
End-to-End Congestion Control for InfiniBand
Jose Renato Santos, Yoshio Turner, G. (John) Janakiraman

Hewlett Packard Laboratories
1501 Page Mill Road
Palo Alto, CA 94304

Abstract— InfiniBand System Area Networks (SANs) which use
link-level flow control experience congestion spreading, where one
bottleneck link causes traffic to block throughout the network. In
this paper, we propose an end-to-end congestion control scheme
that avoids congestion spreading, delivers high throughput, and
prevents flow starvation. It couples a simple switch-based ECN
packet marking mechanism appropriate for typical SAN switches
with small input buffers, together with a source response mech-
anism that uses rate control combined with a window limit.
The classic fairness convergence requirement for source response
functions assumes network feedback is synchronous. We relax
the classic requirement by exploiting the asynchronous behavior
of packet marking. Our experimental results demonstrate that
compared to conventional approaches, our proposed marking
mechanism improves fairness. Moreover, rate increase functions
possible under the relaxed requirement reclaim available band-
width aggressively and improve throughput in both static and
dynamic traffic scenarios.

I. INTRODUCTION

System Area Networks (SANs) [1][2][3][4] provide high
throughput and low latency for efficient I/O and cluster com-
munication. The adoption of SANs has increased significantly
in recent years and should accelerate with the emergence of
industry standards such as Infiniband [1]. These networks can
experience congestion spreading [5], where one bottleneck link
causes traffic to block throughout the network. SANs will
experience these congestion events frequently given their large
network size (number of devices), application diversity (e.g.,
for storage as well as interprocess communication), and low
host overheads that enable high applied loads on the network
fabric. In this paper we address this problem in the particular
context of InfiniBand networks, although our proposed solu-
tions can be applied to SANs in general. Congestion control
has been widely studied in traditional networks, such as Local
Area (LANs) and Wide Area Networks (WANs). The unique
characteristics of SANs, however, make the congestion control
problem unique in this environment:
1) No packet dropping at switches

InfiniBand switches use link level flow control [5][6],
which prevents a switch from transmitting a packet when
the downstream switch lacks sufficient buffering to receive
it. This property prevents packet dropping at switches and
avoids the well-known congestion collapse scenario of
traditional networks [7], but it may cause an undesired
effect known as congestion spreading or tree saturation [8],
which is discussed in detail in Section III. A consequence
of this characteristic is that packet losses cannot be used
as indication of congestion.

2) Low network latencies
Due to cut-through routing at switches and short link dis-
tances, network latencies in empty networks are very small
(on the order of 100s of nanoseconds). Thus switch logic,
including any support required for congestion control, must
be simple enough to be implemented in hardware. Low
network latency results in a relatively small bandwidth-
delay product (usually less than one kilobyte) and a flow
can use all the available bandwidth on its network path with
a small number of bytes in transit at any time, even less
than one packet. In this environment, a traditional window
control mechanism as used by TCP [7] is inadequate for
controlling flow rates.

3) Low buffer capacity at switches
InfiniBand switches are typically single-chip devices [3][9]
with small packet buffers. A typical InfiniBand switch
design, that we are aware of, can hold 4 packets of 2KB
per port. Therefore, congestion can occur even when the
number of flows contending for a single link is small.
In addition, with small buffers, queueing delays during
congestion can be on the same order of magnitude as
queueing delays in normal operation. Thus it is difficult
to rely on network latency as an implicit signal of network
congestion.

4) Input-buffered switches
Since InfiniBand switches operate at very high speeds,
they are usually configured with buffers at the input
ports1 [10]. To identify packets causing congestion, input-
buffered switches may benefit from approaches that differ
from traditional techniques [11][12] which are aimed at
output-buffered switches.

In this paper we propose an end-to-end congestion control
scheme for InfiniBand that consists of an ECN packet marking
mechanism at switches and a source response mechanism
that combines rate control with a window limit2. We also
propose source response functions that achieve higher band-
width utilization than traditional approaches by exploiting the
asynchronous behavior of packet marking.

1Other buffer configurations, such as central or output buffer, require
internal switch data transfer rates higher than the link speed to service multiple
packets that can arrive simultaneously from different input ports, increasing
the challenge of designing for very high link speeds.

2The InfiniBand standards body [1] has formed a working group to define
a congestion control mechanism for future versions of the standard. We have
submitted our proposal [13] to the working group. Our proposal addresses
additional issues not discussed here, such as heterogeneous links, ACK
coalescing, variable packet size, unreliable transport, etc.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

The main contributions of this paper are summarized as
follows:

1) Congestion control solution suited to SAN environments
• We propose a novel ECN packet marking mecha-

nism for input-buffered switches. An ECN approach
was adopted mainly because packet losses cannot be
used as indication of congestion and network laten-
cies cannot be effectively used to distinguish normal
traffic conditions from network congestion. For input-
buffered switches, our approach has better fairness
properties than the traditional approach of simply
marking packets in full buffers (appropriate for output-
buffered switches). In addition, our ECN mechanism
is simple to implement in hardware.

• We propose a source response mechanism that is best
suited to a SAN environment with low bandwidth-
delay product and low buffer capacity. The mechanism
combines rate control with a window limit to provide
the wide range of operating points and low buffer uti-
lization associated with a flow rate control mechanism
and the self-clocking property of a window limit.

2) Novel rate control source response functions
• We derive a new set of conditions for the design of

source response functions. The new conditions exploit
a bias of asynchronous packet marking for high rate
flows in order to weaken the convergence requirements
previously proposed by Chiu and Jain [14]. The new
conditions allow the use of source response func-
tions that achieve higher bandwidth utilization than is
possible with the stricter requirements while ensuring
congestion avoidance and fairness.

• We propose two new source response functions that
satisfy the above properties and demonstrate their ad-
vantages over the traditional AIMD (Additive Increase
Multiplicative Decrease) response function in a SAN
environment, using simulation.

The rest of this paper is organized as follows. Related
approaches to congestion control are briefly summarized in
Section II. Section III motivates the need for congestion
control in a SAN environment, by showing the harmful effect
of congestion spreading in a simple scenario. The details of
the proposed congestion control mechanism are discussed in
Section IV. Section V presents our source response function
design methodology and specific response functions. Sec-
tion VI presents simulation results for our mechanisms, and
Section VII presents our conclusion.

II. RELATED WORK

Hop-by-hop congestion control, which limits the number
of packets at a switch that share a common output link or
final destination, has been proposed for networks that use
link-level flow control [15][8]. To enforce the limits, switches
must implement a substantially enhanced link flow control
mechanism. In contrast, our approach aims to keep switch
design simple and easy to implement in hardware, and adopts

an end-to-end mechanism that relies on flow endpoints to
control traffic injection rates.

