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Abstract— This paper presents the Poisson Pareto burst pro-
cess (PPBP) as a simple but accurate model for Internet traffic.
It presents formulae relating the parameters of the PPBP to
measurable traffic statistics, and describes a technique for fitting
the PPBP to a given traffic stream. The PPBP is shown to
accurately predict the queueing performance of a sample trace of
aggregated Internet traffic. We predict that in few years, natural
growth and statistical multiplexing will lead to an efficient optical
Internet.

I. INTRODUCTION

For over a quarter of a century researchers have been
looking for a stochastic process which could be used as
an accurate and simple model for traffic in packet switched
networks. The criteria for such a stochastic process are:

(i) It is defined by a small number of parameters.
(ii) If these parameters are fitted using measurable statistics

of an actual traffic stream the following will be achieved:
a) the first and second order statistics including the

autocovariance function of the stochastic process
(the model) will match those of the actual traffic
stream, and

b) if fed through a single server queue (SSQ), perfor-
mance results for the model will accurately predict
those of the real traffic stream fed into an identical
SSQ. This must be true for a wide range of buffer
sizes as well as for a wide range of service rates.

(iii) It is amenable to analysis.
If the process also parallels the nature of the traffic that

is being modeled, this will give maximum confidence in its
usefulness.

In this paper we examine the Poisson Pareto burst process
(PPBP) and demonstrate that this model meets these challeng-
ing criteria. To the best of our knowledge, this makes the PPBP
the first model which has been demonstrated to meet all of
these criteria.

The PPBP is a process based on multiple overlapping bursts,
where the burst lengths follow a heavy-tailed distribution. It
has been shown that the burst lengths of WAN file transfers

are heavy-tailed [1]. Thus, the PPBP appears to reflect the
basic properties of at least some aggregated data traffic. The
PPBP is based on the models described in [2], [3], [4], [5],
and is also closely related to the M/G/∞ models used in [6],
[7]. The PPBP can be viewed as a specific case of the general
Poisson burst process discussed in [8] and is also referred to
as an M/Pareto process in [9].

Previous work has focussed on the derivation by analytic
means of bounds on the queueing performance of SSQs fed
by M/G/∞ processes (see especially [3], [4], [5], [6]). The
evaluation of the PPBP requires accurate estimates of queueing
performance for the PPBP SSQ. In this paper, we use a new
analytical approximation given in [10] as a part of the process
of fitting the PPBP to a real traffic stream, but our evaluation of
the how well the PPBP predicts the queueing performance of
realistic traffic streams is carried out via computer simulation.
Comparisons made in [9] show that our simulations and the
analytical model described here provide accurate estimates of
the queueing performance of an SSQ fed by a PPBP.

To develop the PPBP as a traffic model, we identify the
parameters which define the PPBP. Three of these parameters
are based on measurable statistics commonly used in teletraffic
modeling: the mean, the variance and the Hurst parameter.
We show that fitting the model to these three statistics is
not sufficient to produce reliable predictions of the queueing
performance of an SSQ fed by the modeled traffic, and that a
fourth parameter is required to uniquely define the behaviour
of the PPBP SSQ. We identify this parameter as representing
the “level of aggregation.” We demonstrate that when all four
parameters are fitted in the PPBP, the model meets the criteria
described above. We show that fitted PPBPs accurately predict
the queueing performance of infinite buffer SSQs with a wide
range of service rates and buffer thresholds when those queues
are fed by an IP byte stream. We provide an approach based
on analytic estimates which can be used to derive the best
value of the level of aggregation parameter, λ, for a given
traffic stream. We also show that if λ is adequately set, both
the marginal distribution and the autocovariance function of
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the real trace are closely matched with that of the model.
It will also be convenient to introduce a deterministic com-

ponent of traffic with a specific rate, κ. Since a deterministic
traffic process simple reduces the service rate, it doesn’t really
introduce anything new into the model, however, since in some
contexts we prefer to leave the service rate to be determined
by other considerations, it is important to have this additional
parameter, κ, at our disposal.

The traffic model is set in discrete time, with continuously
distributed quantities of traffic arriving in each time interval.
The length of the sampling interval is also an implicit pa-
rameter of the model. This sampling interval must be chosen
appropriately also (not too long, or the traffic will be implicitly
smoothed – not too short, or the model becomes unweildy
to simulate) however we shall not dwell on the means for
selecting it.

In Section II we define the queueing framework used
throughout this paper in evaluating our models. We describe
the PPBP in Section III, and give some key relationships which
we utilize to fit the model to given traffic statistics. In Section
IV we explain how we create multiple PPBPs all having the
same mean, variance and Hurst parameter. We also describe
the techniques used to obtain the simulation results given in
later sections of the paper. In Section V we consider multiple
PPBPs all of which have the same mean, variance and Hurst
parameter, but which have differing levels of aggregation,
and show that they yield different queueing results. We also
show that as the level of aggregation increases, the PPBP
exhibits behaviour more and more like that of a long range
dependent (LRD) Gaussian process. Section VI provides an
analytic estimate for the performance of the PPBP SSQ.

