMA applications,
options, and versions have been extensively studied for over a
quarter of a century [1]–[14]. The model here was motivated
by the application of GSM paging described in [4]. As will be
clear from this paper, this model gives rise to an interesting
queueing problem with a certain degree analytical complexity.

The methodological interest of this paper lies in how we
handle the complex accounting of the queueing process. A
matrix formalism is used to obtain the main structural results.
Later, that formalism is unpacked to reveal the analytic form of
the density of the waiting time (or delay) distribution. Note that
the terms “waiting time” and “delay” are interchangeable in
this paper. We shall see that, on each of the successive TDMA
fixed intervals, the density is given by an infinite, positive
linear combination of beta densities. The coefficients of those
linear combinations are computed by a recursive scheme. We
so arrive at a nearly explicit characterization of the waiting
time density and at an algorithm for its numerical computation.

The remainder of the paper is organized as follows. In
Section II we describe the model. Sections III and IV deal
with derivations of preliminary quantities. An outline of the
mathematical derivation of the delay distribution is given in
Section V. The details of that derivation are presented in
Sections VI, and VII. Finally in Section VIII we present the
computational results for a numerical example, we confirm

these by simulation, and we give an intuitive explanation for
the behavior of the waiting time density function.

II. THE MODEL

We derive the waiting time distribution of an arbitrary
admitted customer to a finite buffer that operates under the
following procedure. The customers arrive according to a
homogeneous Poisson process of rate λ. If there are fewer than
K customers present, an arriving item is admitted, otherwise it
is lost. The time axis is divided equally into successive frames
(slots) of length T . If at the end of a slot, there are j items in
the buffer, then with conditional probability d(i, j), i of the j
items are removed on a first come first served (FCFS) basis.
For 1 ≤ j ≤ K, the quantities {d(i, j)} satisfy

j∑

i=0

d(i, j) = 1. (1)

That service process has some degree of generality as it can
treat cases where message sizes are variable, that is, the larger
the messages in the queue, the less are served. It can also apply
to the case of demand assigned TDMA whereby the longer the
queue in terms of the number of messages, the more messages
are served. The latter applies to the case where more TDMA
“slots” are allocated to a station where the demand is higher.

An item admitted during the frame (0, T ) may be removed
at one of the epochs kT , k ≥ 1. If it is admitted at time T −u,
0 ≤ u ≤ T , its waiting time is therefore the sum of u and an
integer multiple kT of T .

III. THE EMBEDDED MARKOV CHAIN

Let Jk be the number of items in the buffer at time kT+.
{Jk} is then a Markov chain with state space {0, 1, . . . ,K}.
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Its probability transition matrix P = {Pij} is given by

Pij = P (Jk+1 = j|Jk = i)

=
K−i−1∑

ν=max(0,j−i)

e−λT (λT )ν

ν! d(i + ν − j, i + ν)

+
[
1 −

K−i−1∑

ν=0

e−λT (λT )ν

ν!

]
d(K − j,K),

(2)

for 0 ≤ i, j ≤ K. By [π0, π1, . . . , πK ], we denote the steady-
state probabilities of that Markov chain and we assume that
these have been computed.

IV. THE EXPECTED NUMBER OF ITEMS ADMITTED PER

TIME FRAME

Theorem 1: The expected number E∗ of packets admitted
during a slot of length T is

E∗ =
K−1∑

i=0

πi

[
K − i −

K−i−1∑

ν=0

e−λT (λT )ν

ν! (K − i − ν)

]
. (3)

Proof: Given that there are i, 0 ≤ i ≤ K−1, items in the
buffer at the beginning of a slot, the item must arrive so that it
can occupy one of the positions r with i+ 1 ≤ r ≤ K. Using
the indicator random variables of the corresponding events, we
readily see that

E∗ =
K−1∑

i=0

πi

K∑

r=i+1

∫ T

0
e−λu (λu)r−i−1

(r−i−1)! λdu, (4)

but
∫ T

0
e−λu (λu)r−i−1

(r−i−1)! λdu = 1 −
r−i−1∑

ν=0

e−λT (λT )ν

ν! ,

thus (4) becomes

E∗ =
K−1∑

i=0

πi

K∑

r=i+1

[
1 −

r−i−1∑

ν=0

e−λT (λT )ν

ν!

]

=
K−1∑

i=0

πi

[
K − i −

K−i−1∑

l=0

l∑

ν=0

e−λT (λT )ν

ν!