For traditional networks, such end-to-end control is exem-
plified best by TCP, in which flow sources use endpoint de-
tection of packet dropping [7] or changes in network latencies
[16][17] as an implicit signal of congestion. An alternative
to implicit notification is Explicit Congestion Notification
(ECN), in which switches detect incipient congestion and
notify flow endpoints, for example by marking packets when
the occupancy of a switch buffer exceeds a desired operating
point [11][12]. ECN is used in ATM networks [18], and it has
been proposed for use with TCP [19][20]. These approaches
assume switches with output buffer configurations while we
consider switches with input buffer configurations.

A source of traffic should adjust packet injection in response
to congestion information. The most widely used response
function is Additive Increase Multiplicative Decrease (AIMD),
which has been shown to converge to fairness under an
assumption of synchronized feedback to flow sources [14].
AIMD has been used for both window control [7] and rate
control [21]. Recently, other response functions aimed largely
at multimedia streaming applications have been investigated
that attempt to be compatible with TCP without suffering
the large fluctuations in injection rate that can arise from the
multiplicative decrease of AIMD [22][23]. We propose source
response functions based on more relaxed fairness convergence
requirements, that can reclaim available bandwidth faster than
response functions that satisfy the traditional convergence
requirement (as for example, the traditional AIMD), increasing
the effective network throughput in a dynamic environment in
which flows come and go.

III. CONGESTION SPREADING

In this section, to motivate the need for congestion control,
we show the harmful effect of congestion spreading. In order
to illustrate this effect and to evaluate the performance of
our congestion control scheme, we conducted a series of
simulation experiments using an example scenario that is
shown in Fig. 1 and which we use for all results presented
in this paper. Table I shows the parameters used in the
simulations. Our simulation topology consists of two switches
A and B connected by a single link. The traffic is generated
by a set of L local flows generated at endpoints B1 through
BL, R remote flows generated at endpoints A1 through AR,
and a victim flow generated at endpoint AV . All remote and
local flows are destined to endpoint BC through a congested
output link on switch B. The victim flow is destined to a non-
congested endpoint BV and suffers from congestion spreading.
All flows are greedy, i.e. flows try to use all the network
bandwidth that they can. Congestion spreading originates at
the oversubscribed link connecting switch B to endpoint BC

which we refer to as the root link of the congestion spreading
tree.

To illustrate the problem caused by congestion spreading,
we consider the scenario shown in Figure 1 with 5 local flows
and 1 remote flow (L = 5, R = 1) for a switch buffer that

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

A1

A2

AR

AV

B1

B2

BL

BV

BC

.

SWITCH
A SWITCH

B

Fig. 1. Simulation scenario

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 r

at
e

time (ms)

RL

LF

IL

RF,VFIL,RF

root link (RL)
inter-switch link (IL)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 r

at
e

time (ms)

RL

LF

IL

RF,VFIL,RF

local flows (LF)
remote flow (RF)

victim flow (VF)

Fig. 2. Congestion Spreading

can hold 4 packets per input port. Figure 2 shows the results
of a simulation for this scenario, when no congestion control
is used. The experiment simulates the example scenario for a
duration of 100ms. At the begining of the simulation, local
and remote flows start sequentially every 100µs, with the local
flows starting before the remote flow. The local and remote
flows remain active until the end of the simulation, while the
victim flow is active only in the time interval [40ms,60ms].
The graph shows the traffic rate on the root link and on the
inter-switch link, as well as the (aggregate) rates of local
flows, remote flow, and the victim flow. Rates are computed
considering the number of packets transmitted in a sliding time
window of duration 2ms centered on the corresponding time
point.

The results reveal that the victim flow uses only 15% of
the bandwidth on the inter-switch link, even though the inter-
switch link is only 30% utilized. Since the link to destination
BC is oversubscribed, the buffers at switch B (at the input port
for the inter-switch link) fill with packets and block incoming
flows, causing the inter-switch link to go idle. If each remote
flow did not attempt to transmit at the full link bandwidth and
instead proactively reduced its rate to the rate determined by
the bottleneck link, i.e. 1

6 of the link bandwidth, the buffers
at switch B would not fill up and the victim flow would be
able to utilize the available bandwidth at the inter-switch link,
improving the network throughput.

IV. CONGESTION CONTROL MECHANISM

This section describes the two components of our proposed
congestion control mechanism for InfiniBand3: an ECN packet

3Infiniband specify virtual lanes which provide a mechanism for creating
multiple virtual links within a single physical link. Our proposed congestion
control mechanism can be applied to each virtual lane individually.

TABLE I

SIMULATION PARAMETERS

parameter default value
(unless otherwise specified)

link bandwidth 1 GB/sec (InfiniBand 4X links)
packet header 20 bytes (InfiniBand Local Header)

data packet size 20 + 2048 = 2068 bytes
data packet tx time 2.068 µs

ACK packet 20 bytes
switch minimum 40 ns (header delay)
forwarding delay

buffer configuration input port
buffer size 4 packets/port

marking mechanism, and a source response mechanism that
combines rate control with a window limit.

A switch detects and identifies packets which are contribut-
ing to congestion. The switch sets a single bit ECN field in
the header of an identified packet to indicate the occurrence
of congestion to the destination. The destination returns the
ECN value in the acknowledgment packet and the source uses
this information to adjust its packet injection rate.

A. Packet Marking

Congestion is propagated by a full buffer since it blocks
an upstream switch from transmitting. Therefore, a naive
but straightforward way for switches to detect and indicate
the occurrence of congestion would be to mark all packets
in a buffer whenever it becomes full4. In a switch with
output buffer configuration, this approach successfully marks
all packets that are transmitted on the root link of a congestion
spreading tree. In a switch with input buffers (typical for
InfiniBand), however, other packets at the switch besides those
in a full buffer may be generating congestion by contending
for the same root link. As we show later in the simulation
results of Section VI-A, the failure of the naive approach
to mark those additional packets results in unfairness among
flows contending for the root link.

We propose a marking mechanism for input-buffered
switches that promotes fairness by marking all packets at the
switch that are generating congestion by contending for a busy
root link. The mechanism operates in three steps. First, as
in the naive approach, a switch input buffer triggers packet
marking each time it becomes full. Second, any output link
that is the destination for at least one packet in such a full
buffer is classified as a congested link. Third, all packets that
are resident (in any buffer) at the switch and are destined to an
output link that was classified as congested in the second step
are marked5. The third step seems to require an expensive scan

4With the current use of small buffers in SAN switches, a lower buffer
occupancy threshold for marking is likely to only reduce link utilization by
causing the buffer to empty more frequently. If switch buffers become larger,
using a buffer occupancy threshold below the maximum capacity might be
beneficial by preventing congestion spreading before its occurrence while
preserving high utilization.

