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Abstract— This paper considers three-stage switching networks
able to support multicast traffic, i.e. connections in which one
inlet is connected to more than one output at the same time. The
nonblocking conditions for this network are studied under the
assumption of absence of any optimized routing of the connec-
tions inside the structure (the so-called strict-sense nonblocking
networks). An analytical model is developed here that provides
not only the nonblocking conditions of three-stage multicast
networks, but also the evaluation of the blocking probability
when such conditions are not satisfied. Unlike previous well-
known approaches, our model takes into account the correla-
tion between occupancy events in links belonging to different
interstage patterns. The results being found also provide a more
stringent condition of network nonblocking for multicast traffic
which disproves some of the claimed results recently published
in the technical literature.

I. INTRODUCTION

The first breakthrough on how to build minimum-cost mul-
tistage connecting networks starting from small crossbars has
been known since 1953 and is due to Charles Clos [1]. These
three-stage networks, nowadays known as Clos networks,
have been widely used for data communications and parallel
computing systems under the assumption that the service sup-
ported is always unicast, that is each connection is established
between an idle inlet and only one idle outlet of the network.
Interest in this kind of networks has been raising in the last
two decades due to the growing needs for supporting multicast
communication services, which implies that a switching node
must be able to set-up connections from an idle inlet to more
than one idle outlet. In this paper we give the necessary and
sufficient conditions for a three-stage switching network to be
strictly nonblocking when each inlet can address a number
of outlets ranging from a minimum f1 up to a maximum
f2. Our model evaluates also the blocking probability when
the network configuration parameters determine a blocking
structure. We assume that the multicast connection in set-up
as a single operation.

It is worth reminding that the nonblocking Clos network
does not set any constraint on how to select the new connection
out of the multiple paths available through the three-stage net-
work. Such class of networks, called strict-sense nonblocking
networks (SSNB), must be distinguished from other two types
of nonblocking networks, i.e. the wide-sense nonblocking net-
works (WSNB) and the rearrangeable nonblocking networks

(RNB). In both cases a less complex nonblocking network is
built compared to the SSNB one by allowing, at connection
set-up time, either an optimized path selection or a possible
rearrangement of already set-up connections. In this paper we
will only consider the case of SSNB networks.

Our approach extends to the multicast case the analytical
model developed in [2] for evaluating the blocking probability
of unicast three-stage switching networks. This model, unlike
traditional analytical models such as Lee’s model [3], is exact
in that it takes into account the dependence between occupancy
events of links in different interstage patterns. Hence it is
consistent with the deterministic nonblocking conditions such
as the Clos condition [1]. The nonblocking conditions derived
here confirm and extend the results given in [4], in which the
authors consider a less general case of fanout variability. Our
results on nonblocking conditions disprove also the necessity
of previously published results [5] claiming to be both neces-
sary and sufficient (for a discussion on this point, see [6]).

In the following, Section 2 prepares the mathematical back-
ground needed in the paper. The model for evaluating the
blocking probability in a three-stage network is developed in
Section 3. Sufficiency and necessity of nonblocking conditions
are proven in Sections 4 and 5. Finally some numerical results
are discussed in Section 6.

II. MATHEMATICAL PRELIMINARIES

A. Multicast 3-stage switching networks

Definition 1: Let us consider an N ×N multicast switching
network, i.e. in which each inlet can address a nonnegative
number fi of outlets, where f1 ≤ fi ≤ f2. Obviously, we
assume that all matrices are multicast, i.e. in which each inlet
can be connected to more than one outlet at the same time.
The network structure under consideration is shown in Fig. 1:
it has N inlets, N outlets and it is composed of three stages
of crossbar matrices with size n×m at stage 1, r × r at stage
2, m × n at stage 3, where r = N/n. We denote this class of
networks by M-CLOS (N,n,m; f1, f2).

Definition 2: In an M-CLOS (N,n,m; f1, f2)
the set of inlets and outlets are denoted by
I = {ik,i | k ∈ {1, ..., r} ∧ i ∈ {1, ..., n}} and O =
{oh,j | h ∈ {1, ..., r} ∧ j ∈ {1, ..., n}}, respectively, the
set of inlets of the k-th matrix at first stage is denoted by
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Fig. 1. Configuration of 3-stage switching network

Ik = {ik,i | i ∈ {1, ..., n}}, where k ∈ {1, ..., r}, the set
of outlets of the h-th matrix at third stage is denoted by
Oh = {oh,j | j ∈ {1, ..., n}}, where h ∈ {1, ..., r}.