In Section VII we describe an analytical method for match-
ing the aggregation parameter λ. Using this method, we choose
the PPBP which best predicts the queueing performance of
a given traffic trace, from a family of processes with the
same mean, variance and Hurst parameter, but with different
λ values. Section VIII present results showing that the PPBP
can accurately model the queueing performance of measured
Internet traffic streams.

The results given in Section VIII show that the model
gives a good matching to the queueing performance of SSQs
fed by real traffic, for a fixed service rate and a range of
buffer thresholds. We also demonstrate that the model can
also be used to give good estimates of the performance results
obtained by feeding the measured traffic through SSQs with
fixed buffer threshold but a range of service rates. In Section
IX we examine the correspondence between the marginal
distribution and autocovariance function of an IP byte stream
and those of a PPBP fitted to that stream.

Having identified the PPBP as an appropriate model for
Internet traffic, we use it in Section X as a part of our
evaluation of future Internet trends.

Historically, packet switching networks have been designed
in the 60s, 70s and 80s to cope efficiently with bursty data
traffic. During these early years, because of the low volume
of bursty data traffic, it was justified to queue and delay

packets. Under such traffic conditions, queueing and delaying
packets can significantly improve link utilization. The packet
switching paradigm was then justified. During the 90s and
the beginning of the third millennium, the number of hosts
using the Internet (as well as the traffic volume) has more than
doubled every year. During the same time period, transmission
rate and switching capacity have grown at a similar rate. The
increase in the number of hosts (from around 20 million in
1997 to over 100 million in 2001) leads to a situation whereby
traffic on major links is heavily multiplexed. This by itself
brings about a situation where links can be heavily utilized
without the need for packet loss and delay. The multiplexing
level will keep increasing in coming years, and we show in
Section X that if the current trend continues, it is expected
that towards the end of this decade, it will be possible to
achieve over 70% link utilization in optical networks and still
to provide acceptable Quality of Service. Therefore, the fact
that the optical Internet does not support buffering is not at
all a predicament. In fact, it will lead to low latency, which is
a desired feature.

II. MODELING A TRAFFIC STREAM

A traffic model is a stochastic process which can be used
to predict the behaviour of a real traffic stream. Ideally, the
traffic model should accurately represent all of the relevant
statistical properties of the original traffic, but such a model
may become overly complex. A major application of traffic
models is in predicting the behaviour of the traffic as it passes
through a network. In this context, the response of individual
network elements in the traditional Internet can be modeled
using one or more SSQs. Hence a useful model for network
traffic modeling applications is one which accurately predicts
queueing performance in an SSQ. Matching the first and
second order statistics provides us with confidence that such
a performance matching is not just a lucky coincidence.

In order to keep our modeling parsimonious, we try to typify
a given traffic stream using as few parameters as possible.
Our model is not based on an exact matching of either the
autocorrelation function or the marginal distribution of the
measured stream. Instead we use a random process, in our case
the PPBP, which is adjusted so as to match the key statistics
of the measured stream. We define these characteristics to be
the mean, variance and Hurst parameter; and the model will
be fitted so as to produce the same values of mean, variance
and Hurst parameter as the measured stream.

Having matched the key statistics, we then measure the
accuracy of our model by evaluating the ability of this matched
process to accurately predict the queueing performance of the
original stream for a wide range of buffer sizes and service
rates. In our evaluations we consider a discrete time queueing
model. In particular, we consider a FIFO single server queue
with an infinite buffer and consider time to be divided into
fixed length sampling intervals. We let An be a continuous
random variable representing the amount of work entering the
system during the nth sampling interval. The process {An} is
assumed to be stationary and ergodic. We define C to be the
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constant service rate of the server. We assume that the service
takes place at the end of the interval. The mean of the amount
of work arriving during an interval is denoted µ = E(An) and
the variance of An is denoted by σ2.

Let Qn be the unfinished work at the beginning of the
nth sampling interval. Using the above notation, the system
unfinished work process, for the case of an infinite buffer,
satisfies Lindley’s recurrence equation:

Qn+1 = (Qn +An −C)+, n ≥ 0,

where Q0 = 0 and where X+ = max(0,X). Our measure
of queueing performance is the steady state queue length
distribution, Pr(Q > x) = Pr(Q∞ > x). An accurate model is
one which matches the steady state queue length distribution
of the real traffic for a wide range of values of the queue size,
x, and for a wide range of service rates, C.

We evaluate our model by comparing queueing performance
curves. If we consider an infinite buffer SSQ with given
arrival process, then the queueing performance curve is a
plot of the complementary queue length distribution, Pr(Q >
x), against buffer threshold, x. For each buffer threshold,
the corresponding point on the complementary queue length
distribution curve gives the proportion of time that the amount
of work in the queue exceeds the threshold.

III. THE POISSON PARETO BURST PROCESS (PPBP)

A number of studies [11], [12], [13], [14] have shown
that a range of bursty traffic sources supply a significant
part of the traffic carried on broadband networks. In [14]
it was shown that one possible source of this burstiness
was in the aggregation of independent on-off sources with
heavy tailed on and/or off time distributions. In [2] it was
shown that a process such as the PPBP could be considered
a limiting case for the multiplexing of a large number of
such independent heavy-tailed on-off sources. Thus the PPBP
appears a natural candidate for the modeling of bursty packet
data traffic streams.

