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Abstract— The error patterns of a wireless digital communica-
tion channel can be described by looking at consecutively correct
or erroneous bits (runs and bursts) and at the distribution function
of these run and burst lengths. A number of stochastic models
exist that can be used to describe these distributions for wireless
channels, e.g., the Gilbert-Elliot model.

When attempting to apply these models to actually measured
error sequences, they fail: Measured data gives raise to two essen-
tially different types of error patterns which can not be described
using simple error models like Gilbert-Elliot. These two types are
distinguished by their run length distribution; one type in particu-
lar is characterized by a heavy-tailed run length distribution. This
paper shows how the chaotic map model can be used to describe
these error types and how to parameterize this model on the basis
of measurement data. We show that the chaotic map model is a
superior stochastic bit error model for such channels by compar-
ing it with both simple and complex error models. Chaotic maps
achieve a modeling accuracy that is far superior to that of simple
models and competitive with that of much more complex models,
despite needing only six parameters. Furthermore, these param-
eters have a clear intuitive meaning and are amenable to direct
manipulation.

In addition, we show how the second type of channels can be
well described by a semi-Markov model using a quantized lognor-
mal state holding time distribution.

Index Terms— Digital wireless channel, error model, chaotic
map, heavy-tailed run length distribution, IEEE 802.11.

I. INTRODUCTION

The bane of wireless communication is errors: Communica-
tion over a wireless channel is faced with much more frequent
errors of supposedly different error characteristics, compared
to errors in wire-line communication. Understanding these er-
ror characteristics is important for many purposes, e.g., for
simulation-based performance evaluation of wireless commu-
nication protocols or for exploiting knowledge about these er-
ror characteristics within a protocol that dynamically adapts its
behavior, e.g., the packet size, to these very characteristics. In
either case, a compact representation of the error characteris-
tics, an error model, is required.

Such an error model could attempt to deterministically de-
scribe the causes of errors, however, some sources of errors in
wireless communication are intrinsically stochastic, e.g., ther-
mal noise. Therefore, all relevant error models are also stochas-
tic in nature (Figure 1 gives an overview).
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Fig. 1. Overview of possible error models

Such stochastic models can be developed on an analog level,
describing the behavior of the received signal strength and/or
the interference power, or they can be applied to the digital
level, describing the sequence of (possibly erroneous) bits that
the receiver’s radio front end delivers to higher protocol layers.
The advantage of digital models is that they describe exactly
the errors that higher protocol layers (such as medium access
control or data link control) have to contend with, already tak-
ing into account all possible impediments ranging from, e.g.,
varying channel characteristics to synchronization problems in
the receiver hardware.

In both cases, the model can be based on analytic reason-
ing or on measurements. Common analog, analytic models are
the Rice and Rayleigh fading models [1]; measurements for the
analog level have been described, for example, in [2]. An ex-
ample for a digital, analytic model is the well-known Gilbert-
Elliot model [3], [4]: it is based on the observation that errors in
a communication channel appear in groups and expresses this
observation using a two-state Markov model.

For the purpose of this paper, we are interested in the fourth
category: using actual bit error measurements to develop a
stochastic model of the digital behavior of wireless transmis-
sion. We focus on this model type especially because of the
ability to directly reflect the intended communication technol-
ogy and deployment scenarios.

In order to perform such measurements of a digital commu-
nication system, we developed a measurement setup based on
the IEEE 802.11b wireless LAN standard. The details of this
setup are described in Section II; its main property is that it al-
lows to detect differences between the ith sent bit si and the
corresponding ith received bit ri: if ri = si, no error occurred,
if ri = ¬si, the ith bit has been modified during transmission.
Put briefly, ri = si XOR ei, where ei is an error bit indicating
whether or not bit i has been transmitted correctly.

Using this measurement setup, we recorded a number of
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traces; a trace is the sequence of error indicator bits ei. Such
a trace can be concisely represented by counting the number
of consecutive error-free and erroneous bits. A sequence of
error-free bits is called a run, consecutive erroneous bits are
called a burst. Using this representation, a fundamental task of
a stochastic error model is to describe the random distribution
of the lengths of both runs and bursts—it is a model for these
distributions that we are pursuing in this paper.

In addition, an error model can also attempt to model the pat-
terns in which runs and burst lengths follow upon each other.
Inspecting our collected traces indicates that there is no clearly
discernible pattern with which either runs follow upon each
other (e.g., is a long run followed by another long run?) or runs
and bursts follow each other (e.g., is a long run followed by a
short burst?)—details are discussed in Section II. Therefore,
modeling these patterns is not appropriate and not attempted
here as it would needlessly add complexity to a stochastic error
model.

Several stochastic models for the occurrence of bit errors ex-
ist, e.g., the Gilbert-Elliot or semi-Markov models. When using
these models to describe our measured data, we find that about
in one third of the traces, one specific type of semi-Markov
models achieved an acceptable accuracy in describing these
measurements; the other models like Gilbert-Elliot were unsat-
isfactory. For the remaining two thirds of our traces, none of
these models resulted in an acceptable description of the data.
The specific feature of these traces that is not matched by the
existing models is the heavy tail of their run length distribu-
tions. This suggests the existence of two essentially different
types of channel behaviors which we call regimes.

Such a heavy-tail behavior is not merely a modeling cu-
riosity, it has in fact considerable impact on the actual chan-
nel behavior: Channels with a heavy-tailed run length distribu-
tion would exhibit very long periods without bit errors and this
does in fact correspond to the common observation of wireless
LAN users that the channel is perfect over long periods of time.
Therefore, it is of practical relevance to find models that accu-
rately capture such channel behavior.