]

=
K−1∑

i=0

πi

[
K − i −

K−i−1∑

ν=0

e−λT (λT )ν

ν! (K − i − ν)
]
.

(5)

The ratio E∗/T is the steady-state rate at which items are
admitted to the buffer, so that (E∗/T )dv is the elementary
probability of an admission in (v, v + dv).

V. AN OUTLINE OF THE DERIVATION

Let ψ(·) be the probability density of the delay of an
arbitrary admitted item. In this section, we present an outline
of the derivation of ψ(·) with the cumbersome details to be
filled in later. We choose the time origin 0 at the beginning of
the slot during which the arbitrary item is admitted.

We first derive the expected number dE∗(u) of items
admitted during (0, T ) whose waiting time lies between u and

u + du. That derivation is somewhat involved. When that is
completed, we note that

[dE∗(u)/T ]/[E∗/T ] = ψ(u)du,

is the elementary probability that an arbitrary admitted item
waits between u and u+du. Therefore, ψ(·) is the probability
density of the waiting time distribution.

What requires a well-organized derivation is that the func-
tion E∗(u) assumes different analytic forms on the successive
intervals (kT, kT +T ), k ≥ 0. To express the first density and
to relate the form of the density on a subsequent interval to
the preceding one requires somewhat involved bookkeeping.
That second task is accomplished by using a convenient matrix
formalism.

We must keep track of the buffer content at each epoch
kT+ and of the position r, K ≥ r ≥ 1, of the item that we
are following. While, owing to new arrivals and successive
departures, the buffer content can increase and decrease, the
position r is non-increasing from one slot to the next. When
the tracked item leaves the buffer, we shall say that it reaches
position 0.

A. Accounting for the first frame (0, T )

It is useful to introduce vectors g∗(r′;u), for K ≥ r′ ≥ 1
and 0 ≤ u ≤ T . The vector g∗(r′;u) is of dimension K −
r′ + 1. The infinitesimal quantity g∗

i′(r′;u)du, K ≥ i′ ≥ r′,
is the expected number of items admitted between T − u and
T −u+du, evaluated over the event where the buffer content
at time T+ equals i′ and the position of that item at time T+
is r′. As there can be at most one such an arrival, g∗

i′(r′;u)du
is also the elementary probability that between T − u and
T −u+du an item is admitted, that its position at time T+ is
r′ and that the buffer content then equals i′. Expressions for
the vectors g∗(r′;u) are derived in Section VI-B.

Next, we define some convenient matrices that serve to
account for transactions during the first slot (0, T ). The
matrices T0(r, r′;u) are defined for K ≥ r ≥ 1 and for r′ ≤ r.
The matrix T0(r, r′;u) is of dimensions r×(K−r′+1). Its row
indices i run from 0 to r−1; its column indices i′ from r′ to K.
The quantity [T0(r, r′;u)]i,i′du is the elementary conditional
probability that, given that the buffer contains i items at time
0+, an item is admitted into the rth buffer position between
T −u and T −u+du, and that at time T+, there are i′ items
present and the item we are tracking is now in the position r′.

For K ≥ r ≥ 1, we also define column vectors T0
0(r;u)

of dimension r. The quantity [T0
0(r;u)]idu is the elementary

conditional probability that, given that the buffer content at
time 0+ is i, an item is admitted into the rth buffer position
between T − u and T − u + du and departs at time T .

B. Accounting for the subsequent frames (kT, kT + T )

To do the accounting for the subsequent slots, we define the
(K−r1+1)×(K−r2+1) matrices T (r1, r2), for K ≥ r1 ≥ 1
and for r2 ≤ r1. The row and column indices i1 and i2 of
T (r1, r2) range from K down to r1 and from K down to
r2 respectively. The element [T (r1, r2)]i1,i2 is the conditional
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probability that, given that, at the beginning of the slot, there
are i1 items in the buffer with the marked item in position
r1, by the end of the slot, there are i2 items in the buffer
and the item we are tracking has moved to position r2, with
r1 ≥ r2 ≥ 1.

For K ≥ r1 ≥ 1, we also define column vectors T0(r1)
of dimension K − r1 + 1. The quantity [T0(r1)]i1 is the
conditional probability that, given that, at the beginning of
the slot, there are i1 items in the buffer with the marked item
in position r1, the item we are tracking is removed at the end
of that slot.