Let us denote by Z+ the set of non-negative integers, R
the real numbers, and R+ the non-negative real numbers. We
consider a continuous time process {Bt : Bt ∈ Z+, t ≥ 0} which
represents the number of active bursts contributing work to
the traffic stream at time t. We define a series of arrival times
{αi : αi ∈ R, i = 0,1,2, . . .} and a series of departure times
{ωi : ωi ∈ R, i = 0,1,2, . . .}. The value of Bt increases by one
at time t = αi and decreases by one at time t = ωi. We define
ωi = αi +di and label di (di ∈ R+) the duration of the ith burst.
We assume {αi} is a non-decreasing series, i.e. αi ≤ αi+1

for i = 0,1,2, . . ., but we do not restrict di (apart from the
requirement that the burst duration is positive) and so {ωi} is
not ordered. The value of Bt is given by

Bt =
∞

∑
i=0

1t∈[αi,ωi]

where

1X =
{

1, if X is True,
0, otherwise.

The arrival of bursts is a Poisson process with rate λ, so
the intervals between adjacent burst arrival times, αi −α(i−1),
are negative exponentially distributed with mean 1/λ, and the
mean number of new bursts arriving during a time interval of
length T is Poisson distributed with mean λT . It is well known
that if the bursts arrivals are a Poisson process, the value of
Bt is Poisson-distributed, with mean λ times the mean burst
duration (e.g., [15]).

In the PPBP, the burst durations, di, are independent and
identically distributed Pareto random variables, having the
same distribution as random variable d. Using Pareto dis-
tributed burst durations allows the significant long bursts
that characterize LRD traffic to occur in the model. The
complementary distribution function of d is

Pr(d > x) =
{(

x
δ
)−γ

, x ≥ δ,
1, otherwise,

(1)

δ > 0. For 1 < γ < 2, we have that E(d) = δγ
(γ−1) and the

variance of d is infinite.
For the burst process to be stationary, the system is initial-

ized with b0 initial sessions, where b0 is a Poisson random
variable with mean E(Bt). The durations of these bursts
are independent and identically distributed random variables.
Their common distribution is the same as a random variable ω
which is the forward recurrence time of the Pareto distribution.
Thus αi = 0 for i ∈ {1, . . . ,b0} and ωi values for i ∈ {1, . . . ,b0}
are drawn from

Pr(ω > x) =

{
1
γ
(

x
δ
)1−γ

, x ≥ δ,
γ−1

γ
(
1− x

δ
)
+ 1

γ , otherwise.
(2)

We then consider a related process, Ât , the continuous time
process representing the total amount of work contributed by
all sessions in the period (0, t]. We consider the case where
all sessions contribute work at a constant rate r. Thus

Ât = r
∫ t

0
Btdt.

This gives a mean of

E(Ât) =
λtrδγ
(γ−1)

.

Cases in which the sessions do not all contribute equal rate,
or in which the work rate from a given session may vary as a
function of time, are not considered here. Results regarding the
properties of processes in which r is not necessarily constant
or the same for all sessions are presented in [4].

In [8] the term “Poisson burst process” was used to refer
to processes such as Ât , where i.i.d. bursts of fixed rate start
according to a Poisson process. For a Poisson burst process
the variance function is given by repeatedly integrating the
complementary distribution function of the burst distribution:

Var[Ât ] = 2λr2
∫ t

0
dt

∫ u

0
du

∫ ∞

v
dxPr(d > x) .
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Calculating for Pareto distributed burst durations gives

Var[Ât ] =






2r2λt2
(

δγ
2(γ−1) − t

6

)
, 0 ≤ t ≤ δ

2r2λ
{

δ3γ
6(3−γ) − δ2tγ

2(2−γ)

− t3−γδγ

(1−γ)(2−γ)(3−γ)

}
, t > δ.

(3)

A full derivation of the variance function for a PPBP is given
in [16].

Examining the expression for the variance given in Equa-
tion (3), we see that for large t, the dominant term is
2r2λ δγt3−γ

(1−γ)(2−γ)(3−γ) . If we define H = (3 − γ)/2, then we can
observe that for increasing t the growth of this function is
proportional to t2H . This implies that this process is asymp-
totically self-similar with Hurst parameter

H =
3− γ

2
. (4)

The conditions under which M/G/∞ processes are self-similar
are examined in more depth in [17].

Note that in simulations we will consider a discrete time
version of Ât , where time is divided into fixed length intervals
called time-slots. We choose an arbitrary value, τ, to be our
time-slot size and define our discrete time process to be

An = Â(n+1)τ − Ânτ = r
∫ (n+1)τ

nτ
Bsds. (5)

The time-slot size, τ may take on any positive value, but our
usual choice is τ = 1. We will use µ = E(An) and σ2 = Var[An]
to denote the statistics of this discrete time process. The
process An has mean

µ = E(An) =
λrδγ

(γ−1)
, (6)

and variance

σ2 =






2r2λ
(

δγ
2(γ−1) − 1

6

)
, δ ≥ 1

2r2λ
{

δ3γ
6(3−γ) − δ2γ

2(2−γ)

− δγ

(1−γ)(2−γ)(3−γ)

}
, δ < 1.