In fact, there are some models that are capable of expressing
such behavior, however, these models are either complicated
due to their large number of parameters or they lack in flex-
ibility. As the heavy-tailed regime is not captured by simple
stochastic error models, we claim that a new model is required
to describe this type of behavior.

One candidate model for describing such heavy-tailed be-
havior while requiring only a few parameters are the so-called
chaotic maps. These chaotic maps have been successfully used
to model arrival processes in communication networks [5] and
similar distribution assumptions have been used to model er-
rors in wired networks [6]. As both traffic and error models
are often described using similar intuitive terms like “bursts”,
we were interested in checking whether a model capable of de-
scribing bursty traffic is also transferable to the description of
the quite different phenomenom of bursty bit errors in wireless
channels. Our main contribution is to show that chaotic maps
are indeed a concise, efficient, and appropriate representation of
error processes in wireless channels. In particular, we present
algorithms to parameterize chaotic maps from measured data;

we also give an explanation of the intuitive meaning of these
parameters and their relation to the notion of “channel quality”.
We developed the model and its parameterization process on the
basis of a randomly chosen subset of our traces. To assess the
suitability of chaotic maps, we used all traces (including those
which were not used in the model development) and compared
the distribution functions of run and burst lengths produced by
chaotic maps and several other models (ranging from simple
to complex) with measured data using a metric expressing the
difference of two distribution functions. We show that for the
heavy-tailed regime, chaotic maps are a superior error model.

The remainder of this paper is organized as follows. Sec-
tion II describes our measurement setup and the measured data
in more detail. Section III considers the applicability of existing
models to our data and Section IV introduces the chaotic map
along with the parameterization algorithms. Formal metrics for
comparing these different models are explained in Section V,
the comparison results are shown in Section VI. Section VII
puts the results of these evaluations into perspective with other
models and related work. Finally, Section VIII contains the
conclusions and possibilities for future work.

II. DATA

In this section we give a brief overview of the measured bit
error data to which we apply the chaotic map approach. Be-
sides a short sketch of the measurement setup we give a high-
level overview of the most important findings regarding the run
lengths and burst lengths as well as their correlation character-
istics. A more detailed description of the setup and the goals of
the measurement as well as the results can be found in [7].

A. Measurement setup

At the heart of our setup was a MAC-less radio modem based
on the Harris/Intersil PRISM I chipset [8], which is compliant
with IEEE 802.11b direct sequence spread spectrum (DSSS)
technology. It offers, amongst others, 1 MBit/s BPSK modula-
tion (differential binary phase shift keying) and 2 MBit/s QPSK
modulation (differential quaternary phase shift keying). The ra-
dio modem basically consists of high-frequency circuitry and
a baseband processor. The latter accepts and delivers a pack-
etized serial bit stream from/to upper layers, optionally scram-
bles the data (using a shift register with feedback), and performs
DSSS processing [9]. The characteristics of the received serial
bit stream is our focus of interest.

We have used two dedicated stations, a transmitter station
and a receiver station; the setup is sketched in Figure 2. The
basic idea is that the transmitter station sends a well-known se-
quence of data over the wireless link, which is captured and
stored by the receiver station into a log file for later evaluation.
The wireless network card contains a specific measurement ap-
plication and neither MAC functionality nor any higher layer
protocols. It is important to emphasize that the packet data is
generated exclusively by the measurement setup and that there
is no MAC instance creating header fields or controlling the in-
stant of medium access. This way we have fine-grained control
over the packet generation and reception process and no bias is
introduced by upper layer protocols.
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Fig. 2. Measurement setup

In order to record a trace, a fixed number of packets is trans-
mitted; the trace itself is computed as the difference between the
transmitted and the actually received data. During the record-
ing of a trace, all packets have the same parameters (packet
size, scrambling mode, modulation scheme, etc.); they are var-
ied from trace to trace.

Our setup was tested in laboratory measurements and in other
measurement campaigns in controlled environments and has
shown to work correctly. For example, in a non-line-of-sight
(NLOS) environment without any interferers over distances be-
tween 10 and 40 meters almost no bit errors or packet losses
were observed over several hours (millions of packets).

B. Collected data

The traces were recorded in an industrial environment, all
at the same position (non-line-of-sight scenario, ≈ 7-8 m dis-
tance between transmitter and receiver) and on the same day.
As the industrial setup was operating during the measurement
campaigns, the wireless medium was taxed with electromag-
netic interference, however, to the best of our knowledge no
competing IEEE 802.11 sources where in the vicinity of our
measurements. From these traces, we discard those that have
too small a number of runs (< 180) to give meaningful esti-
mates of burst/run length distributions and mean values. The
remaining 34 traces (which are no longer consecutively num-
bered) of interest cover different packet sizes and scrambling
modes (on/off). Of these traces, 15 use BPSK, 19 use QPSK.

The first step in our evaluations is to figure out, for every
received packet, which bits are incorrectly received and which
ones correctly. This is done by XORing the received packet with
the transmitted packet. For each packet we obtain a sequence
of error bits ei. By concatenating the error bits of all packets
of a trace we get a single long error bit sequence for the en-
tire trace. For the concatenated sequence, we count the number
of consecutive error-free and erroneous bits, deriving the run
lengths and burst lengths, respectively. An artificial example
for a concatenated bit error sequence is 0, 0, 0, 1, 0, 0, 1, 1,
1, 0, 0, 0, 0, 1 (where 0 indicates a correct, 1 an incorrect bit).
This corresponds to the run lengths 3, 2, 4 and burst lengths 1,
3, 1.