It will be convenient to consider the matrix T (6, see next
page) whose structure is displayed for the representative value
K = 6.

We see that this matrix is of the form

T = T̃ T̃0

0 1
, (7)

and we shall later verify that T is stochastic. The derivation
of the delay distribution is based on rudiments of the theory
of discrete phase-type distributions.

The two essential steps of the derivation of that distribution
are the following: Let us write π∗(r) for the vector [πr−1,
πr−2, . . . π0]. The expected number dE∗(u) of items admitted
during (0, T ) whose waiting time lies between u and u + du
is given by different expressions on the successive intervals
(kT, kT + T ), k ≥ 0. Applying the law of total conditional
expectation, we see that, for 0 ≤ u < T ,

dE∗(u) =
K∑

r=1

π∗(r)T0
0(r;T − u)du. (8)

The direct sum of a finite ordered set of (row)vectors is the
vector obtained by concatenating these vectors into a single
row vector. For convenience, we form the direct sum γ∗(u) of
the vectors g∗(r;u) with r running from K down to 1. Then,
a further application of the law of total conditional expectation
yields that, on the interval (kT, kT + T ), for k ≥ 1,

dE∗(u) = γ∗(kT + T − u)T̃ k−1T̃0. (9)

The method of computation of the function E∗(u) and,
therefore, of the probability density of the delay, is now clear
in principle. By using equation (8), we evaluate the function
on (0, T ). Then, recursively forming the vectors T̃ k−1T̃0, we
apply (9) to compute the function for the subsequent frames.
However, by getting into the details, the analytic results and
the algorithmic procedure can be made much more explicit.
These matters are discussed in the next two sections.

VI. THE DELAY DISTRIBUTION - THE FIRST SLOT

The elements of the matrices T0(r, r′;u), K ≥ r ≥ 1, for
r′ ≤ r are now made explicit. We recall that the quantity
[T0(r, r′;u)]i,i′du is the elementary conditional probability
that, given that the buffer content at time 0+ is i, an item
is admitted into the rth buffer position between T − u and
T − u + du, that at time T+, there are i′ items in the buffer

and the item we are tracking has moved to position r′. Clearly,
we can have positive probability only when r ≥ i + 1, r ≥
r′ ≥ 0. Moreover, the initial state i cannot be K, otherwise
no admission during (0, T ) is possible. The transition during
(T −u, T ) can occur with or without the buffer filling up. If it
does not, then for r ≥ i+1, i′ ≥ r′ ≥ 1, i′ +r−r′ < K, there
must be r−r′ removals at time T . That means that there must
be i′ + r − r′ items just prior to T , so that there are r − i− 1
arrivals in (0, T − u) and i′ − r′ in (T − u, T ).

Therefore, for r ≥ i + 1, i′ ≥ r′ ≥ 1, i′ + r − r′ < K, the
quantity [T0(r, r′;u)]i,i′du is given by

e−λ(T−u) [λ(T−u)]r−i−1

(r−i−1)! λdu

·e−λu (λu)i′−r′

(i′−r′)! d(r − r′, i′ + r − r′).
(10)

If i′ + r − r′ = K, the buffer fills up during (T − u, T ). The
corresponding expression for that case is

e−λ(T−u) [λ(T−u)]r−i−1

(r−i−1)! λdu

·
[
1 −

K−r−1∑

ν=0

e−λu (λu)ν

ν!

]
d(r − r′,K),

(11)

for r ≥ i + 1, i′ = K + r′ − r, r′ ≥ 1.
The elements of the column vectors T0

0(r;u), K ≥ r ≥ 1,
are similarly defined. The quantity [T0

0(r;u)]idu, the elemen-
tary conditional probability that, given that the buffer content
at time 0+ is i, an item is admitted into the rth buffer position
between T − u and T − u + du and departs at time T , is
given by

e−λ(T−u) [λ(T−u)]r−i−1

(r−i−1)! λdu

·

{
K−1−r∑

j=0

e−λu (λu)j

j!

j+r∑

ν=r

d(ν, j + r)

+
[
1 −

K−1−r∑

j=0

e−λu (λu)j

j!

] K∑

ν=r

d(ν,K)

}
,

(12)

for r ≥ i + 1. When r′ = 0 the item is removed at time T . It
then no longer matters how many items remain in the buffer.
The marked item is removed at time T if r or more items are
removed at that time. The two terms in equation (12) reflect
whether or not the buffer fills up in (T − u, T ).

