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I. ABSTRACT

We consider an optimal power and rate scheduling
problem for a single user transmitting to a base station
on a fading wireless link with the objective of minimizing
the mean delay subject to an average power constraint.
The base station acts as a controller which, depending
upon the transmitter buffer lengths and the signal power
to interference ratio (SIR) on the uplink pilot channel,
allocates transmission rate and power to the user. We
provide structural results for an average cost optimal
stationary policy under a long run average transmitter
power constraint. We obtain a closed form expression
relating the optimal policy when the SIR is the best, to
the optimal policy for any other SIR value. We also obtain
lower and upper bounds for the optimal policy.
Keywords: Power and rate control in wireless networks,
Quality of service in wireless networks

II. INTRODUCTION

In communication systems, many fundamental problems
involve the optimal allocation of resources subject to perfor-
mance objectives. In a wired network, the crucial resources are
the transmission data rates available on the link. Techniques
such as flow control, routing and admission control are all
centered around allocating these resources. We consider a
resource allocation problem that arises in mobile wireless com-
munication systems. Several challenging analytical problems
arise because of the special limitations of a wireless link. One
is the time varying nature of the multipath channel, and another
is the limited battery power available at a typical wireless
handset. It is desirable to allocate transmission rates to a user
such that the energy used to transmit the information is mini-
mized while keeping errors under control. Most applications,
however, also have quality of service (QoS) objectives such as
mean delay, delay jitter, and throughput. Thus there is a need
for optimal allocation of wireless resources which provides
such QoS guarantees subject to the above said error and en-
ergy constraints. Various methods for allocating transmission
resources are part of most third generation cellular standards.
They include adjusting the transmission power, changing the
coding rate and varying the spreading gain in a CDMA based
system.

The system model in our work is given in Fig. 1 and is
explained below. We assume a slotted system where the higher

layer presents the data, that arrives over a slot, to the link
layer at the end of each slot. The link layer is assumed to
have an infinite capacity buffer to hold the data. We assume
that the channel gain and any other interference to the system
remain fixed over a slot and vary independently from slot to
slot. Over a mini-slot (shown as shaded in Fig. 1), the buffer
length information is communicated to the receiver/controller,
and the user transmits pilot bits at a fixed power level which we
refer to as a pilot channel. The receiver estimates the signal
to interference ratio (SIR) on the pilot channel. We assume
that the estimates are perfect. Depending on the SIR estimates
and the buffer length information, the receiver evaluates the
optimal transmission rate and power for the current slot and
communicates it back to the transmitter. In practice, there
are some restrictions on how much these controls can vary.
In this paper we assume that the transmitter can transmit at
any arbitrary rate and power level. The transmitter removes
that much amount of data from the buffer and encodes it at
the allocated rate. All this exchange of information and the
encoding is assumed to be completed within the time slot
shown as shaded in the Fig. 1. After this the transmitter starts
to transmit the encoded data.

Goldsmith and Varaiya [3] are probably the first to obtain
the optimal power allocation policy for a single link fading
wireless channel. Their emphasis was on the optimal physical
layer performance, while ignoring the network layer perfor-
mance such as queueing delay. In recent work, Berry and
Gallager [1] have considered a problem similar to ours. They
obtained structural results exhibiting a tradeoff between the
network layer and physical layer performance, i.e. the optimal
power and mean delay. They show that the optimal power vs;
the optimal delay curve is convex, and as the average power
available for transmission increases, the achievable mean delay
decreases. They also provide some structural results for the
optimal policy that achieves any point on the power delay
curve. In this work, we improve upon the results obtained in
[1]. We prove the existence of a stationary average optimal
policy, and give a closed form expression for the optimal
policy for any SIR value in terms of the optimal policy when
the SIR is one, i.e., the best SIR. We also provide lower
and upper bounds for the optimal rate allocation policy, not
obtained by Berry and Gallager.

This paper is organized as follows. In Section III, we give
the model of the system under consideration and formulate
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the controller objective as a constrained optimization problem.
Then using the result from [4], we convert it into a family
of unconstrained optimization problems. This unconstrained
problem is a Markov decision problem (MDP) with the
average cost criterion. We show the existence of stationary
average cost optimal policies which can be obtained as a
limit of discounted cost optimal policies, in Section IV. In
Section V, we obtain structural results for the discounted cost
optimal policies. We obtain structural results for the average
optimal policy in Section VI. Finally, in Section VII, we find
conditions under which the hypothesis of the Theorem stated
in Section III, holds and hence the existence of a Lagrange
multiplier, and the corresponding optimal policy which is also
optimal for the original constrained MDP.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a discrete time (slotted) fluid model for our
analysis, and will later comment on how our results may be
used for a packetized model. The slot length is τ (time units),
and the nth slot is the interval [nτ, (n+1)τ), n ≥ 0. The data
to be transmitted arrives into the system from a higher layer
at the end of each slot and is placed into a buffer of infinite
capacity (See Figure 1). The arrival process A[n] is assumed
to be an independent and identically distributed (iid) sequence;
let F (a) be its distribution function. The channel power gain
process H[n] is assumed to remain fixed over a slot and vary
independently from slot to slot. Any other interference to the
system is modelled by the process I[n] which stays constant
over a slot and is iid from slot to slot. We further assume that
the receiver can correctly estimate the signal to interference
ratio (SIR) γ on the “uplink” using a pilot channel. Let σ2 be
the receiver noise power. Without loss of generality, we assume
the pilot transmitter power is fixed to σ2 units. During the nth

slot, the SIR γ[n] can be written in terms of the current channel
gain (h[n] ∈ (0, 1]), the receiver noise power, and the current

other interference (i[n] ∈ [0,∞)), as γ[n] = σ2h[n]
σ2+i[n] . Thus

the process Γ[n] is iid with the distribution function G(γ).
Further, from the above definition γ[n] ∈ (0, 1].