5Our design choices favor simple mechanisms that can be easily imple-
mented in low cost fast switches and avoid solutions that require complex
instrumentation and parameter tuning, such as for example congestion detec-
tion based on a time averaged buffer occupancy threshold or time averaged
link utilization.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

of all input buffers in a switch even when only one becomes
full. We specify an efficient implementation that does not
require this scan. The implementation does not mark packets
immediately after an input buffer becomes full. Instead, it
determines the number of packets that should be marked and
marks them at the time of their transmission, avoiding the scan.
For this purpose, we use two counters for each output link.
The first counter cnt1 records the current number of packets
in the switch that are waiting for that output link; cnt1 is
incremented and decremented as packets enter and leave the
switch. The second counter cnt2 records the number of sub-
sequent packets that need to be marked when transmitted on
that output link. Counter cnt2 is initialized to zero. Whenever
a buffer becomes full, the value of counter cnt1 is copied to
counter cnt2. Then, the output port starts marking the next
transmitted packets, decrementing cnt2 at each transmission,
until it reaches zero again. Note that marking can be re-
triggered on the same output port even before counter cnt2
reaches zero. The implementation will operate correctly even
in such cases by triggering the marking of all new packets that
arrived since the last marking event, in addition to the packets
previously identified.

Note that this counter implementation may mark a different
set of packets than a direct packet scanning approach, since
packets can be transmitted out of order. This turns out to be
an advantage, since our implementation will mark the first
packets to leave the switch and provide faster feedback to
network endpoints.

Our proposed packet marking mechanism and descriptions
of additional schemes are discussed in more detail in [24].

B. Source Response: Rate Control with a Window Limit

The source response mechanism controls the injection of
packets into the network in response to ECN information
delivered to the source via ACKs.

Window-based congestion control is a common approach
which adjusts the number of outstanding packets for a flow
based on the congestion feedback. A window-based mecha-
nism offers the benefit that packet injection is self-clocked
[7], and it limits the amount of buffer space that a flow can
consume in the network. The range of useful window sizes
is very small in an InfiniBand SAN environment since its
bandwidth-delay product is small. For example, a network
with 1 GByte/sec links, 64 ns per-switch forwarding delay,
and a diameter of 32 switches has a bandwidth-delay product
equal to just one 2048-byte packet. Thus a flow that is limited
to a window of size one (packet) is able to use most of
the bandwidth on its path in an otherwise empty network.
A window of size two completely saturates the bandwidth
(the ACK for one packet is returned in parallel with the
transmission of a second packet). For example, Fig. 3(b) shows
that when each flow in Fig. 2 is limited to a window size of one
packet, high link utilization can be sustained while eliminating
congestion spreading. Since only two flows share the inter-
switch link, the window ensures at most two packets reside at
switch B’s input buffer for the inter-switch link and the link

is never blocked. Hence the inter-switch link is fully utilized
and the victim flow consumes all its idle bandwidth (the slight
under-utilization of the root link and the inter-switch link is
an artifact of the starvation prevention function of switch B’s
scheduling mechanism6).

However, such a window-based mechanism is inadequate
for InfiniBand SANs for two reasons. First, the small range
(one to two packets) of useful window sizes severely limits the
flexibility of the congestion control7. Second, even with the use
of a minimal per-flow window of size one packet, congestion
spreading can occur when the number of contending flows
exceeds the number of buffer slots. That condition can occur
easily in InfiniBand networks where switch buffer sizes are
small. Fig. 3(c) shows that when there are five local flows
and five remote flows (L = 5, R = 5, and a buffer with 4
packet slots) in the scenario of Fig. 1, with each flow limited
to a window size of one packet, congestion spreading prevents
the victim flow from achieving high throughput and the inter-
switch link is under-utilized.

Congestion spreading can be avoided in scenarios where
numerous flows contend for a smaller number of buffer slots
if the average buffer utilization in the network is maintained
at less than one packet per flow. This cannot be achieved by a
pure window control mechanism, since the minimum window
size is one packet. In contrast, a rate control mechanism can
satisfy this requirement. Rate control also greatly increases
the range of control compared to pure window-based control
in the InfiniBand environment. We therefore propose the use
of rate control. In order to preserve the self-clocking benefits
of a window, we further propose to maintain a fixed window
size of one packet in addition to the use of rate control. A
variable window limit may be beneficial when ACKs suffer
short delays in the reverse path. We plan to investigate this
case as future work.

Fig. 3(d) shows simulation results that illustrate the potential
for rate control to improve performance over the results in
Fig. 3(c). In the experiment, the rate limit for each flow is
set manually to the optimal value (1/10 of the link band-
width for remote and local flows and to 1/2 for the victim
flow). The graph shows that all flows can achieve their ideal
throughputs when their injection rates are set appropriately. In
the following section, we describe our approach for designing
source response functions that can automatically converge to
appropriate rate limits.

V. DESIGNING SOURCE RESPONSE FUNCTIONS

The source response function defines how the flow rate is
adjusted in response to network congestion feedback. Since
congestion feedback is delivered through ACK packets, we

6In our simulations we use a FIFO switch scheduling policy with bypass
of older packets when the crossbar is busy. To prevent starvation the head of
the queue can be bypassed at most 4 times.

7Larger windows could be required to enable high utilization of a flow’s
path, but only in two unlikely cases: an unusually large diameter network
with long delay in an empty network, or traffic with persistent high delay on
the path taken by the flow’s ACKs (unlikely because of the use of congestion
control).

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 r

at
e

time (ms)

RL

LF

IL

RF,VFIL,RF

root link (RL)
inter-switch link (IL)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 r

at
e

time (ms)

RL

LF

IL

RF,VFIL,RF

local flows (LF)
remote flow (RF)

victim flow (VF)

(a) No Congestion Control(L = 5, R = 1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 r

at
e

time (ms)

RL,IL
RL

LF,VFLF

RF
IL,RF

root link (RL)
inter-switch link (IL)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 r

at
e

time (ms)

RL,IL
RL

LF,VFLF

RF
IL,RF

local flows (LF)
remote flow (RF)

victim flow (VF)

(b) Window Limit
Window=1 (L = 5, R = 1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 r

at
e

time (ms)

RL

LF IL,LF

RFIL,RF

VF

root link (RL)
inter-switch link (IL)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 r

at
e

time (ms)

RL

LF IL,LF

RFIL,RF

VF

local flows (LF)
remote flows (RF)

victim flow (VF)

(c) Window Limit
Window=1 (L = 5, R = 5)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 r

at
e

time (ms)

RL RL,IL

IL,LF,RF LF,RF,VF

root link (RL)
inter-switch link (IL)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 r

at
e

time (ms)

RL RL,IL

IL,LF,RF LF,RF,VF

local flows (LF)
remote flows (RF)

victim flow (VF)

(d) Fixed Optimal Rates
Window = 1 (L = 5, R = 5)