This concatenation disregards the packet boundaries and
channel behavior during the packet gaps. However, a mea-
surement setup that works on the digital level of a packetized
communication system is intrinsically limited to such types of

statements. Hence, to rest a stochastic model on such a founda-
tion, it is appropriate to assume such a simplified representation
of the channel.

We have seen some artifacts in our data which we did not ex-
pect (and which have shown up with a different set of modems
of the same brand, too): The first artifact is that two single bit
errors quite often have a distance of 126–128 bits with QPSK
and of 63–64 bits with BPSK; we call this phenomenon “peri-
odic errors”1. The second artifact is that bit errors occur with
higher probability at the beginning of a packet, which makes the
resulting error patterns dependent on the packet size. As there
is no real reason to assume that these artifacts are due to the
wireless channel itself, we conjecture both of them to be caused
by a suboptimal receiver design. Also, other measurements of
wireless channels do not report periodic errors or dependencies
on packet content or position within a packet (cp. in particular
[10, p. 276], other references like [11] are not concerned with
bit level measurements).

Strictly speaking, it might be possible to find or develop mod-
els that are capable of expressing such behaviors. However, this
would add considerable complexity to the model without cap-
turing an effect essential to the characteristics of the wireless
channel as such. Therefore, we consider these effects to be spu-
rious and do not attempt to model them explicitly. Nevertheless,
we are still faced with the problem of finding a model that cap-
tures error characteristics (as described next) that are not related
to these artifacts.

C. Run and burst length distribution

Given the set of all run lengths of a particular trace, we
compute this trace’s empirical run length distribution by count-
ing how many observed runs are smaller than a particular run
length: For a random variable L representing the length of a
run, FL(l) = Pr(L ≤ l) is the cumulative distribution function
(CDF) of L, expressing the probability that a run of length up to
l occurs.2 For visualization purposes, we usually use the com-
plementary cumulative distribution function (CCDF) 1−FL(l);
an example is shown in Figure 3. This figure uses a double-
logarithmic plot that graphically emphasizes the distribution
function’s behavior at small probability values, the so-called
tail of a distribution function.

A striking characteristic of Figure 3 is the apparently lin-
ear form of the distribution’s tail for values of l larger than
about 200 bits. This form is present in about two thirds of
our traces’ run length distributions and is the very property that
is hardly describable using existing models (see Section III).
Distributions with such a linearly decaying tail are character-
ized by a CCDF that follows a power law, formally Pr[L >
l] ∼ l−α with 0 < α < 2; these types of distributions are called
“heavy-tailed” distributions [12].

The burst length distributions, on the other hand, are some-
what different in that the probability of encountering bursts of
more than one or two erroneous bits is very low: for almost
all BPSK traces, more than 95% of all bursts have a length of

1The term was coined because of the (almost) periodic peaks produced by this
behavior when plotting the conditional probability that bit n + k is erroneous
given that bit n is erroneous vs. lag k.

2More precisely, FL is a right-continuous step function.
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Fig. 3. Complementary cumulative distribution function of the run lengths
resulting from Trace 24

one and only 6% of the QPSK traces have bursts longer than 2
bits (the maximum burst length of all BPSK and QPSK traces
is 34). Hence, it is comparably easy to characterize bursts, they
are almost always just a few bits long, justifying to focus our
efforts mainly on the run length distribution.

D. Correlation between run lengths

When looking at the sequence of run lengths, not only their
distribution is interesting, but also possible correlation between
the run lengths, as expressed by their autocorrelation function3.

Most of the BPSK traces show almost no autocorrelation,
with coefficients of correlation well below 0.05. However, for
two out of the 15 investigated BPSK traces a specific pattern of
correlation shows up: for a single lag k ≥ 1 a non-negligible
correlation value of ≈ 0.2 is obtained, while the neighboring
lags show almost no correlation (we call this a “spike”). Specif-
ically, Traces 59 and 65 show a spike at lags k = 12 and k = 6,
respectively.

For the QPSK traces we observe that traces with a single
“spike” in the autocorrelation function occur more often, with
no preferred value for lag k. In addition, we have some traces
where non-negligible autocorrelation is present for several lags.
Furthermore, 7 out of the 19 investigated QPSK traces show al-
most no correlation at all.

The reason for these spikes is the fact that the autocorrela-
tion as a metric is quite sensitive to outliers. After removing the

3The autocorrelation function R(k) for lag k ∈ N of a discrete, (wide-sense)
stationary stochastic process X0, X1, X2, X3, . . . is defined as

R(k) = E[(X0 − X̄0)(Xk − X̄0)]√
E[(X0 − X̄0)2]

√
E[(Xk − X̄0)2]

However, if the (common) distribution function of the r.v.’s X0, X1, . . . is
heavy-tailed, neither mean nor variance are necessarily finite. In addition, the
process we have observed in our measurements is not necessarily (wide-sense)
stationary. Hence, an argument resting on the autocorrelation function is in all
strictness not permissible. Nevertheless, we feel justified in using this tool as
we apply it only to a finite amount of measurements, for which the sample mean
and sample variance are obviously always finite.

longest runs from the run-length encoded sequence, the auto-
correlation disappears (for all practical purposes, these reduced
traces are uncorrelated). Therefore, the observed spikes are ac-
tually only a chance product: it just so happens that in some
traces, two very long runs happen to be close to each other,
causing a large autocorrelation for this particular lag. Conse-
quently, it does not stand to reason to attempt to model these
patterns, least of all with an intentionally small and compact
error model.4

III. SUITABILITY OF EXISTING MODELS

When attempting to model such data, various more or less
complicated stochastic error models exist. Common to all of
these models is that they are used to decide for a particular bit
whether it is correct or erroneous, resulting in a sequence of er-
ror bits. This sequence in turn gives rise to runs and bursts, from
which model run and burst length distributions can be computed
in much the same way as the traces’ empirical distributions.