Definition 3: Given an inlet ik,i, let C1,k,i be the set of
inlets defined as

C1,k,i = Ik − {ik,i}

and, given an outlet oh,j , let C2,h,j be the set of outlets defined
as

C2,h,j = Ok − {oh,j} .

Definition 4: In an M-CLOS (N,n,m; f1, f2) the fanout of
the inlet ik,i is denoted by fk,i, where

{
f1 ≤ fk,i ≤ f2 if ik,i is busy

fk,i = 0 otherwise.

Definition 5: According to the above definitions, in an
M-CLOS (N,n,m; f1, f2) the multicast connection request
from the inlet ik,i, provided that fk,i ∈ {f1, ..., f2}, to the
set of outlets Ok,i ⊆ O, is denoted by C (ik,i;Ok,i). Notice
that |Ok,i| = fk,i. Moreover, we denote by c (ik,i, oh,j), where
oh,j ∈ Ok,i, one of the point-to-point connection requests
belonging to C (ik,i;Ok,i).

Lemma 1: For each M-CLOS (N,n,m; f1, f2) the maxi-
mum number of addressed outlets by k free inlets (k ≤ N),
provided that there are already h free outlets (h ≤ N), is given
by

Amax (k, h; f1, f2) = min
{

kf2, h,

⌊
h

f1

⌋
f2

}
.

Proof: The proof of this lemma is given in [6].

B. Preliminaries of discrete mathematics

Definition 6: The quantities xk and xk (read “x to the k
falling” and “x to the k rising”), when k is a positive integer,
are defined as follows

xk =
∏

0≤j≤k−1

(x − j)

and
xk =

∏

0≤j≤k−1

(x + j) .

Definition 7: For each r ∈ R and k integer, we define
(

r

k

)
=

{
rk

k! k ≥ 0
0 k < 0

.

Lemma 2: For each r, n ∈ N, we have

∑

0≤k≤min{n,r}

(
r

k

)(
s

n − k

)
=

(
r + s

n

)

Proof: According to Vandermonde’s convolution [7,
p.29], i.e.

∑

k

(
r

k

)(
s

n − k

)
=

(
r + s

n

)
, n integer, (1)

as r ∈ N, we argue from definition 7 that

(i)

(
r

k

)
= 0 for r < k=⇒ k ≤ r,

(ii)

(
r

k

)
= 0 for k < 0=⇒ 0 ≤ k,

(iii)

(
s

n − k

)
= 0 for n − k < 0=⇒ k ≤ n.

Consequently, equation (1) can be rewritten as

∑

0≤k≤min{n,r}

(
r

k

)(
s

n − k

)
=

(
r + s

n

)
.

III. MODEL FOR MULTICAST CONNECTIONS

Let us consider an M-CLOS (N,n,m; f1, f2), provided
that the set of outlets referenced by ik,i includes oh,j , i.e.
we consider the multicast connection request C (ik,i;Ok,i)
where c (ik,i, oh,j) (oh,j ∈ Ok,i) is one of the point-to-point
connection requests in which C (ik,i;Ok,i) can be ideally
decomposed. Hence,

• N1 denotes the event in which there are n1 busy input-
middle interstage links allocated to the connections es-
tablished by the set of inlets C1,k,i;

• N2 denotes the event in which there are n2 busy middle-
output interstage links allocated to the connections di-
rected to the set of of outlets C2,h,j ;

• the pairs of input-middle interstage and middle-output
interstage links sharing the same middle stage switch are
said to be overlapped.

Moreover,

1) the events that individual links in the same interstage
pattern are busy are assumed to be independent;

2) traffic load is uniformly distributed and uniformly ad-
dressed; let p ∈ [0, 1] be the probability that an interstage
link is busy, and q = 1 − p the probability that an
interstage link is not busy; given the expansion ratio
m/n at the first stage, then p = a · n/m, if a is the
probability that an external link is busy;
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3) the number of busy input-middle (and middle-output)
interstage links follows the binomial distribution.