The receiver acts as a controller which, given the buffer state
and the SIR, obtains an optimum transmission schedule that
minimizes the mean buffer delay subject to a long run average
transmitter power constraint P̄ . The buffer state is available to
the receiver at the beginning of each slot. The measurement
of SIR and the control decision are taken within a mini-slot
shown as shaded and conveyed back to the transmitter also in
the same mini-slot. Based on these decisions, the transmitter
removes the data from the buffer, encodes it and transmits the
encoded data over the channel.

According to our model, if in a frame n the user transmits
a signal ys[n], then the receiver gets

yr[n] =
√

h[n]ys[n] + ζ[n],

where ζ[n] constitutes the additive white Gaussian noise and
the other users’ interference signal. In this model we assume
the external interference to be independent of the system being
modelled.

Let, for n ∈ {0, 1, 2, · · ·}, s[n] be the amount of fluid in the
buffer at the nth decision epoch and γ[n] be the SIR in the nth

slot (i.e., the interval [nτ, (n+1)τ)). Let the state of the system
be represented as x[n] := (s[n], γ[n]). At the nth decision
instant, the controller decides upon the amount of fluid r[n]
to be transmitted in the current slot depending on the entire
history of state evolution, i.e., x[k] for k = {0, 1, 2, · · · , n}.
Let a[n], n ∈ {0, 1, 2, · · ·} be the amount of fluid arriving in
the nth slot. Since the amount of fluid transmitted in a slot
should be less than the amount in the buffer, i.e., r[n] ≤ s[n],
for all n, the evolution equation for the buffer can be written
as

s[n + 1] = s[n] − r[n] + a[n].
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Denote by X[n], S[n], R[n], n ≥ 0, the corresponding random
processes.

The cost of serving r units of fluid in a slot is the total
amount of energy required for transmission. We assume N
channel symbols in a slot; N is related to the channel band-
width via Nyquist’s theorem. When N is sufficiently large,
the power P , required to transmit reliably (i.e., with zero
probability of decoding error), is related to the transmission of
r units of data in N channel symbols, when the SIR as defined
above is γ, by Shannon’s formula [2] for the information
theoretic capacity, i.e.,

r =
1
θ

ln
(
1 +

γP

σ2

)
,

where θ = 2 ln(2)
N . Thus when the system state is x, the power

required to transmit r units of fluid is

P (x, r) =
σ2

γ
(eθr − 1).

Since, in practice, N is finite, there is positive a probability of
decoding error. In section VIII-A, we will comment on how the
problem gets modified by incorporating this error probability.

Since delay is related to the amount of data in the buffer
by Little’s formula [7], the objective is to minimize the mean
buffer length. Given x[0] = x, the controller’s problem is thus
to obtain the optimal r(·) that minimizes

lim supn
1
nE

∑n
k=0 S[k],

subject to,

lim supn
1
nE

∑n
k=0 p(X[k], R[k]) ≤ P̄ .

It can be seen from the above objective that the problem
has the structure of a constrained Markov decision problem
(MDP) [4], which we proceed to formulate in the next section.

A. Formulation as a MDP

Let {X[n], n ∈ {0, 1, 2, · · ·}} denote a controlled Markov
chain, with state space X = R+ × (0, 1], and action space
R+, where R+ denotes the positive real half line. The set of
feasible actions in state x = (s, γ) is [0, s]. Let K be the set
of all feasible state-action pairs. The transition kernel on X
given an element (x, r) ∈ K is denoted by Q, where

Q(y ∈ (S′,Γ′) ⊂ X|(x, r)) =
∫

S′−s+r

dF (a)
∫

Γ′
dG(z).

Define the mapping p : K → R+ by p(x, r) = σ2

γ (eθr − 1).
A policy π generates at time n an action r[n] depending

upon the entire history of the process, i.e., at decision instant
n ∈ {0, 1, 2, · · ·}, πn is a mapping from Kn × X to [0, s[n]].
Let Π be the space of all such policies. A stationary policy
f ∈ Π is a measurable mapping from X to [0, s]. For a policy
π ∈ Π, and initial state x ∈ X , we define two cost functions
Bπ

x , the buffer cost, and Kπ
x , the power cost by,

Bπ
x = lim sup

n

1
n
Eπ

x

n∑

k=0

S[k].

Kπ
x = lim sup

n

1
n
Eπ

x

n∑

k=0

p(X[k], R[k]).

Given P̄ > 0, denote by ΠP̄ the set of all admissible control
policies π ∈ Π which satisfy the long run transmitter power
constraint Kπ

x ≤ P̄ . Then the controller objective can be
restated as a constrained optimization problem (CP) defined
as,

(CP ) : Minimize Bπ
x subject to π ∈ ΠP̄ (1)

The problem (CP) can be converted into a family of un-
constrained optimization problem through a Lagrangian ap-
proach [4]. For every β > 0, the Lagrange multiplier, define
a mapping cβ : K → R+ by,

cβ(x, r) = s + βp(x, r).

Define a corresponding Lagrangian functional for any policy
π ∈ Π by,

Jπ
β (x) = lim sup

n

1
n
Eπ

x

n∑

k=1

cβ(X[k], R[k]).