The particular form of these distributions depends on the
model as well on the model’s parameters. Intuitively, one
would attempt to choose model parameters such that the model
run/burst length distribution matches the corresponding em-
pirical distribution (a formal metric for this matching, which
was also used for the evaluations briefly described here, is in-
troduced in Section V). This section reviews some popular
stochastic error models of varying complexity; for all models,
we also discuss whether these models are appropriate in match-
ing our empirical data.

A. Simple Models: BSC, Gilbert-Elliot and semi-Markov

The simplest model is the binary symmetric channel (BSC)
[13]: for each bit, an independent Bernoulli experiment is per-
formed to decide whether or not the bit is correct. For all ex-
periments, the same bit error probability p is used. This single
parameter allows to match the mean bit error rate (MBER) of
a trace. Using this model, the run lengths are distributed fol-
lowing a geometrical distribution, FL(l) = 1 − (1 − p)l which
corresponds to the CCDF 1 − FL(l) = (1 − p)l (hence, the
tail is exponentially decaying); the burst lengths are also ge-
ometrically distributed, FL(l) = 1 − pl. Because of the re-
stricted shape of the BSC’s CCDF, the generated run and burst
length distributions do not match any trace’s empirical distribu-
tion, none of which is even remotely similar to an exponentially
decaying shape. Figure 4 shows a comparison of a trace-based
and a model-generated run length CCDF.

When attempting to match the empirical run and burst length
distributions separately, a model that treats the runs and bursts
individually is required. One possibility to do so is to intro-
duce a “good” and a “bad” state: in the good state, only cor-
rect bits are generated by the model, in the bad state, bits are
incorrect with a certain probability p ∈ (0, 1]—this is the pop-
ular Gilbert-Elliot model [3], [4], which belongs to the class of
Markov models. For such a model, the distribution of the times
the model stays in a certain state—the state holding time—is an

4As it turns out, the chaotic map model described later can also produce
such spikes when it so happens that two very long runs are close to each other.
Naturally, this does not happen at the same lags as they are a product of chance.
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important characteristic; for Markov models in particular, the
state holding times for the good and bad state are geometrically
distributed. Hence, the model needs three parameters: p, and
the mean state holding times for the good state and bad state,
respectively. Both the burst length and run length distributions
are exponentially decaying and not heavy-tailed. Hence, just
as the BSC model, the Gilbert-Elliot model fails to match the
run length distribution of many of our traces (as is exemplarily
shown in Figure 4).

An obvious approach to improve the ability of the simple
two-state Gilbert-Elliot model to match our traces’ distribu-
tions is to replace the geometric state holding time distribu-
tions by other distributions with more adjustable parameters
(formally, this turns a Markov model into a so-called semi-
Markov model). Selecting an appropriate alternative distribu-
tion function requires to carefully inspect the available traces.
After considering a number of different candidates, it turned
out that a quantized lognormal distribution does in fact provide
a reasonably good fit between model run length distribution and
trace run length distribution. As no other simple distribution as-
sumptions produced acceptable matches, we only consider such
quantized lognormal semi-Markov models in the remainder of
the paper and use the term semi-Markov as a shorthand for this
particular form of a semi-Markov model. An example for a
match produced by the semi-Markov model, consider Figure 5.
On the other hand, Figure 4 contains an example where the log-
normal semi-Markov completely fails in matching the trace’s
run length distribution. Hence, there is still a need to find more
appropriate models for some of our traces.

At this state of affairs two options are interesting: to look fur-
ther for alternative distribution functions to approximate the run
length CDF in its entirety with only a few parameters, or to use
piecewise approximations with substantially more parameters.
This paper is concerned with the first option, and the search is
continued in Section IV. The bipartite model, discussed next,
is an example of the second approach.
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B. The Bipartite model

The bipartite model is a stochastic Markov model of in-
creased (yet selectable) complexity, to be parameterized from
a given trace. It allows the user to choose a proper tradeoff
between model complexity and accuracy. A description of the
model can be found in [14].

The approach is to employ a number n1 of “bad” states and
n2 of “good” states and to allow state transitions only from
good states to bad states and vice versa (forming a bipartite
graph). Each state si is associated with an interval of natural
numbers of possible state holding times and a probability dis-
tribution for this interval. By properly choosing intervals and
distributions, it is possible to approximate the given run or burst
length distribution. The operation of the bipartite model is ana-
log to the Markov model: when entering a state, the holding
time is determined by the state’s associated distribution, and
for the bad states, bit errors are generated according to a state-
dependent error probability pi.

In order to build a model from a trace, n1 and n2, the transi-
tion matrix P governing the state transitions, the intervals and
probability distributions, and the bit error rates in the bad states
pi have to be chosen. The procedure for determining these pa-
rameters from a given trace is described in [14], which also
shows good correspondence of the bipartite model with origi-
nal traces.

While this model has some advantages, in order to achieve
an acceptable fit with measured data, the bipartite models typi-
cally needs over a hundred parameters. As the parameter values
are tightly coupled to the traces they were generated from, the
model is not amenable to simple experimentation with different
parameter settings. Hence, a model that uses only a few pa-
rameters with an intuitive meaning that is capable of capturing
traces from the heavy-tailed regime is desirable—chaotic maps
fill this gap.
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IV. CHAOTIC MAP

A. Model description

Similar to the Gilbert-Elliot model, the chaotic map model
uses two states “good” and “bad”. The main difference between
the models lies in deciding the correctness of a particular bit and
in the rules that govern the switching between the two states.