(7)

This discrete time process differs slightly from the processes
considered in [6], [18], and also from the processes analyzed
in [3], [4], [5], in that the processes considered in those works
sample the value of Bt , not the value of Ât as we do. Samples
drawn from Bt can take on only discrete values, while our
process is a continuous-valued, discrete-time process. Notice
that if a burst starts in the middle of a time-slot and continues
beyond the end of that time-slot, its contribution to the work
arriving in that time-slot is τr/2, which is not necessarily
an integer. In limiting cases for low λ and/or high E(d) our
process will behave in a very similar fashion to these discrete-
valued processes.

In our modeling we choose to extend this PPBP by adding a
constant bit-rate (CBR) component, κ, representing a constant
additional amount of work which arrives every interval. The
case of κ < 0 is also permitted. This gives us increased
flexibility in fitting real traffic streams. This CBR component

has no impact on the variance or the Hurst parameter of the
total traffic stream. The overall mean of the PPBP with a CBR
component is

µ =
λrδγ

(γ−1)
+κ. (8)

Finally, a comment on the meaning of the burst arrival rate
λ. The superposition of two independent PPBPs with identical
burst length distributions will itself be a PPBP with Poisson
arrival rate equal to the sum of the arrival rates of the two
constituent processes. Thus, increasing λ can represent an
increase in the number of sources contributing to an aggregated
stream modeled by a PPBP. We label the parameter λ the level
of aggregation in the stream. A stream with λ = 100 can be
considered to be generated by multiplexing 100 independent
streams each with λ = 1. In [2] it was shown that a model
of this type could be considered a limiting case for the
multiplexing of a large number of independent on-off sources
with heavy tailed on and/or off time distributions. However
no direct mapping between the number of individual on-off
sources contributing to the stream and the value of λ in the
multiplexed stream has been found.

IV. USING THE PPBP

Using the relationships developed in the previous section,
(Equations (4), (7) and (8)) we can create a PPBP which will
produce a given set of values for the mean, variance and Hurst
parameter. In fact, we can create not just one, but a whole
family of PPBPs which will have mean, variance and Hurst
parameter values identical to those of the measured stream.
The PPBP we use has five parameters: the Poisson arrival rate,
λ; the arrival rate of work within a session, r; the starting point
of the Pareto tail, δ; the rate of decay of the Pareto tail, γ; and
the rate of the CBR component, κ. The parameter δ defines the
minimum allowable burst length, and we set δ = 1 to ensure
that all bursts last for at least one full time-slot.

In fitting a given traffic stream, we assign the remaining four
parameters so as to yield given values of the mean arrival rate,
µ = E(An); the variance σ2; and the Hurst parameter, H. This
means that one of the parameters of the PPBP will be set
arbitrarily. This freedom of choice is important as it allows
us to create a whole family of PPBPs with identical values
of µ, σ2 and H but which differ in other ways. We shall see
that the members of such a family of PPBPs produce differing
queueing performance results when fed into identical SSQs.

We consider a family of PPBPs which yield identical values
of µ, σ2 and H but which have differing levels of multiplexing.
We do this by varying the value of λ. We have seen in
Section III that λ may be considered to represent the level of
multiplexing in the PPBP. To increase the level of multiplexing
we increase the value of λ and then scale the other parameters
in the process so that the values of µ, σ2 and H are unaltered
by the transformation.

In order to maintain a constant value for the variance, we
utilize the relationship given in Equation (7), and so if λ is
multiplied by a factor n, then the transmission rate for each
session is reduced by dividing r by

√
n. Making these changes
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to λ and r gives a process in which not only the variance, but
the entire ACF is unchanged from that of the original process.
Note that we do not fit the entire ACF of the PPBP to that of
the given traffic stream, except via the fitting of σ2 and H.

Multiplying λ by a factor of n and dividing r by only
√

n
will increase the mean arrival rate of the PPBP. In order to
focus our attention on the effects of changing values of λ we
do not compensate for this change by altering the parameters
of the Pareto distribution (δ and γ). Instead, we modify the
CBR component, κ, so as to maintain a matching between the
mean arrival rate of the PPBP and the mean arrival rate of the
modeled stream. The addition of κ cells per interval to every
arrival interval will not affect the values of σ2 or H. Since
the Pareto holding time distribution is not altered, the Hurst
parameter of the PPBP is unaffected by altering λ. Thus we
can produce a PPBP with an arbitrary value of λ which also
matches a given set of values for µ, σ2 and H.

In Section V we will show that the different members of
this family of PPBPs can produce very different queueing
performance results. Evidently if we are to achieve our goal
of accurately modeling a real traffic stream, we will need to
choose λ correctly. In Section VII we present a technique by
which we can choose the value of λ which gives the PPBP
which best fits a given traffic trace.

It may be argued that the PPBP is nothing special, and
that many models could be fitted in this way and still yield
accurate performance results. Even in an M/M/1 queueing
system we can set the mean to fit any loss probability. However
if the service rate changes, or the buffer size changes, this
fitted mean will not predict performance accurately. What we
achieve when the PPBP is correctly fitted is that the first and
second order statistics of the given stream will be matched and
accurate results will be obtained for a wide range of different
service rates and buffer sizes.