Lemma 3: Given the events N1 and N2 under the hypothe-
ses 1,2,3, the probability that k pairs of interstage links are
overlapped in an M-CLOS (N,n,m; f1, f2) network is given
by

Pr {k pairs of links overlapped | N1, N2} =

=

(
n1

k

)(
m − n1

n2 − k

)

(
m

n2

) =

(
n2

k

)(
m − n2

n1 − k

)

(
m

n1

) . (2)

Proof: The proof is given in [2] in case of one-to-
one connections. The fact that connections are one-to-many
implies no differences.

Thus, given the events N1 and N2, provided that there
are k overlapped links, the connection request c (ik,i, oh,j)
is not blocked if, and only if, n1 + n2 − k < m. Notice that
the number of overlapped links must be lower both than the
number of the busy input-middle interstage links (n1) and than
the number of the busy middle-output interstage links (n2),
i.e. k ≤ min {n1, n2}. Thus the probability that the connection
request c (ik,i, oh,j) is satisfied, given the events N1, N2, is

Pr {connection not blocked | N1, N2} =

=
1(
m

n2

)
∑

δ1≤k≤δ2

(
n1

k

)(
m − n1

n2 − k

)
,

where δ1 = max {0, n1 + n2 − m + 1} and
δ2 = min {n1, n2}. Moreover, by the hypothesis 1,

Pr {N1, N2} = Pr {N1} · Pr {N2} .

In case of one-to-one connections, as shown in [2], there are
at most n − 1 busy input-middle interstage links from C1,k,i,
since each inlet has an unitary fanout by definition. On the
contrary, in case of one-to-many connections the following
lemma holds.

Lemma 4: Given the multicast connection request
C (ik,i;Ok,i), in an M-CLOS (N,n,m; f1, f2) network
there are at most m1,k,i busy input-middle interstage links
from C1,k,i, where

m1,k,i = min
{

(n − 1) f2, N − f1,

(⌊
N

f1

⌋
− 1

)
f2

}
.

Proof: It is obvious that

m1,k,i ≤ (n − 1) f2, (3)

since |C1,k,i| = n− 1 and the maximum fanout is f2 for each
inlet. Nevertheless this is only an upper bound. In fact, the
set of inlets C1,k,i can reference the maximum number of free
outlets if “the conspired inlet” ik,i has the minimum possible
fanout, i.e. f1. Hence, the maximum number of outlets that

C1,k,i can reference is N − f1 and m1,k,i coincides with the
maximum number of addressed outlets by n − 1 free inlets,
provided that there are already N − f1 free outlets, i.e.

m1,k,i = Amax (n − 1, N − f1; f1, f2) , (4)

which, according to lemma 1, is given by

m1,k,i = min
{

(n − 1) f2, N − f1,

(⌊
N

f1

⌋
− 1

)
f2

}
,

Notice that m1,k,i, that was here defined for ik,i, is the
same for each inlet and for each matrix at first stage; hence,
let m1,k,i = m. So, by hypotheses 2 and 3,

Pr {N1} =

(
m

n1

)
pn1qm−n1

∑

0≤j≤m

(
m

j

)
pjqm−j

.

On the contrary, as in unicast switching networks, the largest
number of busy links at second interstage, in order to realize
the connection requests addressed to C2,h,j , is still n−1; then
it follows that

Pr {N2} =

(
m

n2

)
pn2qm−n2

∑

0≤j≤n−1

(
m

j

)
pjqm−j

The previous discussion is performed given events N1 and
N2, i.e. under the assumption that there are n1 busy input-
middle interstage links allocated to the connections established
by the set of inlets C1,k,i and n2 busy middle-output interstage
links allocated to the connections directed to the set of of
outlets C2,h,j . Now let us focus on the problem concerning
the maximum number of busy input-middle and middle-output
interstage links without considering possible overlapped links.
The following lemma holds.

Lemma 5: Given the multicast connection request
C (ik,i;Ok,i) and according to the above definitions,

n1 + n2 ≤ min
{

(n − 1) f2 + n − 1,

N − f1,
(⌊

N
f1

⌋
− 1

)
f2

}
= Ω. (5)

Proof: From 0 ≤ n1 ≤ m and 0 ≤ n2 ≤ n − 1, we ob-
tain n1 + n2 ≤ (n − 1) f2 + n − 1, if m1,k,i = (n − 1) f2.