The chaotic map model works as follows (cp. [15]): in the
good state all bits are correct, in the bad states, all bits are er-
roneous.5 Switching between states depends on the value of an
auxiliary variable xt that is updated for each bit:

In the good state,
1) produce a correct bit
2) calculate

xt+1 = xt + ugx
zg
t + εg where t ∈ N (1)

3) if xt+1 > 1, choose xt+1 ∼ U(0, 1) and switch to the
bad state; otherwise, stay in good state (U(0, 1) denotes
the uniform distribution on the closed interval [0,1]).

In the bad state, the same rule applies (of course, an erro-
neous bit is generated) and the parameters ub, zb and εb are in
general different from those for the good state. As the bursts are
usually very short (and certainly not heavy-tailed), it is possible
to use a simpler description for the bad state. We are nonethe-
less applying the chaotic map model to the burst length distri-
butions as well to assess this model’s flexibility and limitations.

When discussing general properties of the chaotic map
model, we drop the indices g and b from the parameters. The
application to the good or bad state should then be clear from
context.

While applying the chaotic map as an error model is straight-
forward, the challenge lies in estimating the parameters z, ε and
u for both good and bad state from a trace. As it turned out, us-
ing parameterization rules from chaotic maps as traffic models
did not produce satisfying results (the estimators where either
highly sensitive to the presence of periodic errors or asssumed
the existence of the mean value of run lengths which was not
necessarily the case for the bit errors). Hence, a new parameter
estimation technique had to be developed to use chaotic maps
as bit error models.

B. Parameter Estimation

The distributions of state holding times of a chaotic map
model have a characteristic form: in the double-logarithmic
CCDF representation from a certain point on it is a straight line
with a cut-off. This lines’ position, slope, and cut-off depend on
the model parameters u, z, and ε; this is illustrated in Figure 6
which also shows a trace’s run length CCDF for comparison.

The parameter u “shifts” the CCDF along the length axis. A
larger value of u means that there are many short runs in a trace,
whereas smaller values of u lead to longer runs.

The parameter z determines the slope of the CCDF. The
larger the value for z, the higher the probability to find very

5Hence, the state holding time directly corresponds to the length of a particu-
lar run (unlike the previously described models); the two terms are interchange-
able in the chaotic map model.
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long error-free runs, which corresponds to a channel of higher
transmission quality.

The parameter ε represents a minimal increment in Eq. (1).
Therefore, a state change happens at the very latest after 1/ε
iterations, limiting the maximum length of an error-free run.

To be able to numerically estimate these parameter values, it
is necessary to formalize this intuitive relationship between the
shape of the run length CCDF and the parameter values. The
goal is to choose these parameters such that the model’s CCDF
and the trace’s CCDF match.

1) Estimation of z: In order to estimate the parameter z, we
use the relationship between the CCDF 1 − FL(l) and z [5, p.
83]:

1 − FL(l) ∝ l−
1

z−1 (2)

Taking the logarithm of Equation (2) shows that it is possible
to estimate the parameter z from the slope of the least squares
straight line fitted to the CCDF in the double-logarithmic plot.
As can be seen from Figure 6, this is not without problems: For
short runs the CCDF is not even approximately linear. There-
fore, as a heuristic, we use only the longest 15% of all runs in
the calculation of zg. The same problem occurs for the very
long runs. We assumed that the deviation from the straight
line is due to the small number of samples and excluded the
ten longest runs from this calculation. However, these cut-offs
should not result in a total number of runs less than about thirty;
otherwise, the estimation becomes somewhat arbitrary. For the
bad state the estimation of zb is similar, however, due to the
small range of burst lengths we do not exclude extreme values.

Besides these restrictions of the data set, the estimation of
the parameter z is straightforward. For the other parameters,
the situation is more complicated: an initial parameter estimate
can be computed directly for both u and ε, but this estimate has
to be iteratively improved for the good state parameters. This
iteration simultaneously computes correction factors for ug and
εg.

2) Estimation of u: A major problem with estimating u is
that it cannot be isolated from the estimation of ε, since both
together determine the maximum run length that can be gen-
erated. Therefore, we have chosen to use a heuristic to get an
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initial guess of u, which does not depend on ε, which is then
iteratively improved.

The initial estimate for ug exploits its relationship with the
mean run length l. The rationale is that a small ug leads to
a long run, directly influencing the average run length. After
some experimentation we found that

ug = l
−1
3

zg
zg−1

provides a satisfactorily initial guess for ug. The idea to take z
into account was inspired by a comparable relationship for εg,
see Equation (4). The estimator for the bad state is similar:

ub = l
1

zb−1+1
.

It is necessary to further improve the estimate of ug. A sub-
optimal value for ug results in a run length CCDF that does not
directly match the trace’s run length CCDF, more specifically,
the two CCDFs tend to be “parallel” to each other in the double-
logarithmic plot (shifted horizontally). The idea how to im-
prove the parameter value is to determine the distance between
these curves and to use this distance to modify ug. This ap-
proach is related to some control-theoretic concepts for chaotic
systems [15].

The iteration for ug works as follows: Consider Ft, the run
length CDF resulting from the trace, and Fm, the run length
CDF resulting from the model with the initial parameter esti-
mates (the model CDF is obtained by simulation). Each CDF
consists of a finite number Nt or Nm of samples. Taking the
difference in the double-logarithmic plot corresponds to the
ratio of the CCDFs. In particular, we use N ratios, where
N = min{Nt, Nm}. Ratio j is computed as the ratio of the
j/N -quantiles of the model CCDF, F−1

m (j/N), and the trace
CDF, F−1

t (j/N).6 The correction factor ru is then defined as
the arithmetic average of these ratios:

ru =
1
N

N∑

j=1

F−1
m (j/N)

F−1
t (j/N)

(3)

The iteration for ug is then simply a low-pass filtered multipli-
cation with the correction factor:

u′
g =

1 + ru

2
· ug,

which, together with a new estimation for ε (see below) pro-
duces a new model with CCDF F ′

m. The iteration continues
until 0.995 < ru < 1.005 (and the corresponding correction
factor for εg has also converged).