The following theorem gives sufficient conditions under which
an optimal policy for an unconstrained problem is also optimal
for the original constrained control problem (CP).

Theorem 3.1: [4] Let, for some β > 0, π∗ ∈ Π be the
policy that solves the following unconstrained problem (UPβ)
defined as,

(UPβ) : Minimize Jπ
β (x) subject to π ∈ Π (2)

Further, if π∗ yields the expressions Bπ∗
and Kπ∗

as limits
for all x ∈ X and Kπ∗

= P̄ ,∀x, then the policy π∗ is optimal
for the constrained problem (CP).

Proof: (See [4]) Note that even though the result is stated
in [4] for the countable state space case, the result holds also
for the more general situation in our paper so long as we can
provide a solution to UPβ with the requisite properties stated
in the Theorem. 1

In the subsequent sections, we solve the problem (UPβ) and
show in Section VII that the solution satisfies the hypothesis
of the Theorem 3.1. The problem (UPβ) is a standard Markov
decision problem with an average cost criterion. For ease of
notation, we suppress the dependence on the parameter β.

IV. EXISTENCE OF A STATIONARY AVERAGE COST

OPTIMAL POLICY

We consider the average cost problem (UPβ) and define a
corresponding discounted cost MDP with discount factor α.
We intend to study the average cost problem as a limit of
discounted cost problems when the discount factor α goes to
one. For initial state x, define

Vα(x) = min
π∈Π

Eπ
x

[ ∞∑

k=0

αkcβ(X[k], R[k])
]
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as the optimal total expected discounted cost for discount
factor α, 0 < α < 1. Vα(x) is called the value function for
the discounted cost MDP.

The following lemma [6] proves the existence of stationary
discounted cost optimal policies. We will need Conditions W.

W1. X is a locally compact space with a countable base.
W2. R(x), the set of feasible actions in state x, is a compact

subset of R (the action space), and the multifunction
x → R(x) is upper semi continuous.

W3. Q is continuous in r with respect to weak convergence
in the space of probability measures.

W4. c(x, r) is lower semi-continuous.

Lemma 4.1: [[6], Proposition 2.1] Under Conditions W,
there exists a discounted cost stationary optimal policy fα for
each α ∈ (0, 1). 1

Now we state a result related to the existence of stationary
average optimal policies which can be obtained as limit of
discounted cost optimal policies fα.

Define
wα(x) = Vα(x) − inf

x∈X
Vα(x).

Theorem 4.1: [[6],Theorem 3.8] Suppose there exists a
policy Ψ and an initial state x ∈ X such that the average
cost JΨ(x) < ∞. Let supα<1 wα(x) < ∞ for all x ∈ X
and the Conditions W hold, then there exists a stationary
policy f1 which is average cost optimal and the optimal cost
is independent of the initial state. Also f1 is limit discount
optimal in the sense that, for any x ∈ X and given any
sequence of discount factors converging to one, there exists
a subsequence {αm} of discount factors and a sequence
xm → x such that f1(x) = limm→∞ fαm

(xm). 1

Remark: In Theorem 4.1, the subsequence of discount factors
depends upon the choice of x.

First we verify the Conditions W. Conditions W1 holds true
since the state space is a subset of R2 which is locally compact
with a countable base. The set R(x) = [0, s] is compact and
the mapping x(= (s, γ)) → [0, s] is continuous, thus the
condition W2 holds. Condition W3 follows from the definition
of the transition kernel Q(·) since for distributions on R2,
weak convergence is just convergence in distribution. As the
function c is continuous, the condition W4 follows. This
implies the existence of stationary discounted cost optimal
policies fα.

The first hypothesis of Theorem 4.1 should hold in most
practical problems because otherwise the cost is infinite for
any choice of the policy, and thus any policy is optimal.

To verify that supα<1 wα(x) < ∞ for x ∈ X , x = (s, γ)
we write the discounted cost optimality equation (DCOE) as

Vα(x) = min
0≤r≤s

{
cβ(x, r) + α

∫

X
Vα(y)Q(dy|(x, r))

}
(3)

Given γ, Vα

(
s, γ

)
is clearly increasing in s since the larger

is the initial buffer the larger will be the cost to go. Thus
arg infx∈X Vα(x) = (0, 1) =: x0, i.e., the infimum is achieved

when the system starts with an empty buffer and the best SIR.
Also when the buffer is empty, the set of feasible actions is
{0}. Thus as cβ(x0, 0) = 0, we have,

Vα(x0) = α

∫

X
Vα(y)Q(dy|(x0, 0)).

In addition, considering the policy r(x) = s for all x ∈ X ,
we get,

Vα(x) ≤ s +
βσ2

γ
(eθs − 1) + α

∫

X
Vα(y)Q(dy|(x, s))

But from the definition of Q, it follows that Q(dy|(x, s)) =
Q(dy|(x0, 0)). Thus we get,

Vα(x) ≤ s +
βσ2

γ
(eθs − 1) + Vα(x0).

By the definition of wα(x) we have wα(x) = Vα(x)−Vα(x0)
and hence

wα(x) ≤ s +
βσ2

γ
(eθs − 1) < ∞ for x ∈ X .

Thus all the conditions of Theorem 4.1 are satisfied. Hence
we have proved the existence of a stationary average optimal
policy which can be obtained as a limit of discount optimal
policies as described in Theorem 4.1.