Fig. 3. Congestion Spreading: fixed window vs. rate control (buffer capacity = 4 packets).
(Fig. 3(a) is the same as Fig. 2 and is shown here for convenient comparison)

assume that the flow’s injection rate is adjusted at each time an
ACK packet is received. Upon receipt of an unmarked ACK,
the source response must increase the flow’s rate based on
an increase function, rnew = finc(r). Similarly, upon receipt
of a marked ACK, the source response must reduce the rate
limit based on a decrease function, rnew = fdec(r). Naturally,
these functions must maintain the flow rate limits between
some minimum setting, Rmin, and some maximum setting,
Rmax

8. finc and fdec should be designed to operate together
and have the following desired properties:

• Congestion Avoidance
• High Network Bandwidth Utilization
• Fair Allocation of Bandwidth among Flows

A. Design conditions for Source Response Functions

We now identify source response conditions that we use
to design finc(r) and fdec(r), in order to achieve the above
desired properties:

. Condition 1: Avoiding Congested State
In steady state, flow rates will oscillate around an optimal
value. Congestion notification will be sent to sources
when the aggregate rate of flows sharing a bottleneck link
exceeds the link bandwidth, causing the flows to reduce

8In this paper we assume packets have the same size and rate is represented
in packets per unit of time. The extension of our results for packets with
different sizes and rate represented in bytes per unit of time is straightforward
[13].

their rate. On the other hand, while the aggregate rate is
kept below the link capacity, the absence of congestion
notifications will cause the flows to increase their rates
with time, until they exceed the link bandwidth again.
This will cause flows to operate in cycles of rate decrease
steps followed by rate increase steps. In these cycles, it
is desirable for the increase steps to recover the rate by
less than the magnitude of the decrease so that flows are
less likely to experience the same (or higher) degree of
congestion after recovery. This is also reasonable because
the lack of a mark is not a clear signal to increase the
rate whereas a packet is marked if and only if there is at
least some degree of congestion spreading. The absence of
a mark can mean either that there is spare bandwidth and
thus an increase is desirable, or it can mean that the current
injection rate is ideal. This leads to our first condition.

Condition 1: The magnitude of the response to a marked
ACK should be larger than or equal to the magnitude of
the response to an unmarked ACK

finc(fdec(r)) ≤ r

. Condition 2: Fairness Convergence
The response function should be able to converge to a
fair operating point, starting from any initial distribution
of rates among competing flows.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Chiu and Jain [14] have identified sufficient conditions that
ensure linear source response functions converge to fairness
assuming all flows receive feedback and adjust their rates
synchronously. The conditions require: an increase function
that improves fairness combined with a decrease function
that either improves or maintains the fairness, or a decrease
function that improves fairness combined with an increase
function that either improves or maintains the fairness.
Chiu and Jain [14] show that the traditional AIMD response
function satisfies their convergence requirement.
A fairness convergence requirement that assumes syn-
chronous feedback and synchronous rate adjustment, as
proposed in [14], can be overly conservative. For most
networks, and particularly for SANs that have switches
with small buffers, packet marking is not synchronous.
These networks have the property that only a subset of
flows is affected by a marking event, and packets of higher
rate flows are more likely to be marked than those of lower
rate flows. Source response functions that are designed to
increase fairness in a synchronous environment do not take
into account the packet marking bias.
We exploit the packet marking bias and weaken the fairness
convergence requirement in two ways. First, it is sufficient
to require that each cycle of decrease and increase not
degrade the level of fairness. Specifically, unlike Chiu and
Jain[14], each cycle need not strictly improve fairness; they
can maintain the same level of fairness. Due to the marking
bias against higher rate flows, these flows will receive
a higher rate of congestion notification and experience
more decrease steps reducing their rate over time. Second,
we relax the requirement that the increase and decrease
functions must individually maintain or improve fairness.
We allow one of these functions to decrease fairness as long
as the other function ensures that a cycle of increase and
decrease at least maintains the fairness. The observation
that source response functions can converge to fairness
even if either (but not both) of its decrease or increase
functions decreases fairness has also been made in [22].
This weaker fairness convergence requirement allows the
use of response functions that can reclaim available net-
work bandwidth faster than response functions that satisfy
the stronger requirement.
In our congestion control mechanism, congestion feedback
is asynchronous because congestion information is pig-
gybacked on ACKs. Furthermore, the rate of congestion
notification is not the same for all flows since higher rate
flows receive ACKs more often than lower rate flows.
Therefore, we formulate the convergence requirement using
a description of flow rate adjustments over time (rather than
flow rate adjustments at synchronous events). We define
recovery time Trec(r) for a flow at rate r as the time
elapsed from the time the flow rate is decreased from r,
due to a marked ACK, until the time the flow rate recovers
to its original rate r, assuming no other marked ACK is
received until rate r is achieved. Consider the case in which
flows at different rates each receive a marked ACK due to

the same congestion event. If we guarantee the recovery
time Trec(r) for lower rate flows does not exceed that of
higher rate flows, fairness is not degraded over the decrease
and recovery cycle. This meets our weaker convergence
requirement. This also allows decrease/increase function
designs that individually degrade fairness. Hence, we for-
mulate our condition for fairness convergence as follows:

Condition 2: For any two competing flows with different
rate limits, the recovery time for the lower rate flow
should be less than or equal to the recovery time for
the higher rate flow

Trec(r1) ≤ Trec(r2) for r1 < r2

. Condition 3: Maximizing Bandwidth Utilization
In order to maximize bandwidth utilization the source
response function must be able to reclaim available link
bandwidth as fast as possible. Minimizing the time to re-
claim available bandwidth corresponds to using the limiting
case for conditions 1 and 2.
First, assuming the recovery time after a rate decrease to
the minimum rate Rmin is fixed, the recovery time at
higher rates is minimized when condition 2 is set at the
limiting case, Trec(r1) = Trec(r2). Second, we choose
the minimum value of Trec that satisfies condition 1, for
the minimum rate. This corresponds to recovering a flow
at the minimum rate Rmin to the original rate R′

min

(which is f−1
dec(Rmin)) after receiving only one unmarked

ACK. Since ACK packets are received at the same rate
as data packets are transmitted, the minimum recovery
time is given by the time between two consecutive packet
transmissions, i.e. Trec = 1

Rmin
. Condition 3 is then

summarized as follows:

Condition 3: The recovery time after a rate decrease from
an arbitrary rate r is constant and equal to the interval
between the transmission of two consecutive packets at
the lowest rate Rmin.

Trec(r) =
1

Rmin
for f−1

dec(Rmin) ≤ r ≤ Rmax

Note that condition 3 is equivalent to the limiting case
of condition 1 only for the minimum rate. For higher
rates (r > R′

min), the response to a marked ACK is
strictly larger than the response to an unmarked ACK,
i.e. finc(fdec(r)) < r. Higher rate flows receive ACK
packets more frequently and therefore should receive a
larger number of ACKs during the constant recovery time
Trec.