3) Estimation of ε: Recall the role of ε in Eq. (1): if ε = 0,
the generated CCDF would be heavy-tailed in the strict sense,
i.e. the mean value does not exist for z > 2. Hence, if we
employ such a model in a finite-length simulation, the generated
bit error rate depends on how long the simulation is run.7 The

6For a stepwise defined distribution function F , the quantile qx is defined
via the generalized inverse distribution function: qx = F−1(x) = inf{q :
F (q) > x}.

7For the special case of a Pareto state holding time distribution (which cor-
responds to u = 1 and ε = 0) the bit error rate µ depends on the number of

choice of ε > 0 places an upper bound on the generated run
lengths and thus allows to adjust the generated bit error rate.

Therefore, the longest observed run or burst can be used to
estimate ε. A trivial estimator would be to just use ε = 1/lmax
For the good state’s εg value, it turns out that also taking into
account the impact of zg gives a better initial guess for εg as the
minimal increment in Equation (1) is not only due to εg. Some
numerical experimentation showed that the following equation:

εg = lmax
−4
5

zg
zg−1 (4)

serves as a good starting point for εg.8 This estimator was not
only chosen with respect to εg, but the given joint initial esti-
mations for ug and εg have the positive effect that our iteration
process for ug converges comparably fast. With other choices
for εg it takes much longer for ug to converge.

Similar to ug, this initial estimate for εg needs to be im-
proved. To find a good optimization criterion, we recall that εg
and the generated bit error rate are related. We use this relation
to guide our search for a better εg. While it is possible to use
this relationship to attempt to match the bit error rate, it seems
more meaningful to look at packet errors instead of bit errors,
since packet errors are of primary interest for the behavior of
protocols.9 This gives us a simple approach for improving εg:
the packet error rate PERt of a trace is known, and the packet
error rate PERm of the chaotic map model can be obtained us-
ing the simulations already necessary to compute the correction
factor ru (using the trace’s packet size to divide the error indi-
cator sequence into packets). The correction factor rε is then
simply:

rε =
PERt

PERm

and we set

ε′
g =

1 + rε

2
· εg.

Here, the iteration is terminated when 0.9 < rε < 1.1 (and ru

has also converged). The correction factors for εg and ug are
estimated simultaneously and a new model is computed with
both corrections. For all traces of the heavy-tailed regime the
joint iteration finishes after 10 to 30 steps; for the other traces
the iteration of ru converges fast, but for rε sometimes no clear
limit is approached.

Regarding the burst lengths, the initial estimates for ub and

εb =
1

lmaxub

are usually sufficiently good so no additional iterations are com-
puted here.

As a first impression of the results achievable with the chaotic
map model, Figure 7 shows the run length CCDFs for Trace 2
and the corresponding chaotic map model. Comparing this fig-
ure with Figure 4 immediately reveals a much better fit of the
trace CCDF than what is achieved using other models.

simulated bits T as follows (compare [6, p. 143]):

µ = T−2+z

8This formula is a variation of a formula given in [15, p. 88].
9We consider a packet as erroneous if it contains at least one bit error.
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Fig. 7. Comparison of Trace 2 and the chaotic map model

V. METRICS

Evaluating the appropriateness of these models can happen
under different perspectives. One such perspective is to check
how well a model reproduces a trace’s run length distribution
function; this aspect is covered by an area metric. Alternatively,
a perspective that reflects the interests of a user of a stochastic
error model can be taken who wants to simulate packets travel-
ing across a wireless link; an appropriate metric for this purpose
would be to compare packet error rates.

A. Area

In the literature many possible metrics are known for com-
paring two (distribution) functions, e.g. the L2-norm, the L∞-
norm etc. These metrics have a severe drawback for our ap-
plication. Consider the case that a single very long run is not
reproduced by the model. As all common metrics are sensitive
to such very large runs, they would consider these two distri-
butions as vastly different. Often, this problem can be circum-
vented by regarding such a single large run as an outlier. How-
ever, this is not possible here as these large runs are a typical
feature of the measurements and should not be neglected.

A convenient measure to compare two distribution functions
is to look at their quantiles: The closer the lengths correspond-
ing to a given quantile are, the better the match; if the two
lengths are equal, the match is perfect. Furthermore, in order to
reduce the influence of single long runs, we do not look at the
lengths themselves but at their logarithms. As a single quantile
does not include a sufficient amount of information, the average
of these quantiles or, similarly, the area between the two distri-
bution functions can be used. The area is approximated with
the well-known trapezium formula:

A =
1
N

N∑

j=1

∣∣log(F−1
m (j/N)) − log(F−1

t (j/N))
∣∣ −

| log(F−1
m (1/N)) − log(F−1

t (1/N))|
2N

−

| log(F−1
m (1)) − log(F−1

t (1))|
2N

where N = min{Nt, Nm} as above.

B. Packet Error Rate

The second measure is a result of the intuitive wish that the
output generated by a model matches certain “simple” char-
acteristics of the trace, e.g. its mean bit error rate. However,
based on the observations that: a) the packet error process is
more meaningful to protocols; b) many protocols are sensitive
to the packet error rate (a simple example is the throughput of
the send+wait protocol); and c) the packet error rate directly
depends on the generated burst and run lengths of the (bit error)
model and the packet size, we have chosen to use the packet
error rate as a simple measure of model quality. The last point
might be the decisive one as even models with the same bit
error rate can behave quite differently on a packet error level
when the model fails to correctly model error burstiness.