V. ANALYSIS OF THE DISCOUNTED COST MDP

In this section, we obtain some structural results for the
α-discounted optimal policy for each α ∈ (0, 1). As α is
fixed in the analysis that follows in this section, we suppress
the explicit dependence on α. For a state-action pair (x =
(s, γ), r) define u := s − r, i.e., u ∈ [0, s) is the amount of
data not served when the system state is x. It follows from
the definition of Q that Q(dy|(x, r)) = Q(dy|u). Thus we can
rewrite the DCOE (Equation 3) in terms of u as,

V (x) = min
u∈[0,s]

{
s +

βσ2

γ
(eθ(s−u) − 1) + αH(u)

}
, (4)

where the function H(u) is defined as,

H(u) :=
∫ ∞

0−

∫ 1

0
V (u + a, γ)dF (a)dG(γ). (5)

Lemma 5.1:

(i)) H(u) is convex, and hence H ′(u) is increasing.
(ii)) 1 ≤ H ′(u) ≤ 1 + θeσ2βηeθu, where

η =
∫ ∞

0−

∫ 1

0

eθa

γ
dF (a)dG(γ)

.

Proof: See the Appendix. 1
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A. Structure of the optimal policy

Now it can be seen that for each x, the right hand side of
the DCOE is a convex programming problem. Using standard
techniques for solving a constrained convex programming
problem, we obtained the following result for the u(x) that
achieves the minimum in Equation 4.

• u(x) = 0 for {x ∈ X : βθσ2

αγ eθs ≤ H ′(0)}.

• u(x) = s for {x ∈ X : H ′(s) ≤ βθσ2

αγ }
• Else u(x) is the solution of σ2

γ eθs = eθu αH′(u)
βθ , and

0 < u(x) < s.

This solution is depicted in Figure 2.
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Fig. 2. Characterization of the optimal policy for the discounted cost MDP

Observations:
1) It is optimal not to serve anything when the SIR esti-

mated is low (i.e., 1
γ is large).

2) When the SIR estimated at the receiver is high, it is
optimal to serve everything until a value of the buffer
size that increases with r.

3) In the low SIR region, as s increases it becomes optimal
to serve data as the delay cost then exceeds the power
cost.

B. A state space reduction

Now we show that the optimal policy for any SIR γ can be
calculated by knowing the optimal policy when the SIR is 1.
Note that H(u) is a function that does not depend upon the
policy, and β, θ, α are given constants. Consider two states x1
and x2. It follows from the result in Section V-A that except
for the case when u(x) = s, the controls u(x1) and u(x2) are
the same if

1
γ1

eθs1 =
1
γ2

eθs2

Thus we can compute the optimal policy u(x) for any x ∈ X
by knowing the optimal policy for the case when γ is fixed to
one and only s is allowed to vary. In order to compute u(s, γ),
we first obtain s1 such that eθs1 = eθs 1

γ and then the optimal
policy u(s, γ) can be written in terms of u(·, 1) as,

u(s, γ) = min
{
s, u

(
s +

1
θ

ln
( 1
γ

)
, 1

)}
.

Thus for subsequent analysis, we can concentrate only on the
evaluation of u(s, 1) and we henceforth call it the optimal pol-
icy. For the notational convenience, we write u(s, 1) as u(s),

r(s, 1) as r(s), and V (s, 1) as V (s). Thus from Equation 4,
we have,

V (s) = min
u∈[0,s]

{
s + βσ2(eθ(s−u) − 1) + αH(u)

}
. (6)

The objective function, being sum of a strictly convex and
a convex function, is strictly convex. Thus it has a unique
minimizer for each s. Now we obtain some structural results
for u(s). Note that r(s) = s − u(s). The following theorems
give structural results for the discounted cost optimal policy
u(s) obtained as a solution to Equation 6.

Theorem 5.1: The optimal rate allocation policy r(s) = s−
u(s) is nondecreasing in s.

Proof: We show this by contradiction. Let there be s1 and s2
such that s1 < s2 but r(s1) > r(s2). Thus r(s2) > r(s1) ≤
s1 < s2 and hence a policy which uses r(s2) in state s1 and
r(s1) in state s2 is feasible. Since r(·) is optimal, it follows
that

s1 + βσ2(eθr(s1) − 1) + αH(s1 − r(s1)) <

s1 + βσ2(eθr(s2) − 1) + αH(s1 − r(s2))
s2 + βσ2(eθr(s2) − 1) + αH(s2 − r(s2)) <

s2 + βσ2(eθr(s1) − 1) + αH(s2 − r(s1)),

where the strict inequality holds due to uniqueness of the
minimizer. Now by adding the two equations we get,

H(s1 − r(s2)) − H(s1 − r(s1)) >

H(s2 − r(s2)) − H(s2 − r(s1))

which contradicts the convexity of H(·) as proved in Lemma
5.1. 1

Observe that Theorem 5.1 implies that for any pair (s1, s2)
satisfying s1 < s2, we have s1 − u(s1) ≤ s2 − u(s2), i.e.,
u(s2) − u(s1) ≤ s2 − s1.

Theorem 5.2: The optimal policy u(s) := s − r(s) is
nondecreasing and

s

2
− 1

2θ
ln(κ2) ≤ u(s) ≤ s − 1

θ
ln(κ1),

where κ1 and κ2 are constants.

Remark: We have u(s) + r(s) = s, and we see that both
r(s) and u(s) are nondecreasing in s.