The elements of the matrix T0(r, r′;u) are conveniently
expressed as linear combinations of beta densities

β(y;α, γ) = [B(α, γ)]−1yα−1(1−y)γ−1, 0 < y < 1, (13)

where B(α, γ) is the beta function

B(α, γ) =
∫ 1

0
vα−1(1 − v)γ−1dv.

By routine manipulations, we rewrite the elements of
T0(r, r′;u) as

[T0(r, r′;u)]i,i′ = e−λT (λT )r−r′+i′−i

(r−r′+i′−i)! d(r − r′, i′ + r − r′)

· 1
T β(1 − u

T ; r − i; i′ − r′ + 1),
(14)
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T =

6 5 4 3 2 1 0

6 T (6, 6) T (6, 5) T (6, 4) T (6, 3) T (6, 2) T (6, 1) T0(6)
5 0 T (5, 5) T (5, 4) T (5, 3) T (5, 2) T (5, 1) T0(5)
4 0 0 T (4, 4) T (4, 3) T (4, 2) T (4, 1) T0(4)
3 0 0 0 T (3, 3) T (3, 2) T (3, 1) T0(3)
2 0 0 0 0 T (2, 2) T (2, 1) T0(2)
1 0 0 0 0 0 T (1, 1) T0(1)
0 0 0 0 0 0 0 1

(6)

for r ≥ i+1, i′ ≥ r′ ≥ 1, i′ + r− r′ < K, and for r ≥ i+1,
1 ≤ r′ ≤ r,

[T0(r, r′;u)]i,K+r′−r =
∞∑

j=K−r

e−λT (λT )r−i+j

(r−i+j)! d(r − r′,K)

· 1
T β(1 − u

T ; r − i; j + 1).

Similarly, we rewrite the components of the vectors T0
0(r;u).

From formula (12) we obtain that for i ≤ r − 1,

[T0
0(r;u)]i

=
K−r−1∑

j=0

e−λT (λT )r−i+j

(r−i+j)!

j+r∑

ν=r

d(ν, j + r)

· 1
T β(1 − u

T ; r − i; j + 1)

+
∞∑

j=K−r

e−λT (λT )r−i+j

(r−i+j)!

K∑

ν=r

d(ν,K)

· 1
T β(1 − u

T ; r − i; j + 1).

(15)

A. The density on (0, T )

The probability density ψ(·) on the interval (0, T ) can now
be written explicitly in terms of beta densities. By virtue of
formula (8), the density ψ(·) is given by

ψ(u) = (E∗)−1
K∑

r=1

r−1∑

i=0

πi[T0
0(r;u)]i. (16)

We set i = r − h − 1 and carefully interchange the summa-
tions in the resulting formulas. That successively yields the
expressions (17, see next page) for 0 ≤ u ≤ T .

We see that ψ(u) is expressed as an (infinite) positive linear
combination of beta densities on (0, 1). Correspondingly, the
distribution of the delay is given by the same positive linear
combination of beta distributions. By calling the incomplete
beta function, both can be evaluated by essentially the same
algorithm.

Moreover, ψ(u) is of the form

ψ(u) =
∞∑

h=0

∞∑

j=0

c(h, j)(E∗)−1e−λT (λT )h+j+1

(h+j+1)!

· 1
T β(1 − u

T ;h + 1; j + 1),

(18)

where the coefficient c(h, j) are given by

c(h, j) = 0, for h ≥ K, j ≥ 0,

c(K − 1, j) = π0d(K,K), for j ≥ 0,

and for 0 ≤ h ≤ K − 2,

c(h, j) =
K−j−1∑

r=h+1

πr−1−h

j+r∑

ν=r

d(ν, j + r)

+
K∑

r=K−j

πr−1−h

K∑

ν=r

d(ν,K), for 0 ≤ j ≤ K − h − 2,

c(h, j) =
K∑

r=h+1

πr−1−h

K∑

ν=r

d(ν,K),

for j ≥ K − h − 1.

B. The auxiliary vectors g∗(r′;u)

Next, we give explicit expressions for the vectors g∗(r′;u),
for K ≥ r′ ≥ 1, for 0 ≤ u ≤ T . We recall that π∗(r) =
[πr−1, πr−2, . . . π0]. If we pre-multiply the matrix T0(r, r′;u)
by π∗(r), we obtain a row vector of dimension K − r′ +
1 and with component indices running from K down to r′.
The explicit computation of the component with index K −
r + r′ requires the second formula in (14); that of all other
components utilizes the first formula.