Unless otherwise labeled, all PPBP results shown in figures
in the following sections are obtained through repeated simu-
lation. The improved simulation techniques discussed in [10]
are used to improve the reliability of the simulation results.
Performance results for each value of λ are generated from a
set of 60 independent simulations, each containing the same
number of of samples. The number of samples per simulation
is chosen according to Equation (12) of [10] so as to ensure
that the probability of a large number of initial long bursts
creating a simulation which is permanently in an unstable state
is less than 10−7.

Confidence intervals are calculated for each point and the
values shown in figures are 95% confidence intervals, based
on the assumption that the values are taken from a Normal
distribution. Analysis of the simulation results, using the
Lilliefors test for normality [19] has shown that the values
of Pr(Q > x) for PPBP input are most likely not drawn from a
Normal distribution, so the confidence intervals shown should
be used only as a guide to the amount of variability in the
results obtained. Confidence intervals are omitted from some
simulation values in order to avoid obscuring the information
being presented.

V. CONVERGENCE TO GAUSSIAN

In recent years a number of researchers have investigated
the usefulness of Gaussian processes in representing a variety
of traffic types [20], [21], [22], [23], [24], [25]. Analytic
expressions have been developed for the queueing performance
of both LRD and non-LRD Gaussian processes [20], [25].
The existence of such expressions makes the Gaussian process
an attractive model, where it is applicable. In this section
we will show one reason why the Gaussian model may
not be universally applicable, and suggest that as the level
of multiplexing increases on larger networks, the Gaussian
process may find more applications in the future.

In Section III we saw that the arrival rate of bursts in
the PPBP, λ, can be related to the number of traffic sources
contributing to an aggregated traffic flow. In [26] it was
suggested that, by the central limit theorem, as the number
of independent sources contributing to an aggregate flow
increases, the traffic tends, in the sense of weak convergence,
towards a Gaussian stochastic process, and by the continuity
of the queueing process, the queueing behaviour will tend to
that of the corresponding Gaussian process also. We would
therefore expect that as λ increases, the behaviour of the PPBP
should approach that of a Gaussian process.

Note that the Gaussian process to which a family of PPBPs
converges will have the same correlation structure as the PPBP
family. This means that it will be an asymptotically self-similar
process, and not the purely self-similar Fractional Brownian
Motion for which authors such as Narayan [24] and Norros
[25] have derived theoretical results.

Fortunately, analytic results for the queueing performance
of a Gaussian process with an arbitrary variance function have
been given in [20]. For a Gaussian process with mean µ and
variance function σ2(t) fed into an infinite buffer queue with
service rate C the buffer overflow probability is

Pr(Q > x) ≈ exp

(
−

2(C −µ)2σ2(t∗x/(C−µ))

(σ2)′(t∗x/(C−µ))
2

)
, (9)

where (σ2)′(t) is used to denote the derivative of the variance
function σ2(t) evaluated at t, under the assumption that the
derivative exists at that point. The relevant point at which the
function must be evaluated is given by t∗x/(C−µ) where t∗y is the
solution to

2σ2(t)
(σ2)′(t)

− t = y, (10)

for a given normalized buffer size y
Figure 1 shows an example in which this Gaussian con-

vergence occurs. In the figure we see a family of PPBPs,
all with µ = E(An) = 100, σ2 = 14400 and H = 0.8 but with
differing levels of aggregation, which are fed into SSQs with
service rate C = 350. The infinite buffer overflow probabilities
for each process are evaluated by simulation. As the value of
λ increases the queueing performance improves, until a rea-
sonable approximation of Gaussian performance is achieved.
Along the way, however, lower values of λ produce different
queueing performance results for PPBPs with the same values
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Fig. 1. Convergence of PPBP to Gaussian.

of E(An), σ2 and H. In this figure, the Gaussian results are
generated by applying Equation (9) to calculate the queueing
performance of a Gaussian process having the same variance
function as the family of PPBPs considered. We note that in
[20] this expression was found to over-estimate the probability
of overflow for smaller queue lengths, but the tail behaviour
for larger queue lengths corresponds well with that observed
in a simulated Gaussian process.

VI. THE QUASI-STATIONARY APPROXIMATION

In the previous section, we have seen that the queueing
performance of the PPBP cannot be estimated using straight-
forward Gaussian analytic techniques. In this section we
examine more accurate analytic techniques.

An approximation for the queueing performance of the
PPBP which is called the quasi-stationary approximation was
introduced in [10]. Previously, performance estimates that are
valid as x → ∞ have been developed for M/G/∞ processes
using large deviations principles, e.g. [5]. The quasi-stationary
estimate gives an estimate which is valid for λ → ∞. This
estimate is more useful for lower values of the buffer threshold
x, and has been shown in [10] to give accurate estimates of
the infinite buffer queue length distribution for the PPBP SSQ.

The quasi-stationary approximation is based on dividing
the PPBP into slowly moving and quickly moving parts. The
combined effect of these two components will give the overall
queueing performance.

If we consider the PPBP over a finite interval of length W ,
i.e., the period [t, t +W ], for arbitrary t, then any of the initial
bursts which last for the entire time period we label as long
bursts. All other bursts are called short bursts. The short bursts
include: (1) those bursts that start at or before t and end before
t +W , (2) those bursts that start after t and finish at or after
t +W and (3) those bursts that start after t and finish at or
before t +W . Considering these long and short bursts, we will
divide the PPBP into two independent processes: (1) the long
bursts process and (2) the short bursts process. The long bursts
process is a stationary but non-ergodic process containing
only the long bursts. The short bursts process contains all the

remaining bursts, and is stationary on the interval [0,W ] (see
[10]).