Proof: We argue by contradiction. Let there be s1 and s2 such
that s1 < s2 but u(s1) > u(s2). Thus a policy which uses
u(s2) in state s1 and u(s1) in state s2 is feasible. Since u(·)
is optimal, it follows from the uniqueness of the minimizer
that

s1 + βσ2(eθ(s1−u(s1)) − 1) + αH(u(s1)) <

s1 + βσ2(eθ(s1−u(s2)) − 1) + αH(u(s2))
s2 + βσ2(eθ(s2−u(s2)) − 1) + αH(u(s2)) <

s2 + βσ2(eθ(s2−u(s1))) − 1) + αH(u(s1)).
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Adding the two equations we get,

eθs1(e−θu(s1) − e−θu(s2)) < eθs2(e−θu(s1) − e−θu(s2))

But since u(s1) > u(s2), it implies s1 > s2, which is a
contradiction. Thus u(s1) ≤ u(s2).

Now we obtain the bounds on u(s). Using Lemma 5.1(ii)
and the results for the optimal policy we get,

κ1e
θu ≤ σ2eθs ≤ κ2e

2θu,

where κ1 and κ2 take care of all the constants involved. From
this the result follows. 1

Corollary 5.1: The sequence {uα(·)}, α ∈ (0, 1) of α-
discount optimal policies is globally equi-Lipschitz with pa-
rameter 1, i.e., for each pair (s1, s2) of the state space and
each α ∈ (0, 1) we have,

|uα(s2) − uα(s1)| ≤ |s2 − s1|.

This implies u(·) is differentiable almost everywhere and
u

′
(s) ≤ 1. 1

VI. THE AVERAGE COST OPTIMAL POLICY

In this section we provide structural results for the average
cost optimal policy. We reintroduce the dependence on the
discount factor α of the related α−discount optimal policies.
Let u1(s) be the average cost optimal policy and uα(s) be
the α−discount optimal policy for α ∈ (0, 1). Consider the
result stated in Theorem 4.1. The average cost optimal policy
u1(s) is the limit of discount optimal policies which might be
optimal for some close neighbour of s rather than s itself.

Lemma 6.1: Given s ∈ [0,∞), let αn be the subsequence of
discount factors as in Theorem 4.1. The average cost optimal
policy u1(s) for any s can be obtained as a pointwise limit of
discount optimal policies, i.e., u1(s) = limn uαn

(s),

Proof: Given s ∈ [0,∞) and a sequence of discount factor
converging to one, let αn be the subsequence and sn be the
sequence converging to s such that uαn

(sn) → u1(s) as n →
∞. Note that this holds as a result of Theorem 4.1. Then

|u1(s) − uαk
(s)|

≤ |u1(s) − uαk
(sk)| + |uαk

(sk) − uαk
(s)|

≤∗ |u1(s) − uαk
(sk)| + |sk − s| → 0

where (∗) follows from the Corollary 5.1. 1

Lemma 6.2: The average cost optimal policy u1(s) is
monotonically nondecreasing.

Proof: Consider s1 < s2. Using Lemma 6.1, let αn be the
subsequence of discount factors such that uαn

(s1) → u1(s1).
Considering αn as the original sequence, we can again find a
subsequence say αnk

such that uαnk
(s2) → u1(s2). As uα(s)

is monotonic nondecreasing, we have uαnk
(s2)−uαnk

(s1) ≥
0 for all k. Now taking the limit as k tends to infinity, we get
u1(s2) ≥ u1(s1). Since this is true for any s1 and s2, we have
the result. 1

The following theorem gives the structural properties of the
average cost optimal policy and further strengthen the results
of Theorem 4.1.

Theorem 6.1: For the discount factor αn, let uαn
(s) be the

minimizer of the right hand side of Equation 6,

V (s) = min
u∈[0,s]

{
s + βσ2(eθ(s−u) − 1) + αnH(u)

}
.

where H(u) is as in Equation 5.

(i)) Given any sequence of discount factors converging to
1, there exists a subsequence {αn} such that for any
s ∈ R+, the average cost optimal policy u1(s) =
limn uαn

(s), i.e., the choice of subsequence does not
depend upon the choice of s.

(ii)) The optimal policy u1(s) is monotonic nondecreasing
and Lipschitz with parameter one. Also, we have bounds
on u1(s), i.e.,

s

2
− 1

2θ
ln(κ2) ≤ u1(s) ≤ s − 1

θ
ln(κ1).

(iii)) Given any x = (s, γ) ∈ X , the average optimal policy
u1(x) representing the amount of data not served when
in state x, is

u1(x) = min
{
s, u1

(
s +

1
θ

ln
( 1
γ

))}
.

Proof:
(i)) Let D1 be a countable dense subset of R+. Since

u1 is monotonic, it can at most have countably many
discontinuities. Let D2 be the set of discontinuities.
Define a countable set D := D1∪D2. Given s1 ∈ D, let
{α1i} be the subsequence such that uα1i

(s1) → u1(s1).
Take s2 ∈ D and find a subsequence {α2i} ⊂ {α1i}
such that uα2i

(s2) → u1(s2). Also we have uα2i
(s1) →

u1(s1). We keep on doing this till D is exhausted. By
Cantor diagonalization procedure, we get a sequence
{αn} such that uαn

(s) → u1(s) for all s ∈ D. Now
take any s ∈ R+ \D. Since D is dense in R+ and u1(·)
is continuous at s ∈ R+\D, given ε > 0, there ∃s1 ∈ D
such that |s−s1| < ε

3 and |u1(s)−u1(s1)| < ε
3 . Choose

N such that |u1(s1)−uαn
(s1)| < ε

3 for all n > N . Now
for all n > N , we have,

|u1(s) − uαn
(s)| ≤ |u1(s) − u1(s1)|
+|u1(s1) − uαn

(s1)| + |uαn
(s1) − uαn

(s)|
≤ ε

3
+

ε

3
+ |s1 − s| ≤ ε

Since ε is arbitrary, we have a result that given any
sequence of discount factors converging to one, there
exists a subsequence {αn} such that uαn

(s) → u1(s)
for ∀s ∈ R+.