As g∗
i′(r′;u)du is the elementary probability that between

T −u and T −u+ du an item is admitted, that its position at
time T+ is r′, and that the buffer content then equals i′, we
see that

g∗
i′(r′;u) =

K∑

r=r′

[π∗(r)T0(r, r′;u)]i′ , (19)

for i′ running from K down to r′. We now do a careful
accounting of the terms that contribute to each component
of g∗(r′;u) and we find that

g∗
K(r′;u) =

r′−1∑

i=0

πi[T0(r′, r′;u)]∗i,K , (20)

and, for i′ = K − 1, . . . , r′,

g∗
i′(r′;u) = [π∗(K + r′ − i′)T0(K + r′ − i′, r′;u)]∗i′

+
K+r′−i′−1∑

r=r′

[π∗(r)T0(r, r′;u)]i′ ,
(21)

where the asterisks remind us of which terms are given by
the second, rather than the first formula in (14). We now do
those substitutions and we simplify the resulting formulas. It is
convenient to evaluate the vectors and their components with
decreasing indices, so in the analytic expressions that follow,
we define the indices accordingly in (22, see next page).
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ψ(u) = (E∗)−1
K−1∑

r=1

r−1∑

h=0

K−r−1∑

j=0

πr−1−he−λT (λT )h+j+1

(h + j + 1)!

j+r∑

ν=r

d(ν, j + r)
1
T

β(1 − u

T
; h + 1; j + 1)

+(E∗)−1
K∑

r=1

r−1∑

h=0

∞∑

j=K−r

πr−1−he−λT (λT )h+j+1

(h + j + 1)!

K∑

ν=r

d(ν, K)
1
T

β(1 − u

T
; h + 1; j + 1)

= (E∗)−1
K−2∑

h=0

K−h−2∑

j=0

e−λT (λT )h+j+1

(h + j + 1)!
1
T

β(1 − u

T
; h + 1; j + 1)

K−j−1∑

r=h+1

πr−1−h

j+r∑

ν=r

d(ν, j + r) (17)

+(E∗)−1
K−1∑

h=0

∞∑

j=0

e−λT (λT )h+j+1

(h + j + 1)!
1
T

β(1 − u

T
; h + 1; j + 1)

K∑

r=max(h+1,K−j)

πr−1−h

K∑

ν=r

d(ν, K).

g∗
K(r′;u) =

r′−1∑

h=0

∞∑

j=K−r′

πr′−h−1d(0,K)e−λT (λT )h+j+1

(h+j+1)!
1
T β(1 − u

T ;h + 1; j + 1), for 1 ≤ r′ ≤ K.

g∗
K−v(r′;u) =

r′+v−1∑

h=0

πr′+v−h−1d(v,K)
∞∑

j=K−v−r′

e−λT (λT )h+j+1

(h+j+1)!
1
T β(1 − u

T ;h + 1; j + 1)

+
r′+v−2∑

i=0

r′+v−1∑

r=max(r′,i+1)

πie
−λT (λT )r−i+K−v−r′

(r−i+K−v−r′)! d(r − r′,K − v + r − r′) 1
T β(1 − u

T ; r − i;K − v − r′ + 1),

for 1 ≤ v ≤ K − r′.

(22)

g∗
K−v(r′;u) =

r′+v−1∑

h=0

πr′+v−h−1d(v,K)
∞∑

j=K−v−r′

e−λT (λT )h+j+1

(h+j+1)!
1
T β(1 − u

T ;h + 1; j + 1)

+






r′−1∑

h=0

r′+v−h−2∑

i=r′−h−1

+
r′+v−2∑

h=r′

r′+v−h−2∑

i=0




πie
−λT (λT )h+K−v−r′+1

(h+K−v−r′+1)! d(i + h − r′ + 1,K − v + i + h − r′ + 1)

· 1
T β(1 − u

T ;h + 1;K − v − r′ + 1).

(23)

In this last sum, we make the change of indices r−i−1 = h.
The result is most conveniently written as the sum of two
terms, as follows:






r′−1∑

h=0

r′+v−h−2∑

i=r′−h−1

+
r′+v−2∑

h=r′

r′+v−h−2∑

i=0




πie
−λT

· (λT )h+K−v−r′+1

(h+K−v−r′+1)! d(i + h − r′ + 1,K − v + i + h − r′ + 1)

· 1
T β(1 − u

T ;h + 1;K − v − r′ + 1).