On the contrary, if m = min
{

N − f1,
(⌊

N
f1

⌋
− 1

)
f2

}

and, hence, (n − 1) f2 + n − 1 ≥ (n − 1) f2 ≥
min

{
N − f1,

(⌊
N
f1

⌋
− 1

)
f2

}
, then there are no more free

outlets in order to set up the connections corresponding to
the n2 busy middle-output interstage links allocated to the
connections directed to the set of outlets C2,h,j ; i.e. n2 = 0,
since ik,i needs at least f1 free outlets by definitions. Notice
that n1 + n2 is maximal if fk,i is minimal, i.e. fk,i = f1.
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In conclusion, the nonblocking probability for each connec-
tion request becomes

PNB =

∑

0≤n1≤m
0≤n2≤n−1

∑

δ1≤k≤δ2

( m

n1

)(m − n1

n2 − k

)(n1

k

)
p

n1+n2 q
2m−n1−n2




∑

0≤j≤n−1

(m

j

)
p

j
q

m−j








∑

0≤i≤m

(m

i

)
p

i
q

m−i



 ,

(6)

where δ1 = max {0, n1 + n2 − m + 1} and
δ2 = min {n1, n2}, while the blocking probability is

PB = 1 − PNB .

This concludes the multicast extension of the analytical model
by Yang and Kessler. The next section focuses on the appli-
cation of such extended model under the deterministic non-
blocking condition derived in [6], confirming its sufficiency.

IV. PROOF OF SUFFICIENCY

It is proved in [6] that a non-squared N1×N2 Clos network
with n1 inlets per first-stage matrix, n2 outlets per third-stage
matrix is SSNB, if and only if

m ≥ min
{

(n1 − 1) f2 + n2, (N1 − 1) f2 + 1,

N2 − f1 + 1,
(⌊

N2
f1

⌋
− 1

)
f2 + 1

}
(7)

that, in case of an M-CLOS (N,n,m; f1, f2), becomes

m ≥ min
{

(n − 1) f2 + n,N − f1 + 1,

(⌊
N
f1

⌋
− 1

)
f2 + 1

}
.

The following lemma is crucial.

Lemma 6: Given C (ik,i;Ok,i) and |Ok,i| = fk,i = f1, then
δ1 = max {0, n1 + n2 − m + 1} = 0 if

m ≥ min
{

(n − 1) f2 + n,N − f1 + 1,

(⌊
N
f1

⌋
− 1

)
f2 + 1

}
.

Proof: The proof of this lemma is given in Appendix.

In case of one-to-one connections the analytical
model in [2] provides a null blocking probability,
if m ≥ 2n − 1 (Clos theorem). Thus, in case of
one-to-many connections the multicast extended
model should provide a null blocking probability if
m ≥ min

{
(n − 1) f2 + n,N − f1 + 1,

(⌊
N
f1

⌋
− 1

)
f2 + 1

}
.

In fact, the following theorem holds.

Theorem 1: PB = 0 if

m ≥ min
{

(n − 1) f2 + n,N − f1 + 1,

(⌊
N
f1

⌋
− 1

)
f2 + 1

}
,

Proof: By lemma 6,
δ1 = max {0, n1 + n2 − m + 1} = 0, hence

1(
m
n2

)
∑

0≤k≤min{n1,n2}

(
n1

k

)(
m − n1

n2 − k

)
= 1

by lemma 2. Thus, the relationship (6) becomes

PNB =

∑

0≤n1≤m

0≤n2≤n−1

( m

n1

)( m

n2

)
p

n1+n2q
2m−n1−n2




∑

0≤j≤n−1

(m

j

)
p

j
q

m−j








∑

0≤i≤m

(m

i

)
p

i
q

m−i





= 1, (8)

which implies
PB = 1 − PNB = 0.

This concludes the check that the condition derived in [6] is
at least sufficient in order to build SSNB 3-stage networks. On
the contrary, the next section will check that such condition is
also necessary; i.e. assuming

m < min
{

(n − 1) f2 + n,N − f1 + 1,

(⌊
N
f1

⌋
− 1

)
f2 + 1

}

there is at least a network belonging to the class of
M-CLOS (N,n,m; f1, f2), so that the extended analytical
model here derived provides a non-null blocking probability.

V. PROOF OF NECESSITY

Let us consider an M-CLOS (N,n,m; f1, f2), so that

m < min
{

(n − 1) f2 + n,N − f1 + 1,

(⌊
N
f1

⌋
− 1

)
f2 + 1

}
.