(ii)) The monotonic nondecreasing property of u1(s) is
shown in Lemma 6.2. The bounds on u1(s) are obvious
from the corresponding bounds on uα(s) in Theo-
rem 5.2. To prove Lipschitz continuity of u1(s), let αn
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be the subsequence converging to one as in the proof
of (i). Given ε > 0 and s1, s2 ∈ S, find N1 and N2
such that |u1(s1) − uαn

(s1)| < ε
2 for all n > N1

and |u1(s2) − uαn
(s2)| < ε

2 for all n > N2. Let
N = max(N1, N2). Now for n > N , we have

|u1(s1) − u1(s2)| ≤ |u1(s1) − uαn
(s1)|

+|uαn
(s1) − uαn

(s2)| + |uαn
(s2) − u1(s2)|

≤ ε

2
+ |s1 − s2| +

ε

2
Since ε is arbitrary, we have the result. 1

We have given structural results for the optimal policy for
the unconstrained problem (UPβ). Now we show that there
exists a β > 0 for which the optimal policy obtained above is
also optimal for the constrained problem CP .

VII. THE OPTIMAL POLICY UNDER A POWER CONSTRAINT

We reintroduce the dependence on the Lagrange multi-
plier β. Recollect that the solution to the problem (UPβ) is
rβ
1 (s, γ) = s − uβ

1 (s, γ), where uβ
1 (s, γ) is

min
{
s, uβ

1

(
s +

1
θ

ln
( 1
γ

)
, 1

)}
.

We find conditions under which the hypothesis of Theorem 3.1
holds. First we show the existence of a β0 > 0 such that
the average power cost is equal to the power constraint, i.e.,
Ku

β0
1 = P̄ .

As the parameter β is increased, power becomes more
expensive and hence the average amount of fluid in the buffer
increases. It has earlier been shown in [1] that as the delay
increases, the power required decreases and the power-delay
tradeoff curve is convex. Thus Kuβ

1 decreases as β increases.
Moreover, Kuβ

1 → 0 as β → ∞ and tends to infinity as β → 0.
Thus, each point on the curve can be obtained with a particular
β, i.e., there exists a β0 > 0 such that Ku

β0
1 = P̄ . But we

have this result only in the lim sup sense. If we can show that
for this choice of β, the lim sup and the lim inf are equal then
we will satisfy the hypothesis of Theorem 3.1. Since we have
a stationary policy uβ0

1 (s, γ), and {Γn} is iid, it is clear that
{Sn} is a Markov chain on R+. To show that uβ0

1 (s, γ) yields
the expressions Buβ

1 and Kuβ
1 as limits, it is thus sufficient

to show that the controlled chain {Sn} is ergodic under this
policy.

Using the negative drift argument [5], the following drift
condition is sufficient for the ergodicity of the controlled chain
{Sn} under the policy uβ0

1 (s, γ).
Drift Condition: Given ε > 0, there exists an s0 < ∞ such
that for all s > s0 the following holds,

E
(
Sn+1 − Sn|Sn = s

)
< −ε (7)

Theorem 7.1: Suppose there exists 0 < s0 < ∞ such that

rβ0
1 (s0, 1) = s0 − uβ0

1 (s0, 1) > Q,

where Q is a constant satisfying

E
(
Q − 1

θ
ln

( 1
Γ

))+
> E(A) + ε.

where A is the arrival random variable. This particular choice
of s0 satisfies the drift condition and thus Sn is ergodic.

Remark: If γ only assumes values close to zero then it is
possible that one may not get any finite value for Q.

Proof: By the monotonic nondecreasing nature of rβ0
1 (s, γ),

it follows from the hypothesis that for all s > s0,

rβ0
1 (s, 1) > Q

As in Theorem 6.1, we have for all s > s0 and all γ ∈ (0, 1],

rβ0
1 (s, γ)

= s − min
{
s, uβ0

1

(
s +

1
θ

ln
( 1
γ

)
, 1

)}

=
(
s − uβ0

1

(
s +

1
θ

ln
( 1
γ

)
, 1

))+

=
(
rβ0
1

(
s +

1
θ

ln
( 1
γ

)
, 1

)
− 1

θ
ln

( 1
γ

))+

>
(
Q − 1

θ
ln

( 1
γ

))+

Now we intend to use this lower bound to get an upper bound
for the left hand side (LHS) of Equation 7. From Equation 7,

E
(
Sn+1 − Sn|Sn = s

)

= E[A] −
∫ 1

0
rβ0
1 (s, γ)dG(γ)

≤(a) E[A] − E
(
Q − 1

θ
ln

( 1
Γ

))+

< −ε

where the inequality (a) follows from the lower bound on
rβ0
1 (s, γ) for all s > s0. Hence proved. 1

Lemma 7.1: If Q < ∞, the hypothesis of Theorem 7.1 is
satisfied.

Remark: We will show that the average cost optimal rate
rβ0
1 (s, 1) → ∞ as s goes to ∞.