So, finally for 1 ≤ v ≤ K − r′, g∗
K−v(r′;u) is given by (23).

We see that, for 1 ≤ r′ ≤ K, the vector g∗(r′;u) of
dimension K − r′ + 1, is of the form

g∗(r′;u) =
∞∑

h=0

∞∑

j=0

c∗(r′;h, j)e−λT

· (λT )h+j+1

(h+j+1)!
1
T β(1 − u

T ;h + 1; j + 1),

(24)

where the coefficient vectors c∗(r′;h, j) are given by

c∗
K(r′;h, j) = πr′−h−1d(0,K), for 0 ≤ h ≤ r′ − 1,
j ≥ K − r′,

c∗
K(r′;h, j) = 0, for h ≥ r′, or for j ≤ K − r′ − 1,

and for 1 ≤ v ≤ K − r′,

c∗
K−v(r′;h, j) = πr′+v−h−1d(v,K),

for j > K − v − r′, 0 ≤ h ≤ r′ + v − 2,
c∗
K−v(r′;h, j) = π0d(v,K), for j ≥ K − v − r′,
h = r′ + v − 1,
c∗
K−v(r′;h,K − v − r′) = πr′+v−h−1d(v,K)

+
v+r′−h−2∑

i=r′−h−1

πid(i + h − r′ + 1,K − v + i + h − r′ + 1),

for 0 ≤ h ≤ r′ − 1,
c∗
K−v(r′;h,K − v − r′) = πr′+v−h−1d(v,K)

+
v+r′−h−2∑

i=0

πid(i + h − r′ + 1,K − v + i + h − r′ + 1),

for r′ ≤ h ≤ r′ + v − 2,
c∗
K−v(r′;h, j) = 0, for j < K − v − r′,

or for h ≥ r′ + v.
(25)
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These coefficient vectors are computed once and stored for
use in the recursive computation of the density ψ(·) on the
subsequent slots.

VII. THE DELAY DISTRIBUTION - THE SUBSEQUENT

SLOTS

The accounting of the transactions in the buffer content and
in the position of the marked item during the subsequent slots
is carried out by means of the partitioned matrix T defined
in (6). We recall that the elements of T are the conditional
probabilities that, given that at the start of the slot there are
i1 items with the marked item in position r1, by the end of
the slot there are i2 items in the buffer and the marked item
has moved to position r2, with r1 ≥ r2 ≥ 1.

The element [T (r1, r2)]i1,i2 is given by

[T (r1, r2)]i1,i2

= e−λT (λT )i2+r1−r2−i1

(i2+r1−r2−i1)!
d(r1 − r2, i2 + r1 − r2),

(26)

for i2 ≥ i1 − r1 + r2, i2 < K − r1 + r2. That is the case
where, during the slot, the buffer does not fill up. For future
reference, let us call that the form PC .

The element [T (r1, r2)]i1,K−r1+r2 is given by

[T (r1, r2)]i1,K−r1+r2

=
[
1 −

K−1−i1∑

ν=0

e−λT (λT )ν

ν!

]
d(r1 − r2,K).

(27)

It corresponds to i2 = K − r1 + r2 and to the buffer filling
up during the slot. We call that the form PD.

For 1 ≤ i1 ≤ K, the components of the vector T0(r1) are
given by

K−1−i1∑

j=0

e−λT (λT )j

j!

i1+j∑

ν=r1

d(ν, i1 + j)

+
[
1 −

K−1−i1∑

ν=0

e−λT (λT )ν

ν!

] K∑

l=r1

d(l,K).

(28)

The matrices T (r1, r2) have further special structure that
we display for the representative values K = 6, r1 = 4,
r2 = 4, 3, 2, 1. The symbols PC or PD indicate which of the
formulas (26) or (27) that is to be used for the specific indices.