Let

1) f1 = 1,
2) n,N, f2 such that (n − 1) f2 + n ≤ N − f1 + 1

and (n − 1) f2 + n ≤
(⌊

N
f1

⌋
− 1

)
f2 + 1; for

instance, if N = 1000, n = 10, f2 = 5 then
(n − 1) f2 + n = 55 < 999 = N − f1 and

(n − 1) f2 + n = 55 < 4996 =
(⌊

N
f1

⌋
− 1

)
f2 + 1.

According to the above assumptions, it follows that

m = min
{

(n − 1) f2, N − f1,

(⌊
N

f1

⌋
− 1

)
f2

}

= (n − 1) f2
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and

m < min
{

(n−1) f2 + n,N,
⌊

N
f1

⌋
f2

}
= (n−1) f2 + n

and also

Ω = min
{

(n − 1) f2 + n − 1, N − f1,

(⌊
N
f1

⌋
− 1

)
f2

}
= (n − 1) f2 + n − 1.

This implies, if n1 = (n − 1) f2 ∧ n2 = n − 1, that

n1 + n2 − m + 1 = Ω − m + 1 >

> (n − 1) f2 + n − 1 − [(n − 1) f2 + n] + 1 = 0

and hence the condition that

δ1 = max {0, n1 + n2 − m + 1} = 0 (9)

does not hold for each n1, n2 such that 0 ≤ n1 ≤ m and
0 ≤ n2 ≤ n − 1. Let n1 = (n − 1) f2 ∧ n2 = n − 1; hence

1(
m

n2

)
∑

0<k≤min{n1,n2}

(
n1

k

)(
m − n1

n2 − k

)
= η

by lemma 2, where

0 ≤ η = 1 −

(
n1

0

)(
m − n1

n2

)

∑

0≤k≤min{n1,n2}

(
n1

k

)(
m − n1

n2 − k

) < 1. (10)

In conclusion, the relationship (6) becomes

PNB ≤
(

1 − 1 − η

m · (n − 1)

)
·

·

∑

0≤n1≤m

0≤n2≤n−1

(m

n1

)(m

n2

)
pn1+n2q2m−n1−n2




∑

0≤j≤n−1

(m

j

)
pjqm−j








∑

0≤i≤m

(m

i

)
piqm−i





< 1, (11)

which implies
PB = 1 − PNB > 0.

Note that the necessary and sufficient condition that we
have just proved, given by (8) taken as an equality, is a
generalization of the result provided in [4] where the minimum
fanout is always set to one.

VI. NUMERICAL RESULTS

The model and the results derived in the previous sections
are now applied to some examples of three-stage networks
with size N = 256.

The first example concerns the scenario in which a non-
blocking M-CLOS (N,n,m; f1, f2) has N,n and f1 fixed
(see Fig. 2), while f2 can range from a minimum f1 = 1 up to
a maximum given by (8). Notice that, given f2, m increases
for greater values of n. In fact, given all the other constraints,
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greater values of n imply, on one hand, a greater cardinality
of C1,k,i, on the other hand, a greater cardinality of C2,h,j .

The second application refers to the scenario in which a
nonblocking M-CLOS (N,n,m; f1, f2) has N,n, and f2 fixed
(see Fig. 3), while f1 can range from 1 up to the maximum f2.
Notice that the number m of second-stage matrices required to
satisfy the nonblocking property decreases for greater values
of f1. Mathematically, it depends on the fact that (8) has
several terms decreasing for greater values of f1. But the (more
interesting) physical reason is that, f2 being fixed, the range
of a (general) fanout decreases for greater values of f1. In
other words, increasing f1 gives a less general kind of network
and, hence, a smaller amount of network resources should be
necessary to obtain the nonblocking property.

We compare now the cost of a three-stage network sup-
porting multicast traffic to that of a unicast (point-to-point)
network. The crosspoint count of the overall network is
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assumed to be the cost function1.
Fig. 4 considers the case of a fanout ranging from f1 =

1 to f2 = 4 and shows that the minimum-cost network is
given for the same value n of inlets per first stage matrix.
Moreover, unlike the unicast traffic in which the cost grows
monotonically beyond the minimum value, the cost function
with multicast traffic displays a maximum, after which the cost
slightly decreases.