B. Methodology for Designing Response Functions

In this section we describe the methodology we use to
design fair and efficient source response functions. We assume
a decrease function fdec(r) is defined, and then derive an

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

increase function finc(r) using the conditions proposed in the
previous section.

In the absence of marks, we would like the rate to gradually
increase over time. Suppose F r

inc(t), for t ≥ 0, are a
family of continuous monotonically increasing functions, each
of which describes the desired flow rate increase behavior as
a function of time since the last rate decrease to an arbitrary
rate F r

inc(0) = r (Rmin ≤ r ≤ Rmax). Since we define the
increase function finc(r) as a function of the current rate, the
time behavior of the rate increase should be independent of
the past history of the flow rate, i.e. it should be independent
of the elapsed time since the last decrease. Therefore, the time
behavior of the rate for two arbitrary initial rates r1 and r2,
(Rmin ≤ r1 < r2 ≤ Rmax), should be identical for rates
r > r2, i.e.:

F r2
inc(t) = F r1

inc(t + t′) for t ≥ 0, and t′ such that

F r1
inc(t

′) = r2
(1)

It follows that the rate increase behavior can be represented
by just one member of the family of functions: Finc(t) =
FRmin

inc (t). All other functions F r
inc, for Rmin < r ≤ Rmax,

can be obtained by shifting the time origin of Finc(t) as
described in equation 1.

From our condition 3, the recovery time Trec is constant for
any rate r. Thus, after a flow decreases its rate to r = fdec(r′),
due to a marked ACK, it would take a constant time Trec

for recovering to its original rate r′, i.e. F r
inc(Trec) = r′.

Equivalently, Finc(t+Trec) = r′, for t such that Finc(t) = r.
Therefore,

fdec(Finc(t + Trec)) = fdec(r′) = r = Finc(t) or

Finc(t) = fdec(Finc(t + Trec)) (2)

In practice we cannot adjust the flow rate continuously with
time, but only at discrete times. As previously stated, we chose
to adjust the rate at the reception of each unmarked ACK.
After an adjustment to rate r, the next ACK is nominally
received in a time interval 1/r. Thus we define9 finc(r) =
min(F r

inc(1/r), Rmax).
In summary, to obtain an increase function finc(r) we

need to find a function Finc(t) that satisfies Equation 2.
A discussion of how this can be accomplished for general
response functions is out of the scope of this paper. In the next
Sections, we show how we obtained finc(r) for two specific
response functions.

C. Function 1:
Fast Increase Multiplicative Decrease (FIMD)

For the FIMD source response function we adopt a multi-
plicative rate decrease function, which is the same decrease
function used by the traditional AIMD function.

9Our derivations and definitions assume all packets are of the same size
and that each ACK acknowledges a single packet of this size. Our analysis
can be easily extended to handle variable size packets by defining T in terms
of the maximum size of a packet and increasing the rate upon receiving an
ACK in proportion to the size of the packet that is being acknowledged by
the ACK.

ffimd
dec (r) = max

(
r

m
,Rmin

)
where m > 1 is constant

From Equation 2, Finc(t) must satisfy:

Finc(t + Trec) = Finc(t) ∗ m

With Finc(0) = Rmin, this is satisfied by the continuous
function:

Finc(t) = Rmin ∗ mt/Trec

For any rate r, there exists a t′ for which r = Finc(t′) =
Rmin ∗ mt′/Trec . Therefore,

F r
inc(t) = Finc(t + t′) = Rmin ∗ mt′/Trec ∗ mt/Trec

= r ∗ mt/Trec

and

ffimd
inc (r) = min(F r

inc(1/r), Rmax)

= min(r ∗ m1/rTrec , Rmax)

= min(r ∗ mRmin/r, Rmax)

D. Function 2:
Linear Inter-Packet Delay (LIPD)

The LIPD response function is designed to leverage the
Inter-Packet Delay (IPD) design feature in InfiniBand [1].
IPD is the idle period length that is inserted between the
injection of consecutive packets of a flow, expressed in units of
packets transmission time. A flow operating at an IPD of ipd
corresponds to a flow rate of Rmax

1+ipd . We define a flow’s rate
decrease as an increment by one of the flow’s IPD value (which
increases the inter-packet delay by one packet transmission
time). This rate decrease function is intuitively attractive for
the following reason. If n identical flows share a bottleneck
link, the optimal rate for each flow is Rmax

n (IPD of n − 1).
If n flows are at the optimal rate and a new flow arrives,
then upon receiving one mark each of these flows reduces
its rate to Rmax

(n+1) (IPD of n), which is the new optimal rate
assignment. Also, at lower rates this function decreases the rate
by smaller steps than a multiplicative decrease function (FIMD
and AIMD). In typical scenarios where several dynamic flows
are sharing a link, the use of smaller decrease steps results in
lower amplitude of oscillation and higher overall utilization of
the link. This rate decrease function can be derived using the
inverse relationship of flow rate to the flow IPD:

f lipd
dec (r) = max

(
Rmax

Rmax

r + 1
, Rmin

)

From Equation 2, Finc(t) must satisfy:

Finc(t + Trec) =
Rmax

Rmax

Finc(t)
− 1

With Finc(0) = Rmin, this is satisfied by the continuous
function:

Finc(t) =
Rmax

Rmax

Rmin
− t

Trec

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 r

at
e

time (ms)

RL

IL,LF

VF

LF

RFIL,RF

root link (RL)
inter-switch link (IL)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 r

at
e

time (ms)

RL

IL,LF

VF

LF

RFIL,RF

local flows (LF)
remote flows (RF)

victim flow (VF)

(a) Naive

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ae
d

ra
te

time (ms)

RL

IL

VF

LF

RF
IL,RF

root link (RL)
inter-switch link (IL)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ae
d

ra
te

time (ms)

RL

IL

VF

LF

RF
IL,RF

local flows (LF)
remote flows (RF)

victim flow (VF)

(b) Proposed

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2048 10000 20000 30000 40000 50000 60000 65280

no
rm

al
iz

ed
 r

at
e

time (units of packet transmission time)

FIMD

AIMD

LIPD

Fig. 4. Comparison of Packet Marking Policies:
buffer capacity = 4 packets.

Fig. 5. Finc(t) with Rmin = Rmax/256
for AIMD, FIMD, and LIPD.