T (4, 4) =

i1\i2 6 5 4
6 PD 0 0
5 PD PC 0
4 PD PC PC

T (4, 3) =

i1\i2 6 5 4 3
6 0 PD 0 0
5 0 PD PC 0
4 0 PD PC PC

T (4, 2) =

i1\i2 6 5 4 3 2
6 0 0 PD 0 0
5 0 0 PD PC 0
4 0 0 PD PC PC

T (4, 1) =

i1\i2 6 5 4 3 2 1
6 0 0 0 PD 0 0
5 0 0 0 PD PC 0
4 0 0 0 PD PC PC

Lemma 1: T is a stochastic matrix.
Proof: For K ≥ i1 ≥ r1, the components of the row

sum vector T (r1, r2)e are given by

[T (r1, r2)e]i1 =
K−r1+r2−1∑

i2=i1−r1+r2

e−λT (λT )i2+r1−r2−i1

(i2+r1−r2−i1)!

·d(r1 − r2, i2 + r1 − r2)

+
∞∑

j=K−i1

e−λT (λT )j

j! d(r1 − r2,K)

=
K−i1−1∑

j=0

e−λT (λT )j

j! d(r1 − r2, j + i1)

+
∞∑

j=K−i1

e−λT (λT )j

j! d(r1 − r2,K).

Now we sum these quantities over r2 from one to r1. Finally,
we add the term in (28) and, by (1) we obtain an expression
that is clearly equal to one.

To complete the argument, we verify that ψ(·) is a valid
probability density. We integrate the expressions in (8) and
(9) and sum over k and check that we so obtain the quantity
E∗. We specifically have that

∞∑

k=0

∫ kT+T

kT

ψ(u)du =
∞∑

k=0

∫ T

0
ψ(u + kT )du

= [E∗]−1

[
K∑

r=1

π∗(r)
∫ T

0
T0

0(r;T − u)du

+
∞∑

k=1

∫ T

0
γ∗(kT + T − u)du T̃ k−1T̃0

]
.

However, since T is stochastic, it follows that

(I − T̃ )−1T̃0 = e.

It remains to show that

[E∗]−1
∫ T

0

[
K∑

r=1

π∗(r)T0
0(r;T − u) + γ∗(T − u)e

]
du

= 1.

That can be easily shown without using the fairly involved
expressions for γ∗(T −u). From the definition of the matrices
T0(r, r′;u) and the vectors T0

0(r;u), we readily see that, for
0 ≤ i ≤ r − 1,

∑r
r′=1

∑K
i′=r′ [T0(r, r′;T − u)]i,i′ + [T0

0(r;T − u)]i

= e−λu (λu)r−i−1

(r−i−1)! λ.

These quantities need to be multiplied by πi, summed over i
with 0 ≤ i ≤ r−1, and then summed over r with 1 ≤ r ≤ K.
We remember that for 0 ≤ i ≤ r − 1,

∫ T

0
e−λu (λu)r−i−1

(r−i−1)! λdu = 1 −
r−i−1∑

ν=0

e−λT (λT )ν

ν! ,
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so that

[E∗]−1
K∑

r=1

r−1∑

i=0

πi

[
1 −

r−i−1∑

ν=0

e−λT (λT )ν

ν!

]

= [E∗]−1
K−1∑

i=0

πi

K−1−i∑

h=0

[
1 −

h∑

ν=0

e−λT (λT )ν

ν!

]

= [E∗]−1
K−1∑

i=0

πi

[
K − i −

K−1−i∑

h=0

h∑

ν=0

e−λT (λT )ν

ν!

]

= [E∗]−1
K−1∑

i=0

πi

[
K − i −

K−1−i∑

ν=0

(K − i − ν)e−λT (λT )ν

ν!

]

= 1.

A. The final recursive algorithm

To describe the final recursive algorithm concisely, it is
convenient to partition the vector T̃ k−1T̃0 = w∗(k), k ≥ 1,
into vectors w(r′, k), of dimension K−r′+1, for K ≥ r′ ≥ 1.
The recursive computation of the vectors w∗(k) is obvious.

We then readily see that, on the interval (kT, kT + T ), the
density ψ(·) is given by

ψ(u) = [E∗]−1
K∑

r′=1

g∗(r′; kT + T − u)w(r′, k)

=
∞∑

h=0

∞∑

j=0

{[E∗]−1
K∑

r′=1

c∗(r′;h, j)w(r′, k)}

·e−λT (λT )h+j+1

(h+j+1)!
1
T β(k + 1 − u

T ;h + 1; j + 1),

(29)

which is again a positive linear combination of beta densities
on (0, 1). Its coefficients are given by the term inside the
braces. As the coefficients in (24) have been computed, those
in (29) are readily evaluated for successive k. Once those
coefficients are stored, the density is readily computed at a
set of equidistant points in (kT, kT + T ) and can be plotted.