Fig. 5 increases the maximum fanout to f2 = 16. Also
in this case the multicast network is more expensive, but,
interestingly enough, its minimum cost is attained when the
first-stage matrices have maximum size, i.e. n = 128. Note
that for this value the unicast network has maximum cost.
Fig. 6 considers the same network assuming now fixed fanout
f1 = f2 = 16. Differently from the previous cases, now a
multicast nonblocking network with maximum size of first-
stage matrices is cheaper than a unicast network.

Unlike previous models, ours allows us to compute the
blocking probability for a multicast three-stage network
equipped with a number of second-stage matrices smaller than
that required to guarantee nonblocking. This possibility is very
useful if the requirement is a quasi-nonblocking network or
even a network with a given blocking probability. Apparently
the resulting network is cheaper than a nonblocking one. Fig.
7 represents the case of a network with n = 4 and fanout from
f1 = 1 to f2 = 4, with an external offered load ranging from
a = 0.2 to a = 0.8. Since network nonblocking is provided
by m = 16, the figure shows how the number of second-
stage matrices can be reduced, given an offered load and an
acceptable blocking probability.

VII. CONCLUSIONS

An analytical model has been developed for the analysis of
three-stage connecting networks loaded by multicast traffic.

1A matrix with size n × m has a cost n · m.
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Fig. 5. Number of crosspoints for variable fanout with f2 = 16
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Fig. 6. Number of crosspoints in the network for fixed fanout

Such model has also provided the nonblocking conditions for
the network, which have been proven to be both necessary
and sufficient. Unlike networks carrying unicast traffic, the
cost function of the nonblocking network displays more than
one minimum, whose selection to determine the minimum cost
network depends on the fanout values. We have shown how
the results derived here can be used to dimension a three-stage
connecting network with a given blocking probability.

APPENDIX

Lemma 6: Given C (ik,i;Ok,i) and |Ok,i| = fk,i = f1, then
δ1 = max {0, n1 + n2 − m + 1} = 0 if

m ≥ min
{

(n − 1) f2 + n,N − f1 + 1,

(⌊
N
f1

⌋
− 1

)
f2 + 1

}
.
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Fig. 7. Blocking probability for different offered load values

Proof: Given C (ik,i;Ok,i), fk,i = f1, by lemma 5

n1 + n2 ≤ min
{

(n − 1) f2 + n − 1, N − f1,

(⌊
N
f1

⌋
− 1

)
f2

}
= Ω;

then there are three possible cases, i.e.
case 1: Ω = (n − 1) f2 + n − 1
case 2: Ω = N − f1

case 3: Ω =
(⌊

N
f1

⌋
− 1

)
f2

that, since

m ≥ min
{

(n − 1) f2 + n,N − f1 + 1,

(⌊
N
f1

⌋
− 1

)
f2 + 1

}
= m̃,

become nine, i.e.
case 1.1: Ω = (n − 1) f2 + n − 1 ∧ m̃ = N − f1 + 1
case 1.2: Ω = (n−1)f2+n−1 ∧m̃ =

(⌊
N
f1

⌋
−1

)
f2+1

case 1.3: Ω = (n − 1) f2 + n − 1 ∧ m̃ = (n − 1) f2 + n
case 2.1: Ω = N − f1 ∧ m̃ = N − f1 + 1
case 2.2: Ω = N − f1 ∧ m̃ =

(⌊
N
f1

⌋
− 1

)
f2 + 1

case 2.3: Ω = N − f1 ∧ m̃ = (n − 1) f2 + n

case 3.1: Ω =
(⌊

N
f1

⌋
− 1

)
f2 ∧ m̃ = N − f1 + 1

case 3.2: Ω =
(⌊

N
f1

⌋
−1

)
f2 ∧ m̃ =

(⌊
N
f1

⌋
− 1

)
f2 + 1

case 3.3: Ω =
(⌊

N
f1

⌋
− 1

)
f2 ∧ m̃ = (n − 1) f2 + n.