For any rate r, there exists a t′ for which r = Finc(t′) =
Rmax

Rmax
Rmin

− t
Trec

. Therefore,

F r
inc(t) = Finc(t + t′) =

Rmax

Rmax

Rmin
− t′

Trec
− t

Trec

=
Rmax

Rmax/Finc(t′) − t/Trec

=
Rmax

Rmax/r − t/Trec

and

f lipd
inc (r) = min(F r

inc(1/r), Rmax)

= min

(
Rmax

Rmax/r − 1/rTrec
, Rmax

)

= min

(
Rmax

Rmax/r − Rmin/r
,Rmax

)

= min

(
r

1 − Rmin/Rmax
, Rmax

)

Although the analytical description of the response func-
tions presented above looks complex, these functions can
be easily implemented in hardware. This can be done by
choosing a finite set of discrete rates and using lookup tables
to implement discrete versions of the functions finc(r) and
fdec(r). The equations presented here are just needed at design
time to compute the values stored in these lookup tables.

VI. EXPERIMENTAL RESULTS

We have evaluated the performance of our packet mark-
ing and source response mechanisms through simulation and
present the results in this section. The simulations use the ex-
ample topology of Fig. 1. Source response functions combine
the appropriate rate control function with a window limit of
one packet.

A. Marking Policy Comparison

In our first set of simulation experiments, shown in Fig. 4,
we compare our proposed packet marking mechanism with
the naive scheme that only marks packets in a full buffer. In
this set of experiments we assumed the scenario shown in
Fig. 1 with 10 remote and 10 local flows (R=10, L=10) and

used the LIPD source response function. Fig. 4(a) shows that
although the naive mechanism can avoid congestion spreading
and allow the victim flow to receive high throughput, it results
in an unfair allocation of rates between remote and local
flows. While the average throughput is approximately the same
among flows of the same type, local or remote (this is not
shown in Fig. 4(a)), the local flows utilize 90% of the available
root link bandwidth. This unfairness is a consequence of the
selection of packets to be marked. Packets of remote flows are
marked when they collectively fill the input buffer at switch
B that receives packets from the inter-switch link. In contrast,
none of the packets of the local flows is marked since each
local flow uses a different input buffer, and the window limit
prevents it from filling the buffer. That penalizes the remote
flows, which have their rate reduced while the local flows take
a disproportionate share of the congested link bandwidth. In
general, the naive mechanism penalizes flows that arrive at a
switch competing for an oversubscribed link through an input
port shared with many competing flows.

Fig. 4(b) shows the simulation results obtained for our
proposed packet marking mechanism. The results show that
this marking policy also avoids congestion spreading and
keeps the inter-switch link at high utilization. Moreover,
fairness between the remote and local flows is improved when
compared to the naive scheme. This is expected since the
proposed mechanism marks all packets that are generating
congestion on a root link, both from remote and local flows.

Unfairness is not entirely eliminated with this marking
policy because the event that triggers packet marking (a full
input buffer) is biased to preferentially mark remote flows.
Marking is triggered at times that sample the peak buffer usage
for the remote flows and only the average buffer usage for the
local flows. In our proposed marking mechanism, the number
of packets of remote flows that are marked is approximately
equal to the number of input buffer slots10. In contrast, for
the local flows the marking scheme samples a distribution of
buffer usage over the whole range from zero usage to the

10They are unequal when a victim flow is using a buffer slot or a packet in
the buffer is being transmitted and cannot be marked anymore. The first case
is very rare since most often a victim packet can cut through, occupying the
buffer only briefly.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

peak usage. A fair state, in which local and remote flows have
the same rate limits, is not stable because in that state each
marking event tends to mark more packets of remote flows
than of local flows, reducing the rate limits of each remote
flow more frequently than for each local flow.

We have elsewhere proposed and evaluated additional
packet marking mechanisms that can further improve fairness
if properly tuned [24].

B. Evaluation of Source Response Functions

In this section we compare the performance of LIPD, FIMD,
and traditional AIMD. As with FIMD, the AIMD source
response uses a multiplicative rate decrease function. For the
increase function, the rate limit is increased linearly with
time11. The maximum slope of the linear rate increase is
limited by the minimum recovery time Trec at the lowest rate,
which corresponds to a recovery with just a single unmarked
ACK. In the results presented here we use this maximum slope
for the AIMD rate increase.

In all our evaluations we set the minimum rate limit Rmin

to Rmax

256 , based on the limitation imposed by the InfiniBand
IPD mechanism as explained later in this Section. For FIMD
and AIMD we use a decrease factor m = 2. To compare
the increase behavior of the three response functions, Fig. 5
plots Finc(t) normalized by Rmax, which shows how the flow
rate increases over time starting at rate Rmin = Rmax/256.
Fig. 5 shows that AIMD recovers from minimum rate to
maximum rate in the same total time as LIPD and much slower
than FIMD, even though AIMD and FIMD reduce their rates
identically with the same number of marks. LIPD recovers
quickly at high rates and slowly at low rates, which matches
its rapid decrease in response to marks at high rate and gradual
decrease at low rates. For example, for 1 GByte/sec links
and 2048 byte packets, the total time to reach the maximum
rate starting from the minimum rate is 4.2 ms for FIMD and
133.7 ms for LIPD and AIMD.

In the following subsections, we compare the dynamic
behavior of our response functions with AIMD. For that,
we run simulations assuming the scenario shown in Fig. 1
with 10 remote and 10 local flows (R=10, L=10). Each
simulation is run for 500 ms simulated time, and the reported
results average the rates over the last 400 ms. With all three
response functions, flows are initialized to the maximum rate
limit Rmax. We expect traffic flows in the SAN environment
to be bursty, short-lived and sensitive to latency. For such
environments, initializing flows to the maximal rate can allow
the flows to attain maximum bandwidth quicker and incur
lower latency than an approach based on slow-start. Two traffic
environments are investigated: a static traffic pattern that has
long-lived static flows, and a dynamic traffic pattern that has
flows that come and go.

1) Static Traffic Pattern: Simulation results in Fig. 6 show
the impact of response function on link utilization when all

11This is analogous to TCP’s window-based AIMD, which increases the
window size by one maximum segment size each round trip time [7].

flows are static (long-lived). The graphs show link utilization
as a function of the size of the switch buffer in number
of packets per input port. For each response function, the
results are plotted for a design that employs a discrete set
of rates and for a design with continuous rate values. For the
discrete case we use 256 discrete rates, as supported by the
InfiniBand IPD mechanism [1]. We choose rates corresponding
to integer values of ipd in the range [0, 1, . . . , 255], yielding
rates Rmax

1+ipd . The discrete and continuous curves in Fig. 6
are nearly identical, suggesting that an IPD mechanism that
supports a discrete set of rates, as in InfiniBand, can be used
without sacrificing performance.

Overall, the results show that LIPD performs the best for
this static flow scenario, resulting in almost 100% utilization
of the root link and high utilization of the inter-switch link. In
comparison to FIMD and AIMD (with m = 2), LIPD responds
to a packet mark with a smaller reduction of the rate limit.
Thus at equilibrium the oscillation of the flow rate has lower
amplitude with LIPD than with FIMD and AIMD. For all the
schemes, fairness between local and remote flows improves
with larger buffers, as explained in Section IV-A.