By definition, the long bursts process will have constant
rate over the interval of length W . This constant rate will be
given by nr, where n is the number of long bursts, and r is
the rate per burst. The number of long bursts, n, is Poisson
distributed with mean λE(d)Pr(ω >W ) where Pr(ω > x) is the
complementary distribution function of the forward recurrence
time of the Pareto burst distribution, and is given by Equation
(2).

For a given W , we can use known techniques for SRD
processes (e.g. the techniques given in [20] or [27]) to calculate
the performance of the short bursts process in a queue with
service rate C − nr. We then calculate an estimate of the
performance of the PPBP in a queue with service rate C by
summing these estimates, weighted by the probability that the
long bursts process will contain n bursts.

There are various ways of modeling the queueing behaviour
of the short bursts process. One way which is convenient is
to model this process as Gaussian. This modeling allows us
to apply the formula of [20] to the short bursts process. This
formula is summarised in Section V. This approximation is
asymptotically accurate as λ → ∞, because for larger λ the
short-range dependent process becomes more and more similar
to Gaussian.

In order to calculate the queueing performance of the short
bursts process, using the Gaussian formula given in Equation
(9) we must calculate the value t∗x . t∗x will depend upon the
mean and the variance-time curve of the short bursts process.
These values will differ from the equivalent expressions for
the overall PPBP. The mean of the short bursts process is
mW = rλδγ

γ−1

(
γδ1−γ −W 1−γ) and its variance-time curve is

vs(t) = Var[Ât ]− t2 r2λW (1−γ)

γ−1
, 0 ≤ t ≤ W. (11)

The values of t∗x used in the Gaussian formula are restricted to
be less than W , so we do not define the variance-time curve of
the short bursts process for t > W . If no solution to Equation
(10) can be found in the range 0 ≤ t ≤ W then t∗x = W .

The final estimate of Pr(Q > x) for the PPBP will depend
upon the choice of W . Whatever the value of W , the quasi-
stationary estimate is a lower bound on the performance of the
PPBP. Therefore, the best estimate of the PPBP performance
is produced by choosing W to be the value which maximizes
the quasi-stationary estimate of Pr(Q > x).

VII. FITTING THE PARAMETER λ
For any given traffic trace, we wish to automatically cal-

culate the parameters of the PPBP such that: (1) the mean
and autocorrelation function of the PPBP will be close to
those of the real trace and (2) if both are fed into infinite
buffer single server queues with the same service rate, they
will give almost the same overflow probability curves. This
matching of the overflow probability should occur for any
buffer threshold and for any service rate. Henceforth we will
call such a PPBP a PPBP which fits the real data. Our real
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trace is a sequence of N consecutive measurements of the
amount of traffic originating from the source in consecutive
fixed size time intervals, which form a sequence of values
{Sn : 1 ≤ n ≤ N}. From the sequence {Sn} we can estimate
values for the mean, variance and Hurst parameter. Standard
estimators are used to evaluate the mean and variance of
the measured streams, and we have used the Matlab imple-
mentation of the Abry-Veitch wavelet estimator [28] avail-
able from the website http://www.emulab.ee.mu.oz.au/˜darryl/
secondorder code.html to estimate the Hurst parameter of the
streams.

Using the scaling rules described in Section IV, we can
create a whole family of PPBPs which will have mean,
variance and Hurst parameter values identical to those of the
measured stream. We have seen in Section V that different
members of this family of PPBPs will behave very differently
in identical queueing scenarios. The different members of the
family are differentiated by their different values of λ, so
choosing the correct value for λ would appear to be vital to
producing a model which accurately reflects reality.

We define λ∗ to be the value of the Poisson parameter
which produces a PPBP which fits the real data. This fitting
is determined though a matching of the complementary queue
length distributions within infinite buffer SSQs for a single
fixed service rate C and a range of buffer thresholds.

By feeding the sample values {Sn} through an infinite buffer
SSQ with service rate C we calculate the complementary
queue length distribution for the sample values. We calculate
the proportion of time when the amount of work stored in
the infinite buffer exceeds a given threshold for a set of
buffer thresholds, {xi : 0 ≤ i ≤ M −1}. Typically we consider
evenly spaced buffer thresholds, xi = i∆x where ∆x is a positive
constant, but the xi values may be any set of non-negative reals.
The overflow probabilities calculated in this way form the set
{pi = Pr(Q > xi)}.

We search for the value of λ∗ which, together with the
other three fitted parameters, namely, the mean, the variance
and the Hurst parameter, defines a PPBP which fits the
real trace. In the following sections we examine the fitted
PPBP by generating queue length distributions for SSQs with
service rates that are different from the value of C used in
calculating λ∗. We also compare the marginal distribution
and autocorrelation function of the PPBP with those of the
measured traffic trace.