In case 1.1, since

Ω = min
{

(n − 1) f2 + n − 1, N − f1,

(⌊
N
f1

⌋
− 1

)
f2

}
= (n − 1) f2 + n − 1,

it follows that

Ω = (n − 1) f2 + n − 1 ≤ N − f1;

hence

n1 + n2 − m + 1 ≤ Ω − m̃ + 1 ≤
≤ [(n − 1) f2 + n − 1 − (N − f1)] + 1 − 1 ≤ 0,

which proves the lemma in case 1.1.
In case 1.2, since

Ω = min
{

(n − 1) f2 + n − 1, N − f1,

(⌊
N
f1

⌋
− 1

)
f2

}
= (n − 1) f2 + n − 1,

it follows that

Ω = (n − 1) f2 + n − 1 ≤
(⌊

N

f1

⌋
− 1

)
f2;

hence

n1 + n2 − m + 1 ≤ Ω − m̃ + 1 ≤
≤

[
(n − 1) f2 + n − 1 −

(⌊
N
f1

⌋
− 1

)
f2

]
+ 1 − 1 ≤ 0,

which proves the lemma in case 1.2.
In case 1.3., since

Ω = min
{

(n − 1) f2 + n − 1, N − f1,

(⌊
N
f1

⌋
− 1

)
f2

}
= (n − 1) f2 + n − 1,

it follows that

n1 + n2 − m + 1 ≤ Ω − m̃ + 1 ≤
≤ [(n−1)f2+ n−1−(n−1)f2−n+1]+1−1 = 0,

which proves the lemma in case 1.3.
In case 2.1, since

Ω = min
{

(n − 1) f2 + n − 1, N − f1,

(⌊
N
f1

⌋
− 1

)
f2

}
= N − f1,

it follows that

n1 + n2 − m + 1 ≤ Ω − m̃ + 1 ≤
≤ [N − f1 − N + f1] + 1 − 1 = 0,

which proves the lemma in case 2.1.
In case 2.2, since

Ω = min
{

(n − 1) f2 + n − 1, N − f1,

(⌊
N
f1

⌋
− 1

)
f2

}
= N − f1,

it follows that

Ω = N − f1 ≤
(⌊

N

f1

⌋
− 1

)
f2;
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hence

n1 + n2 − m + 1 ≤ Ω − m̃ + 1 ≤
≤

[
N − f1 −

(⌊
N
f1

⌋
− 1

)
f2

]
+ 1 − 1 ≤ 0,

which proves the lemma in case 2.2.
In case 2.3, since

Ω = min
{

(n − 1) f2 + n − 1, N − f1,

(⌊
N
f1

⌋
− 1

)
f2

}
= N − f1,

it follows that

Ω = N − f1 ≤ (n − 1) f2 + n − 1;

hence

n1 + n2 − m + 1 ≤ Ω − m̃ + 1 ≤
≤ [N − f1 − (n − 1) f2 − n + 1] + 1 − 1 ≤ 0,

which proves the lemma in case 2.3.
In case 3.1, since

Ω = min
{

(n − 1) f2 + n − 1, N − f1,

(⌊
N
f1

⌋
− 1

)
f2

}
=

(⌊
N
f1

⌋
− 1

)
f2,

it follows that

Ω =
(⌊

N

f1

⌋
− 1

)
f2 ≤ N − f1;

hence

n1 + n2 − m + 1 ≤ Ω − m̃ + 1 ≤
≤

[(⌊
N
f1

⌋
− 1

)
f2 − (N − f1)

]
+ 1 − 1 ≤ 0

which proves the lemma in case 3.1.

In case 3.2, since

Ω = min
{

(n − 1) f2 + n − 1, N − f1,

(⌊
N
f1

⌋
− 1

)
f2

}
=

(⌊
N
f1

⌋
− 1

)
f2,

it follows that

n1 + n2 − m + 1 ≤ Ω − m̃ + 1 ≤
≤

[(⌊
N
f1

⌋
− 1

)
f2 −

(⌊
N
f1

⌋
− 1

)
f2

]
+ 1 − 1 = 0,

which proves the lemma in case 3.2.

In case 3.3, since

Ω = min
{

(n − 1) f2 + n − 1, N − f1,

(⌊
N
f1

⌋
− 1

)
f2

}
=

(⌊
N
f1

⌋
− 1

)
f2,

it follows that

Ω =
(⌊

N

f1

⌋
− 1

)
f2 ≤ (n − 1) f2 + n − 1;

hence

n1 + n2 − m + 1 ≤ Ω − m̃ + 1 ≤
≤

[(⌊
N
f1

⌋
− 1

)
f2 − (n − 1) f2 + n − 1

]
+ 1 − 1 ≤ 0,

which proves the lemma in case 3.3.
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