More specifically, for a set of different packet sizes ranging
from single bit errors to packets sizes corresponding to Ethernet
packets (1, 5, 10, 50, 100, 500, 1000, 5000, 10000, 15000 bits)
we determine the number of erroneous packets when packets of
this size are transmitted over a channel described by the error
model under investigation.

Please note that the parameterization of the chaotic map
model’s ε parameter takes only a single packet size into account.
It is interesting to see how the model behaves when errors for
different packet sizes are computed from the model.

VI. MODEL COMPARISON

Most of the models examined here have few parameters, the
bipartite has a lot. This model is quite complex, but is this com-
plexity really necessary or are simpler models better? In order
to compare the models, we computed the model parameters for
each trace and determined which model approximates the trace
best.

A. Area

After we parameterized the models, we used them to generate
the Cumulative Distribution Function (CDF) of the run lengths
using simulations. After that, we computed the area between
the model’s and the trace’s CDF. Table I shows the number of
traces where a particular model achieved the best approxima-
tion according to the area metric.

TABLE I
EVALUATION RESULTS FOR AREA METRIC

Model No. of Traces w/o bipartite
Bipartite model 17 —
Chaotic Map 13 21
Semi-Markov 3 11
Gilbert-Elliot 1 2

In Table I the bipartite model is the best approximation for
many traces, but not for all. It is possible to use more parame-
ters to increase the fit, but the bipartite model considered here
already has more than 100 parameters. This high number of
parameters limits the model, since it is hard to change a few in
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order to get a channel with different desired transmission qual-
ity. The other models can be adapted more easily. Their param-
eters are well understood and can be changed to get a different
channel behavior.

If we drop the bipartite model because of its complexity, the
chaotic map model best matches 2/3 of all traces. These traces
belong to the heavy-tailed regime. The semi-Markov model is
suitable for those traces that do not belong to the heavy-tailed
regime.

B. Packet Error Rate

The second metric compares the packet error rates for dif-
ferent packet sizes. Figure 8 demonstrates the almost perfect
match of the PER as a function of the packet size achieved by
the chaotic map model for a heavy-tailed trace. In contrast,
Figure 9 illustrates how a non heavy-tailed trace is best approxi-
mated by a semi-Markov model—the failure of the chaotic map
model is not surprising as it was not built to capture such be-
havior.
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Fig. 8. PER as a function of packet size, trace 18

In general the conclusions from the area measure also hold
here: for traces belonging to the heavy-tailed regime the chaotic
map model is the model of choice (as illustrated by Figure 8),
whereas for traces belonging to the other regime, the semi-
Markov model is more appropriate (example in Figure 9).

It is interesting to consider the relationship between the area
metric and the PER metric. It is always true that when the
chaotic map model is the best model with respect to the area
measure, it is also the best model with respect to the PER mea-
sure. For the semi-Markov model, this is also true in most cases.
However, there are a few exceptions where the semi-Markov
model achieves the best area metric but the PER metric is in-
conclusive and, usually, no model correctly describes the PER
behavior. The bipartite model, owing to its high complexity and
many degrees of freedom, gives for almost all traces very good
results for the PER metric (not shown here). In contrast, the
Gilbert-Elliot model tends to massively overestimate the PER
for almost all traces. This shows that the Gilbert-Elliot model
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is not able to capture the burstiness of actually observed wire-
less channels, in fact, its results are quite dismal.

It is worth noting that although only a single packet size
is used to estimate the chaotic map model’s parameter εg, it
gives very good predictions for all the investigated packet sizes,
whenever it is applicable. In this sense, the chaotic map model
and its parameterization process are robust.

VII. DISCUSSION

As the previous section has shown the potential of the chaotic
map model, it is possible to provide additional insights into the
intuitive meaning of its parameters. Such an understanding al-
lows to modify them in a meaningful way, resulting in a simple
possibility to vary the simulation conditions between good and
bad channels of varying burstiness.

A characteristic parameter for the chaotic map model is z.
This value not only determines the slope of the CCDF’s tail,
but for ε = 0 also the finiteness (z < 2) or infiniteness (z ≥ 2)
of a mean run length (an infinite mean run length corresponds
to a BER of zero). For our traces, the parameter zg ranges from
≈ 1.95 to ≈ 4.11. In reference [16] observations that corre-
spond to zg ranging from 3.5 to 6 are given. In [17], zg of a
wired channel is reported to be in the range of 3 to 10. The
parameter zg is the only parameter comparable in all papers,
since it directly corresponds to the slope of the CCDF in the
double-logarithmic plot.

The parameter ε is rather related to the principle structure of
the model. It introduces a sharp cut-off for the maximum run
length, which is not plausible to assume for real-world data.
On the other hand, a real transmission system is always subject
to thermal noise, introducing a very small, yet non-negligible
bit error rate, which results in a soft, probabilistic cut-off. The
consequence of this soft cut-off is that for extremely long run
lengths, the length distribution degenerates into a geometric dis-
tribution. Empirical studies [6], [16] substantiate this claim.10

10We note in passing that this observation also rules out the use of purely
Pareto-based modeling of run lengths, as a Pareto distribution would also over-
estimate the probability for extremely long runs.
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Such an exponentially decaying tail cannot be captured by the
chaotic map model with any constant ε, but the ε-induced cut-
off provides a simple approximation for this effect. In addition,
as this happens only for extremely long runs (typical values are
around 1012 to 1014 bits), this inaccuracy is likely not relevant
for most practical purposes.