To find λ∗ we must consider a family of PPBPs. All PPBPs
in this family will be fitted to the values of mean, variance
and Hurst parameter measured in the set of values {Sn} and
all will have the same values for δ and γ. For each value of
λ considered, we use the quasi-stationary estimate developed
in [10] and summarised above in Section VI to estimate the
queueing performance of this PPBP in an infinite buffer SSQ
with the same service rate, C, as the SSQ used in calculating
the pi values. Overflow probabilities are estimated for the same
values of xi to give a set of values {ei(λ) = Pr(Q > xi)}.

For each value of λ we calculate a measure of the difference
between the estimated values, {ei(λ)}, and the values given

by the data, {pi}. To do this, we divide the results into two
groups, depending upon the relative size of ei and pi. If ei < pi

then we assign xi to the set X . Otherwise, we assign xi to the
set X̄ .

We then calculate two sums:

G1(λ) = ∑
xi∈X

(log pi − logei(λ))2 (12)

and

G2(λ) = ∑
xi∈X̄

(log pi − logei(λ))2 . (13)

We define the overall accuracy of the model in predicting
the behaviour to be

G(λ) = G1(λ)−G2(λ). (14)

We assume that the optimal value for λ∗ occurs when G(λ) =
0. It is possible that there will be more than one value of
λ for which G(λ) = 0. We know that the quasi-stationary
approximation is valid for λ → ∞, so in this case we take
the largest λ for which G(λ) = 0 to be λ∗, on the grounds
that this will be the most reliable of the possible solutions.
Alternatively, if there is no value of λ for which G(λ) = 0
then λ∗ is the value of λ which minimizes |G(λ)|.

An alternate measure for the accuracy of the model could
be given by GS(λ) = G1(λ) + G2(λ). GS(λ) is the sum of
the squares of the distances (on a logarithmic scale) between
the two set of values {ei(λ)} and {pi}, and so λ∗ could
be found by minimizing GS(λ), i.e. using a minimum mean
square error technique to find λ∗. We have chosen not to use
this technique, as the differential measure G(λ) varies more
quickly in the region of interest, and therefore provides a
more precise estimate for λ∗. We expect that the values of
λ∗ given by solving G(λ) = 0 will be similar to those yielded
by minimizing GS(λ) in most cases.

VIII. PREDICTING THE QUEUEING PERFORMANCE

In Figure 2 we show that the correctly fitted PPBP success-
fully predicts the queueing performance of an IP traffic stream.
This IP traffic stream is derived from link traffic recorded
as a sequence of IP packet header summaries. This packet
header data was reduced to a sequence of integers, where each
value represents the number of bytes transmitted on the link
in a 0.1 second interval. For this sequence, we measured a
mean arrival rate of 5225 bytes per interval, a variance of
21.223×106 and H ≈ 0.91. The fitting of the parameter λ is
carried out using the method described in Section VII for a
service rate of C = 21000 (bytes per 0.1 s) with a family of
PPBPs with γ = 1.18 and δ = 1. The fitting process gives a
level of aggregation of λ = 0.267.

The figure shows queueing performance for a service rate of
C = 21000 bytes per 0.1 second. The confidence intervals for
the λ = 0.267 simulation results are approximately the same
size as the marks used to indicate the points, and so are omitted
from this figure.
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Fig. 2. Matching the PPBP to an IP trace

We observe that the Gaussian process with the same cor-
relation function as the PPBPs shown considerably under-
estimates the loss levels experienced by the real traffic. This
suggests that, even though this IP link is likely to be carrying
traffic from a relatively large number of independent sources,
the link traffic is still far from being sufficiently aggregated
for a Gaussian model to be applicable.

Figure 2 demonstrates that the PPBP can be used to accu-
rately predict the queueing performance of measured Internet
traffic streams in infinite buffer SSQs for a range of buffer
sizes. Next, we demonstrate that the PPBP also successfully
predicts the queueing performance of the real traffic for a wide
range of service rates. To illustrate this, we consider the same
IP trace, and the same family of PPBPs.

Figure 3 presents an examination of the impact of changing
service rates. Here we have chosen a single value of the buffer
threshold, x = 5000 bytes, and examined the values of Pr(Q >
x) for a range of service rates. Qualitatively similar results are
obtained for other fixed buffer size values.

For low service rates, i.e. high utilizations, the probability of
loss is quite high, and all values of λ give acceptable estimates
of the loss. In fact even the Gaussian process gives reasonable
estimates of queueing performance for utilizations above 0.6.
As the service rate is increased (and the utilization decreases)
the choice of λ becomes more significant. Figure 3 shows that
a single value of λ gives a good fitting for a range of service
rates. For example, λ = 0.267 produces a PPBP which predicts
the queueing behaviour of the IP stream well for levels of
utilization greater than 20%, corresponding to service rates of
C = 25000 bytes per 0.1 second interval, or lower. The results
shown in Figure 2 fall within this region where λ = 0.267 gives
a good approximation of the performance of the IP trace.

Looking at Figure 3 in conjunction with Figure 2 we can see
that the PPBP correctly predicts the queueing performance of
the real traffic across a wide range of service rates and buffer
sizes.

We have achieved this by matching just three measurable
properties of the original stream, and then setting a fourth
parameter. The setting of the fourth parameter, λ∗, is made

0.0001

0.001

0.01

0.1

1
0.15 0.3 0.45 0.6

Utilization

P
r(

Q
 >

 5
00

0)

IP Trace

λ = 0.02
λ = 0.267
λ = 25
Gaussian

Fig. 3. Comparison of queueing performance for a range of utilizations.

with respect to results for a given service rate, but we see
here that this fitting is good for a range of service rates. Thus
the PPBP meets our main criteria as a simple and accurate
model for IP traffic.