Proof: See Appendix for the detailed proof. 1

Lemma 7.1 along with the Theorem 7.1 implies the exis-
tence of a stationary measure under the policy uβ0

1 and that
the expressions Bu

β0
1 and Ku

β0
1 are obtained as limits. Thus,

in summary, if Q as defined in Theorem 7.1 is finite, there
exists a Lagrange multiplier β0 > 0 such that uβ0

1 (·) is the
solution to the problem CP .

Now we show how the results obtained using the fluid model
can be used for a packetized model. In a packetized model, we
assume that a number of packets arrive in each slot and they
cannot be fragmented during transmission. Thus we should
look for integer solution of optimal rates. One way to do this
is to use the floor of the optimal allocated rate. But with this
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algorithm the power available will be underutilized. Thus we
suggest the following algorithm. Let r(s, γ) be the optimal
policy for the buffer state of s packets. With probability p we
use the policy �r(s, γ)� and with probability 1 − p we use
the policy �r(s, γ)�. Let K1 be the average power required
when the policy used is �r(s, γ)� and K2 when the policy is
�r(s, γ)�. Thus the probability p can be obtained from pK1 +
(1 − p)K2 = P̄ .

VIII. THE MAIN RESULT

In this section we give all the results obtained in this work
along with all the assumptions.

Theorem 8.1: We assume that η,Q and L(α, 1) as defined
below are all finite.
Define η = E

[
eθA

Γ

]
. Define L(α, 1) = 1

θ ln
(

α
(1−α)βθσ2

)
for

0 < α < 1. Define Q as a solution to

E
(
Q − 1

θ
ln

( 1
Γ

))+
> E(A) + ε,

where ε is a positive given number. Let uαn
(s) be the

minimizer of the right hand side of the following equation,

V (s) = min
u∈[0,s]

{
s + βσ2(eθ(s−u) − 1) + αnH(u)

}
.

where H(u) is as in Equation 5.

(i)) Given any sequence of discount factor converging to
one, there exists a subsequence {αn} such that for any
s ∈ S, the average optimal policy u1(s) = limn uαn

(s),
i.e., the choice of subsequence does not depend upon
the choice of s.

(ii)) The optimal policy u1(s) is monotonic nondecreasing
and Lipschitz with parameter one. Also, we have bounds
on u1(s), i.e.,

s

2
− 1

2θ
ln(κ2) ≤ u1(s) ≤ s − 1

θ
ln(κ1).

(iii)) Given any x = (s, γ) ∈ X , the average optimal policy
u1(x) representing the amount of data not served when
in state x, is

u1(x) = min(s, u1(s +
1
θ

ln
( 1
γ

)
)).

(iv)) There exists a Lagrange multiplier β > 0 such that
the optimal policy for (UPβ) is also optimal for the
constrained problem (CP ) 1

Remark A nearly optimal policy for the packetized model
is obtained via the randomization between two fluid optimal
policies; Section VII.

A. Decoding Error Possibility

Since the codewords used for transmission are of finite
length (N), the formula for P (x, r) used earlier is only a
lower bound on the power required to transmit reliably at rate
r. Thus if one transmits at P (x, r), there will be a positive
probability of decoding error. The bound on the probability of
error event is given by the random coding bound. Let Pe be
the probability of the error event. We assume that in case of

a decoding error, the transmitted data is lost and needs to be
retransmitted. The DCOE Equation 4 gets modified to

V (x) = min
u∈[0,s]

{
s + βσ2(eθ(s−u) − 1)

+α((1 − Pe)H(u) + PeH(s))
}
.

IX. CONCLUSION

In this work, we formulated the problem of scheduling
communication resources in a fading wireless link in a Markov
decision framework. The objective is to minimize the delay in
the transmitter buffer subject to an average transmitter power
constraint. We showed the existence of stationary average
optimal policy and obtained some structural results.

In ongoing work, we are extending the problem to the
multiuser case. We also intend to numerically compute the
average cost optimal policy and compare the performance with
some simple heuristic policies.
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APPENDIX

Proof of Theorem 5.1:

(i)) Since H(u) is a convex combination of V (u + a, γ),
it suffices to show that V (s, γ) is convex in s for each
γ. We show it through induction on the following value
iteration algorithm,

Vn(s, γ) = min
u∈[0,s]

{
s +

βσ2

γ
(eθ(s−u) − 1) (8)

+α
∫ ∞

0

∫ 1

0
Vn−1(u + a, γ′)dF (a)dG(γ′)

}
. (9)

For n = 0, V0(s, γ) = 0 hence convex. Assume
Vn−1(s, γ) is convex in s for each γ. Now we fix γ.
Let u(s) be the optimal policy in state x = (s, γ) for
nth iteration. Define 1 − λ = λ̄ and s = λs1 + λ̄s2.
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Let operator E represents averaging with respect to the
random variables a and γ. Thus,

λVn(s1, γ) + λ̄Vn(s2, γ)

= s +
βσ2

γ
(λeθ(s1−u(s1)) + λ̄eθ(s2−u(s2))) − βσ2

γ

+αE
[
λVn−1(u(s1) + a, γ′)

+λ̄Vn−1(u(s2) + a, γ′)
]

≥ s +
βσ2

γ
(eθ(λ(s1−u(s1))+λ̄(s2−u(s2))) − 1)

+αE
[
Vn−1(λu(s1) + λ̄u(s2) + a, γ′)

]

≥∗ s +
βσ2

γ
(eθ(s−u(s)) − 1)

+αE
[
Vn−1(u(s) + a, γ′)

]

= Vn(λs1 + (1 − λ)s2), γ)

where the inequality (∗) follows from the fact that the
policy u(s) is optimal while λu(s1) + (1 − λ)u(s2)
is feasible for the state s = λs1 + (1 − λ)s2. The
last equality follows from the definition. Thus we have
shown that the value function V (s, γ) is convex in s for
each γ.