Upon integration in (18) and (29), we find that the values
F (kT ) at the points kT of the probability distribution of the
delay are given by

F (kT ) =
k∑

ν=1

φν ,

where

φ1 = (E∗)−1
K−2∑

h=0

K−h−2∑

j=0

e−λT (λT )h+j+1

(h+j+1)!

·
K−j−1∑

r=h+1

πr−1−h

j+r∑

ν=r

d(ν, j + r)

+(E∗)−1
K−1∑

h=0

∞∑

j=0

e−λT (λT )h+j+1

(h+j+1)!

·
K−1∑

r=max(h+1,K−j)

πr−1−h

K∑

ν=r

d(ν,K),

and for ν ≥ 2,

φν =
∞∑

h=0

∞∑

j=0

{[E∗]−1
K∑

r′=1

c∗(r′;h, j)w(r′, ν − 1)}

·e−λT (λT )h+j+1

(h+j+1)! .

The distribution F (x) at x with kT < x < kT +T is given
by

F (x) = F (kT ) +
∫ x

kT

ψ(u)du, (30)

and can be evaluated along with the density ψ(·) on that inter-
val simply by substituting the corresponding beta distributions
for the beta densities.

We note that, for ν ≥ 2, φν is the probability that the marked
item departs at the end of the (ν -1)st after the interval in which
it arrives. φ1 is the probability that it departs at the earliest
possible time T . There are no simple analytic expressions for
the mean and variance of the delay, but these quantities are
simple byproducts of the computation of the distribution F (·).

VIII. NUMERICAL EXAMPLES

After routine numerical computations of the steady-state
probability vector [π0, π1, . . . , πK ] and of the quantity E∗,
we implement the recursive scheme for the computation of the
coefficient sequences in formulas (18) and (29). For a given
value of λT , the Poisson probabilities are computed only once.
They are evaluated, starting from the largest term, by applying
the standard recurrence relation until terms on either side of
the mode become zero or negligible. The remaining factors
of the terms in (18) and (29) are computed only when the
Poisson factor is non-negligible.

The recurrence is initiated by the coefficients for the first
slot (0, T ). The density ψ(u) on that interval is evaluated by
implementing (17). For the subsequent slots, we perform a
matrix multiplication to form the required vector w∗(k) =
T̃ k−1T̃0, and we evaluate the required coefficient series. From
these, the density ψ(u) is readily computed on each interval.
Inside the recursive loop, we also compute the probability
distribution F (·) by using formula (30) and calling a library
routine for the incomplete beta ratio. Getting F (·) along with
the density only requires a modicum of additional computa-
tion.

Our simulations were initiated by variates from the prob-
ability vector [π0, π1, . . . , πK ]. Each run consisted of one
million time slots from which a histogram and the empirical
distribution function of the delay were estimated. For the
histogram, the class width was set to one tenth of the slot
length T .

In our numerical example, one selected from among many,
we consider a buffer of size K = 70, respectively under light,
medium, and high loads (λT = 1, 60, 600). For the sake of
our example, the parameters d(i, j) were specified as follows:
For j even, we formed the j + 1 integers 1, 2, · · · , j/2 +
1, j/2, · · · , 2, 1, divided by their sum and identified d(i, j),
for 0 ≤ i ≤ j, with the corresponding ratio. For j odd, we
wrote the j+1 integers 1, 2, · · · , (j+1)/2, (j+1)/2, · · · , 2, 1,
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Fig. 1. Computation and simulation results for the waiting time density and
delay distribution of the TDMA model, K = 70, λT = 1.
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Fig. 2. Computation and simulation results for the waiting time density and
delay distribution of the TDMA model, K = 70, λT = 60.

divided by their sum and similarly identified the d(i, j). That
avoids displaying a 71×71 matrix to complete the specification
of our example.

Graphs of the corresponding delay densities and distribu-
tions, obtained by computation and simulation, are shown in
Figures 1-3.

The apparent approach to a discrete density in Figure 3 is to
be expected. When the arrival rate is very high, the occasional
job that is admitted will arrive very early in the slot and will
wait (approximately) for a duration that is a multiple of T .

IX. CONCLUSIONS

We have analyzed a TDMA model with a finite buffer,
and we have derived exact analytical results which have been
confirmed by simulation.
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Fig. 3. Computation and simulation results for the waiting time density and
delay distribution of the TDMA model, K = 70, λT = 600.
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