A main advantage of the chaotic map model is the flexibility
for short runs due to the parameter ug. It allows to generate
more short run lengths when compared to a model where the
Pareto distribution is used (which produces a straight line in the
log-log plot). Shorter runs let bursts appear closer to each other.
We observed ug in the interval 2 to 0.001.

The model is also capable of expressing the most important
characteristics of the bursts. The low maximum burst lengths
are reflected by εb values several orders of magnitude larger
than those for the runs. The finding that most of the bursts
have only a length of one or two bits can be accommodated
by choosing large values for ub. In fact, ub > 1 holds for all
traces. The observed behavior in our traces ranges from only
single bit errors (zb = 0, ub = 1, εb = 1) as well as several
bit errors in a row (e.g., zb = 1.67, ub = 6.83, εb = 0.0046).

When putting these results into practice, we would recom-
mend to use several different parameter sets: at least a good
channel with zg = 4, εg = 10−15, and ug = 1 and a really bad
channel with zg = 2, εg = 10−10 and ug = 0.01 should be con-
sidered in a serious protocol performance evaluation. In addi-
tion, also channels from the non-heavy-tailed regime should be
taken into account, using the semi-Markov model with a quan-
tized lognormal distribution and state holding times e.g. such as
follows: µg = 70800, σg = 300000, µb = 50, σb = 60, and
BER = 0.15 for a good channel, and µg = 5000, σg = 10000,
µb = 50, σb = 100, and BER = 0.16 for a bad channel.

The importance of including heavy-tailed channels in a pro-
tocol performance evaluation becomes immediately evident
when considering protocols such as TCP running over a wire-
less channel. In a heavy-tailed channel, the protocol has a
chance to reach its steady state when a long run of correct bits is
present; in a bursty phase, a protocol like TCP will not produce
any goodput at all. Considering the PER behavior as illustrated
by Figures 8 and 9, evaluating TCP over a Gilbert-Elliot chan-
nel would lead to very misleading conclusions as such simple
channel models are not capable to model long-term dependen-
cies of a real channel which are an important characteristic for
a non-trivial communication protocol.

The main disadvantage of the chaotic map model is the run-
time cost: for each simulated bit two additions, one multiplica-
tion and a power must be computed.

VIII. CONCLUSIONS AND OUTLOOK

When weighing the pros and cons of the various bit error
models, the chaotic map model appears to be superior in many
respects. It succeeds in describing heavy-tailed channel behav-
iors for which other models fail or are too complex. As this
type of channel is not only the dominant one in our measure-
ments, but is reported in quite different environments as well, a
compact, economic model for this channel type is an important
contribution. In addition, the chaotic map model is an appro-

priate model not only for wireless channels but for other types
of communication channels as well.

A large practical advantage of the chaotic map model is its
small, easy to comprehend set of parameters. These parame-
ters allow a performance evaluation based on this model to be
run over, different clearly identifiable channels of varying qual-
ity; we have shown some recommendable parameter settings
for this purpose. Furthermore, at least one of these parameters
(zg) is easily compared across different studies and is in fact
the parameter that has the largest impact on the channel quality.
Despite its simplicity, the model is capable of expressing a wide
variety of channel types as exemplified by its ability to model
the burst length distributions.

Nonetheless, a practical performance evaluation should also
include non-heavy-tailed channels. For this type of channels,
we recommend semi-Markov models with a quantized lognor-
mal distribution. The need to handle these different types of
channels in a performance evaluation study is clearly indicated
by our measurement data.

The existence of these two quite different regimes of chan-
nels is one issue for future work. What is the fundamental rea-
son for the occurence of heavy tails in the run lengths? Is this
behavior observable in other, non-industrial environments as
well—apparently yes, as other sources [6], [16] have reported
similar findings. How can they be explained, and under what
circumstances does a channel switch from one regime to an-
other? To what degree does it depend on the usage of differ-
ent modulation or coding techniques? What are the stochastic
properties of this change, can this be captured in a simple meta-
model (following the work of [18])?

A more technical item for future work pertains to the param-
eterization process of the chaotic map. In case the model is not
applicable (the trace is not heavy-tailed), the iteration process
for εg does usually not converge. It would be interesting to see
whether this fact can be exploited to automatically detect which
regime is present and which model type should be used. Addi-
tionally, an exponentially decaying tail could be added to the
run length distribution in order to remove the strict limit on the
run lengths; for practical purposes, however, the effect should
be quite small.
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Weinheim, 1994.

[16] Andreas Ahrens, “A new digital radio-channel model suitable for the
evaluation and simulation of channel effects,” in Colloqium Speech Cod-
ing Algorithms for Radio Channels, London, April 2000, IEE Electronics
and Communications, pp. 2/1–2/15, Ref. No. 2000/030.

[17] Benoı̂t B. Mandelbrot, “Self-similarity and conditional stationarity,” In
Multifractals and 1/f Noise [19], pp. 166–205, originally appeared in:
IEEE Transactions on Communications Technology: COM-13, 1965, 71–
90.

[18] E. Costamagna, A. Fanni, L. Favalli, and P. Gamba, “Experiments in
modeling the parameters of chaos equation models for mobile radio chan-
nels,” in IEEE-APS Conference on Antennas and Propagation for Wire-
less Communication, 2000, pp. 103–106.

[19] Benoı̂t B. Mandelbrot, Multifractals and 1/f Noise, vol. N of Selecta,
Springer, New York, Berlin, 1999.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003


	INFOCOM 2003
	Return to Main Menu