(ii)) To prove the upper bound on H ′(u), consider a feasible
policy that serves everything , i.e., u(x) = 0 for all
x ∈ X . For this policy we have,

V (x) ≤ s +
βσ2

γ
(eθs − 1) + αH(0).

Since H(u) is increasing, we also have V (x) ≥ s +
αH(0) independent of the choice of the policy. Define

η :=
∫ ∞

0−

∫ 1

0

eθa

γ
dF (a)dG(γ).

Now using the bounds on V (x) and the Equation 5 we
get,

H(u) ≤ u + E[A] + ηβσ2eθu + αH(0)

and
H(u) ≥ u + E[A] + αH(0),

Since H(u) is convex, it has a line of support at each
point. Let H(·) be differentiable at u, thus for any u1 >
u, we have

H(u1) − H(u) ≥ H ′(u)(u1 − u)

. Using the above said upper and lower bounds on H(·),
we have

H ′(u)(u1 − u) ≤ u1 − u + βησ2eθu1 .

Since u1 can take any value greater than u, we can
minimize the right hand side to get an even tighter
bound. Thus we have

H ′(u) ≤ 1 + βησ2eθu min
z>0

{e
θz

z
}.

Solving this we get

H ′(u) ≤ 1 + θβeσ2ηeθu.

Now we show that H ′(u) ≥ 1. When the buffer is
empty, the optimal policy is u(0, γ) = 0 for all γ. Thus
V (0, γ) = αH(0). Also V (s, γ) ≥ s+αH(0). Thus we
have

V ′(0, γ) = lim
ε→0

V (ε, γ) − V (0, γ)
ε

≥ 1.

Since V (s, γ) is convex in s, V ′(s, γ) is nondecreasing
in s. Thus V ′(s, γ) ≥ 1 for all (s, γ). Also as η <
∞, using the dominated convergence theorem we can
take the differentiation inside of the integral sign in
Equation 5. Thus H ′(u) ≥ 1. 1

Proof of Lemma 7.1: Let rα(·) be the α−discounted cost
optimal policy. We consider Equations 4, 5 and 8 and rewrite
them here in value iteration form for convenience.

Vn(s, γ) = min
u∈[0,s]

{
s +

βσ2

γ
(eθ(s−u(s,γ)) − 1)

+αHn−1(u)
}
.

Hn−1(u) =
∫ ∞

0

∫ 1

0
Vn−1(u + a, γ′)dF (a)dG(γ′).

We first show that given ε > 0, there exists an s∞ < ∞ such
that the optimal rate rα(s, 1) satisfies the following,

rα(s, 1) >
1
θ

ln
( α

(1 − α)βθσ2

)
− ε, ∀ s > s∞.

Define
1
θ

ln
( αγ

(1 − α)βθσ2

)
=: L(α, γ).

We show this using the induction procedure on the value
iteration algorithm. We initialize the algorithm with H0(u) =(

1
1−α

)
u. Thus using the result for the optimal policy we get,

rα,1(s, γ) = L(α, γ), ∀ s > L(α, γ).

Since L(α, γ) is increasing in γ, the above is also true for all
s > L(α, 1). The new value function for all s > L(α, 1) is,

V1(s, γ)

= s +
βσ2

γ

( αγ

(1 − α)βθσ2 − 1
)

+
( α

1 − α

)(
s − L(α, γ)

)
.

=
( 1

1 − α

)
s + ρ1(α, γ)

where ρ1(α, γ) takes care of all the terms not involving s.
Now from the definition of Hn−1(·), the value of H1(u) for
all u > L(α, 1) is,

H1(u) =
( 1

1 − α

)
u + s1,
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where s1 takes care of all the constants terms. Using the
induction argument, let for all u > (n − 1)L(α, 1),

Hn−1(u) =
( 1

1 − α

)
u + sn−1.

Then the optimal rate for the nth iteration is

rα,n(s, γ) = L(α, γ), ∀ s > nL(α, 1).

Then for all s > nL(α, 1) we have,

Vn(s, γ)

= s +
βσ2

γ

( αγ

(1 − α)βθσ2 − 1
)

+
( α

1 − α

)(
s − L(α, γ)

)
+ αsn−1.

=
( 1

1 − α

)
s + ρn(α, γ)

Now the value of Hn(u) for all u > nL(α, 1) is,

H1(u) =
( 1

1 − α

)
u + sn,

where s1 takes care of all the constants terms.
Thus the induction procedure show that for each finite n

there exists a a finite real number nL(α, 1) such that the rate
equals L(α, γ) for all s > nL(α, 1). But we can’t say this as
n tends to infinity. Since we have pointwise convergence of
rα,n(s, γ) to the optimal policy for each α, given ε > 0, there
exists a finite n and a finite real number s∞ such that for all
m > n,

rα,m(s∞, γ) > L(α, γ) − ε.

Now as we know that the policies rα,m are monotonic nonde-
creasing in s, we have the result that rα(s, 1) > L(α, 1) − ε
for all s > s∞.

Now as we let α tend to one, we get the average optimal
policy. But as α goes to one, the function L(α, 1) goes
to infinity. A similar argument as above proves the Lemma
because if Q is finite, we can always find a real number s0
such that r1(s, 1) > Q for all s > s0. Simple contradiction
argument can also be used to show the result. 1
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