In contrast to LIPD and FIMD, with AIMD the inter-switch
link has low utilization in scenarios with small input buffers.
Although victim packets rarely receive marks (usually they
cut through switch B and avoid an extended stay in the input
buffer), victim packets receive more marks with smaller buffer
sizes. The slow rate increase function of AIMD causes the
victim to recover slowly from the sporadic marks resulting in
poor utilization of the inter-switch link. In contrast, LIPD and
FIMD exhibit fast recovery that tolerates occasional victim
packet marking.

2) Dynamic Traffic Pattern: In a real network, traffic
flows arrive and depart dynamically. To gain understanding of
the performance impact of the source response function with
dynamic traffic, we performed experiments in which flows
come and go dynamically. In our experiments, an ON-OFF
process determines the arrival and departure of dynamic flows
for a (source, destination) pair. A new flow arrives at the source
at the start of an ON period and departs at the start of the OFF
period. The ON and OFF times are exponentially distributed
with equal mean duration. Simulation times were set to values
large enough to have an average of at least 20 ON cycles per
dynamic flow for the experiments with long ON times, and to
at least 500 ms for experiments with short ON times.

Fig. 7(a) shows results for a mixed environment in which
half the local and remote flows in the scenario of Fig. 1 are
dynamic, and half are static (L = 5+5, R = 5+5). The Figure
shows the aggregate flow rates of dynamic and static flows,
plotted as a function of the mean ON duration. The curves
labeled “dynamic flows” and “static flows” illustrate that with
frequent arrivals and departures (small mean ON duration),
dynamic flows hog the bandwidth, starving the static flows.
When a new flow arrives it is initialized to the maximum rate
limit, and its contention with the static flows causes both to
be marked. Since the dynamic flows are short-lived, the marks
have little impact on them. The static flows, however, suffer

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 5 6 7 8 9 10 11

no
rm

al
iz

ed
 r

at
e

buffer size (packets)

discrete/root link
discrete/interswitch link

discrete/local flows
discrete/remote flows

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 5 6 7 8 9 10 11

no
rm

al
iz

ed
 r

at
e

buffer size (packets)

continuous/root link
continuous/interswitch link

continuous/local flows
continuous/remote flows

(a) LIPD

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 5 6 7 8 9 10 11

no
rm

al
iz

ed
 r

at
e

buffer size (packets)

discrete/root link
discrete/interswitch link

discrete/local flows
discrete/remote flows

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 5 6 7 8 9 10 11

no
rm

al
iz

ed
 r

at
e

buffer size (packets)

continuous/root link
continuous/interswitch link

continuous/local flows
continuous/remote flows

(b) FIMD

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 5 6 7 8 9 10 11

no
rm

al
iz

ed
 r

at
e

buffer size (packets)

discrete/root link
discrete/interswitch link

discrete/local flows
discrete/remote flows

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 5 6 7 8 9 10 11

no
rm

al
iz

ed
 r

at
e

buffer size (packets)

continuous/root link
continuous/interswitch link

continuous/local flows
continuous/remote flows

(c) AIMD

Fig. 6. Performance of source response functions with static traffic pattern.
(Dashed lines are mostly invisible because they are hidden by the solid lines)

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100

no
rm

al
iz

ed
 r

at
e

mean source ON duration (ms)

dynamic flows
static flows

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100

no
rm

al
iz

ed
 r

at
e

mean source ON duration (ms)

persistent state - dynamic flows
persistent state - static flows

(a) 50% static flows 50% dynamic flows

0

0.2

0.4

0.6

0.8

1

1.2

0.01 0.1 1 10 100

no
rm

al
iz

ed
 r

at
e

mean source ON duration (ms)

LIPD - root link
FIMD - root link
AIMD - root link

0

0.2

0.4

0.6

0.8

1

1.2

0.01 0.1 1 10 100

no
rm

al
iz

ed
 r

at
e

mean source ON duration (ms)

LIPD - inter-switch link
FIMD - inter-switch link
AIMD - inter-switch link

(b) 100% dynamic flows

Fig. 7. Dynamic traffic patterns.

continually from the frequent arrival of new flows and the
consequent marking. As ON duration increases, the dynamic
flows arrive less frequently, approaching a static scenario in
which the static flows receive twice as much bandwidth as the
dynamic flows, since just half of the dynamic flows are active
on average at any time.

Since initializing each new flow to have the maximum
rate limit results in poor performance for long-lived flows,
we propose the use of a scheme in which the rate limit
persists across consecutive flows that have the same (source,
destination) pair, similar to the approach proposed in [25].
Results for this approach are also presented in Fig. 7(a),
corresponding to the curves labeled “persistent state”. We
observe that when using this approach static flows are not
penalized and receive a fair share of the bandwidth12. For the
shortest ON durations, the persistent congestion control state
makes short-lived flows that arrive frequently behave similarly
to a single static flow. In this case the dynamic flows receive
the same amount of bandwidth as static flows, since they all
behave as static flows, explaining why the persistent curves
approach a normalized rate of 0.5 at low ON durations.

Fig. 7(b) shows the results of an experiment in which all
the flows (except the victim) are dynamic, with persistent
congestion control state. The graph shows how the choice of

12In a fair state, dynamic flows receive half the bandwidth of static flows
because dynamic flows are in the ON state only half the time.

response function affects the utilization of the root link and
the inter-switch link. The inter-switch link has high utilization,
except in the case of AIMD (as explained in Section VI-B.1),
which confirms that congestion spreading does not affect the
victim, when using our proposed response functions.

For the root link, when the ON duration has the lowest
and highest values, the source response functions have similar
behavior as with static traffic patterns; utilization is maximized
by LIPD, then FIMD, then AIMD. For large ON durations,
the traffic pattern is nearly static, and for short ON durations
dynamic flows behave as static flows as mentioned before.
The intermediate range of ON durations (from approximately
0.2 ms13 to 2 ms), corresponds to a dynamic traffic behavior
and thus benefits from using FIMD which can adapt faster to
changes in traffic demand. The results show that FIMD can
achieve higher root link utilization in this range.

AIMD has the worst performance on all ranges achieving
approximately 10% lower utilization than the best response
function, which is FIMD for more dynamic scenarios and
LIPD for more static scenarios.

VII. CONCLUSIONS

In this paper, a new congestion control scheme for Infini-
Band networks was developed and evaluated. The scheme

13Each flow can transmit only a few packets in a ON period of 0.2 ms, 5
to 10 packets assuming there are 10 to 20 active flows

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

eliminates congestion spreading, a consequence of InfiniBand
link level flow control in which congestion that originates at
one oversubscribed link may drastically reduce the through-
put of seemingly unrelated traffic throughout the network.
Key properties of InfiniBand such as no packet drops, small
bandwidth-delay product, small packet buffers, etc. guided
the development of a scheme that has two components: a
simple ECN packet marking mechanism applicable to modern
input-buffered switches, and a source response mechanism that
combines rate control with a window limit, appropriate for an
InfiniBand environment.