IX. MATCHING THE STATISTICS

We recall that along with a matching of the queueing
performance of the real traffic, it is also desirable that the
model match the first and second order statistics of the
modeled traffic. In this section, we evaluate the ability of the
PPBP to achieve this. We use the same PPBP fitted to the IP
trace as in Section VIII.

Figure 4 shows a Q-Q plot which gives a comparison
between the marginal distribution of the original IP trace and
that of a PPBP which is correctly fitted to the trace. The Q-Q
plot is formed by placing a point (x,y) where Pr(X > x) =
Pr(Y > y), in which X has the distribution of the IP trace
and Y has the distribution of the model. As shown in Section
VIII, the PPBP fitted to the trace has λ = 0.267. The marginal
distribution of the PPBP was measured from 60 simulations
of one million samples each. We see that the PPBP matches
marginal distribution of the IP trace reasonably well, although
not perfectly.

Figure 5 shows a comparison between the autocovariance
of the original trace and that of a PPBP fitted to the trace. In
this case, 60 sets of one million samples each are averaged
to generate the simulation results. For comparison, the ACF
calculated analytically based on Equation (3) is also shown.
The finite duration of the simulations (making extremely rare
events unlikely to occur) is the most likely explanation for the
fact that the simulation results show covariances lower than
those predicted by the theory. Since the IP trace is also finite,
the good match between the IP trace and the simulations is
the appropriate indicator of a successful model and the results
depicted in Figure 5 are quite pleasing.

We note that our method of fitting a family of PPBPs to
a given traffic stream means that the autocovariance function
will not be altered by changes in the value of λ. Thus we may
conclude that the changes in queueing performance caused by
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Fig. 4. Q-Q plot comparing the IP trace with the fitted PPBP.
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Fig. 5. Autocovariance of the trace and the fitted PPBP.

changes in the value of λ occur primarily because of changes
in the marginal distribution. This leads us to interpret λ as a
measure of the distance between the marginal distribution of
the traffic stream and a Gaussian distribution.

In summary, we have shown that the PPBP gives a good
match with the ACF of the real stream, but matches the
marginal distribution only approximately. The PPBP performs
reasonably well in matching the first and second order statistics
of the modeled traffic. We have already shown in Figures 2
and 3 that the PPBP matches the queueing performance of the
IP trace. Thus the PPBP meets all of our criteria for a simple
and accurate model.

X. OPTICAL INTERNET IMPLICATIONS

We have shown that the PPBP has all the attributes of
an accurate Internet traffic model. Using this model, we are
now able to confirm the view of [9] and [29] that the long-
range dependent (LRD) phenomenon observed in Internet
traffic [12], [30] does not necessarily lead to low utilization.
Although the traffic does not smooth out as voice traffic does,
it will smooth out eventually due to heavy multiplexing.

In particular, we used the IP traffic trace of Section VIII
that was taken in 1998 on a certain US link (this trace was
also used in [10] and [16]). We first use the PPBP model of
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Fig. 6. Improving utilization as multplexing levels increase.

this traffic trace as obtained above, and then consider several
different PPBP processes each of which is a process resulting
from multiplexing together a number of statistical copies of
the original PPBP model of the trace. Recall that multiplexing
of a number of PPBPs gives another PPBP. For each of these
PPBP processes, we used the quasi-stationary approximation
to estimate packet loss in a zero buffer SSQ, and determined
the capacity required to guarantee a given low packet loss. We
show the results in Figure 6. For the original traffic stream,
we needed to run the system at 15% utilization to obtain
1/1,000,000 loss probability, however, if it is multiplexed
500 times, we obtain 80% utilization. (Notice that future
Internet traffic may have different characteristics than current
traffic, however, it is expected that future traffic will include
large components of real-time services, which in fact generate
smoother streams.) Given the growth of the Internet, where
traffic loads are doubling at least once every twelve months
[10], [29], we estimate that it would take nine years to achieve
this level of multiplexing for this particular link. However,
we do not have to wait another five years to observe it. The
smoothing out of Internet traffic has already been confirmed by
measurements in [29] and references therein. This smoothing
out of Internet traffic phenomenon makes the bufferless optical
Internet appealing.

This is consistent with the prediction of the authors in 1998
[9]: “At the edge of this desert of bursty traffic which we have
been traversing, while the communication infrastructure of the
third millennium is put in place, there sits, just on the horizon,
a land of milk and honey – the realm of integrated multi-
service networks, in which all services receive good service,
despite the high utilization levels on all links . . . and the reason
things are so good in this realm is that the traffic there is
Gaussian!”

XI. CONCLUSIONS

In this paper we have examined the PPBP as a model for
Internet traffic, and we have found it to be very promising
in this role. We have shown that the PPBP meets our criteria
for a simple and accurate traffic model. We have used the
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PPBP to predict future multiplexing and link efficiency levels.
We have demonstrated that there is evidence that the future
optical Internet will be efficient despite the facts that it will
be bufferless.
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