The proposed ECN mechanism is triggered by a full input
buffer and differs from conventional approaches by marking
all packets that contribute to congestion even if their buffers
are lightly utilized. The performance results show improved
fairness of this approach over conventional packet marking.

We derived a set of conditions to be satisfied by source
response functions in order to achieve convergence to fair and
efficient operating points. While fairness convergence require-
ments have been proposed in previous work [14] for a scenario
with synchronous network congestion feedback, we derive
convergence requirements for a more realistic asynchronous
environment. Our conditions are based on a more relaxed
constraint for fairness convergence than proposed in [14]. The
use of more relaxed conditions enables the use of source
response functions that can reclaim unused link bandwidth
faster and can achieve higher bandwidth utilization than could
be achieved by response functions based on the stricter conver-
gence requirement proposed in [14]. We proposed two novel
source response functions based on our weaker convergence
requirement. We showed through simulation results that these
functions outperform the traditional AIMD response function
which satisfies the stricter convergence requirement proposed
in [14].

This paper focused on the rate control aspects of con-
gestion control, while maintaining a fixed window size of
one packet. We envision, however, that a hybrid window and
rate control approach may be beneficial for SANs in which
ACKs experience queueing delays in the reverse path. We plan
to investigate how rate control and window control can be
combined into a single mechanism that appropriately adjusts
both the window size and the rate limit. In addition, we want
to explore our end-to-end congestion control mechanisms with
richer traffic patterns and larger and more general network
topologies.

ACKNOWLEDGMENT

We are very grateful to Lucy Cherkasova for providing the
simulation environment we extended to run our experiments.

REFERENCES

[1] InfiniBandSM Trade Association, InfiniBandTM Architecture Specifica-
tion Volume 1, ser. Release 1.0. (www.infinibandta.org), October 2000.

[2] R. W. Horst, “TNet: a reliable system area network,” IEEE Micro,
vol. 15, no. 1, pp. 37–45, February 1995.

[3] W. Baker, R. Horst, D. Sonnier, and W. Watson, “A flexible ServerNet-
based fault-tolerant architecture,” in 25th Intl. Symp. Fault-Tolerant
Computing, June 1995, pp. 2–11.

[4] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. Seitz,
J. N. Seizovic, and W.-K. Su, “Myrinet: a gigabit-per-second local area
network,” IEEE Micro, vol. 15, no. 1, pp. 29–36, February 1995.

[5] W. J. Dally, “Virtual-channel flow control,” IEEE Transactions on
Parallel and Distributed Systems, vol. 3, no. 2, pp. 194–205, Mar. 1992.

[6] H. T. Kung, T. Blackwell, and A. Chapman, “Credit-based flow control
for ATM networks: Credit update protocol, adaptive credit allocation and
statistical multiplexing,” SIGCOMM ’94, vol. 24, no. 4, pp. 101–114,
Aug. 1994.

[7] V. Jacobson, “Congestion avoidance and control,” in SIGCOMM,
Lawrence Berkeley Laboratory. ACM, August 1988, pp. 314–329.

[8] D. M. Dias and M. Kumar, “Preventing congestion in multistage
networks in the presence of hotspots,” in International Conference on
Parallel Processing, August 1989, pp. 1.9–1.13.

[9] Mellanox Technologies Inc., InfiniScaleTM, Mellanox’s 2nd Generation
Switch. (www.mellanox.com/news/articles/intro.pdf), October 2001.

[10] N. McKeown, M. Izzard, A. Mekkittikul, W. Ellersick, and M. Horowitz,
“Tiny Tera: A packet switch core,” IEEE Micro, vol. 17, no. 1, pp. 26–
33, Jan. 1997.

[11] K. K. Ramakrishnan and R. Jain, “A binary feedback scheme for
congestion avoidance in computer networks,” ACM Transactions on
Computer Systems, vol. 8, no. 2, pp. 158–181, May 1990.

[12] S. Floyd and V. Jacobson, “Random Early Detection gateways for
congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
no. 4, pp. 397–413, August 1993.

[13] Y. Turner, J. R. Santos, and G. J. Janakiraman, “An approach for
congestion control in InfiniBand,” HP Laboratories, Tech. Rep. HPL-
2001-277, October 2001.

[14] D. Chiu and R. Jain, “Analysis of the increase and decrease algorithms
for congestion avoidance in computer networks,” Computer Networks
and ISDN Systems, vol. 17, pp. 1–14, June 1989.

[15] L. Cherkasova, A. Davis, R. Hodgson, V. Kotov, I. Robinson, and
T. Rokicki, “Components of congestion control,” in ACM Symposium
on Parallel Algorithms and Architectures, 1996, pp. 208–210.

[16] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to end congestion
avoidance on a global internet,” IEEE Journal on Selected Areas in
Communications, vol. 13, no. 8, pp. 1465–1480, October 1995.

[17] C. Parsa and J. J. Garcia-Luna-Aceves, “Improving TCP congestion
control over internets with heterogeneous transmission media,” in 7th
International Conference on Network Protocols (ICNP’99). IEEE
Computer Society, October-November 1999, pp. 213–221.

[18] N. Golmie, Y. Saintillan, and D. Su, “ABR switch mechanisms: design
issues and performance evaluation,” Computer Networks and ISDN
Systems, vol. 30, pp. 1749–1761, 1998.

[19] K. K. Ramakrishnan, S. Floyd, and D. Black, “The addition of Explicit
Congestion Notification (ECN) to IP,” IETF, Tech. Rep. RFC 3168,
September 2001.

[20] S. Floyd, “TCP and explicit congestion notification,” Computer Com-
munication Review, vol. 24, no. 5, pp. 8–23, October 1994.

[21] The ATM Forum Technical Committee, Traffic Management Specifi-
cation Version 4.1. www.atmforum.com, March 1999, no. AF-TM-
0121.000.

[22] D. Bansal and H. Balakrishnan, “Binomial congestion control algo-
rithms,” in IEEE INFOCOM, vol. 2, April 2001, pp. 631–640.

[23] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based
congestion control for unicast applications,” in SIGCOMM, August
2000.

[24] J. R. Santos, Y. Turner, and G. J. Janakiraman, “Evaluation of congestion
detection mechanisms for InfiniBand switches,” in IEEE GLOBECOM
– High-Speed Networks Symposium, November 2002.

[25] H. Balakrishnan, H. S. Rahul, and S. Seshan, “An integrated conges-
tion management architecture for Internet hosts,” in ACM SIGCOMM,
September 1999.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

	INFOCOM 2003
	Return to Main Menu

