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Abstract— We explore the problem of routing bandwidth guar-
anteed paths in wavelength-routed, WDM optical mesh networks.
A WDM mesh network offers great flexibility in dynamically
re-configuring the optical core to match the IP layer demands.
In this paper, we argue that IP subnets can limit the re-
configurability potential of the WDM mesh network. We show
that finding the shortest IP-hop path, normally admitting a
straightforward polynomial solution on the WDM mesh, is NP-
hard in the presence of subnets. We propose a new algorithm
called MöbiTwist that finds the optimal shortest path when
accounting for subnets. We also observe that subnets impose a
routing penalty by forcing longer paths for bandwidth demands.
Consequently, they create a trade-off between lower network
efficiency if subnets are honored (due to longer paths) or, an
upfront overhead of dynamically changing subnets to derive
shorter paths. We propose the MöbiFlex algorithm that attempts
to achieve a balance by finding the shortest path given an upper
limit on the number of subnet violations acceptable. The inherent
hardness of the routing problem due to subnets precludes a
solution with low worst-case complexity. However, we present
performance results that show that both the algorithms proposed
are extremely efficient in routing demands, and in practice, do
so in polynomial time.

I. INTRODUCTION

We investigate the problem of routing bandwidth guar-
anteed paths in WDM (Wavelength Division Multiplexing)
mesh networks. In a WDM mesh network, also referred to
as the IP-over-Optical model, IP routers connect directly to
a switched optical core consisting of optical cross-connect
switches (OXCs) interconnected via high-speed Dense Wave
Division Multiplexing (DWDM) line systems. Unlike, the ring
architecture of the SONET-based transport, a mesh is more
appropriate for the OXC-based core. The switching capability
of the OXCs allow for the creation of end-to-end lightpaths
(or, λs) across the optical core which in turn creates a mesh
virtual-topology at the IP layer. The routers then route the
bandwidth demands along this topology. Consequently, the IP
layer paths are multi-hop and thus, traverse multiple λs in the
core.

One of the key challenges in any network environment is
that of routing bandwidth-guaranteed paths since they form the
basis for higher-level QoS dependent services. Their primary
application in WDM mesh networks is for MPLS traffic
engineering. The WDM mesh networks are attractive for
service providers because they provide the appropriate hooks
for control and management of MPLS traffic. The rapid λ
switching capabilities of the OXCs allow the optical core to
be re-configured on-demand. In parallel, protocols such as
GMPLS, ASTN and O-UNI enable seamless interoperability

within the optical domain and across the different domains
on the service provider network. Consequently, integrated
cross-domain1 routing that incorporates traffic and topology
information from both IP and optical domains in the path
selection process, has started to receive serious attention for
MPLS traffic engineering [1], [2], [3]. Also referred to as
MPLS over WDM, the goal of cross-domain routing of MPLS
traffic is to create a more efficient end-to-end network by
“discovering” bandwidth that would be wasted if each domain
were routed independently. In the next section, we provide
a simple example of cross-domain routing to highlight this
advantage.

However, one issue that is yet to be addressed in literature
is the impact of IP subnets on cross-domain MPLS over
WDM routing. Subnets are a mechanism to reduce routing
overheads of IP networks by grouping a set of addresses
under a single “subnet” identifier [4], [5]. In turn, the routing
protocols route to subnets and not to individual hosts. For
example, an interface with address 10.3.2.1/24 is on the subnet
10.3.2.0 (i.e., a 24-bit subnet mask). A key restriction of the
IP subnet model is that two routers can send packets via their
connected interfaces if and only if the two interfaces are on the
same subnet. 2 Interior gateway routing protocols (IGP) such
as OSPF(-TE) [4], [7] strictly follow this constraint when auto-
discovering IGP neighbors. This restriction, which we shall
refer to as subnet constraint, fundamentally impacts MPLS
over WDM routing, crippling the very flexibility that WDM
networks aim to provide.

In this paper, we highlight the impact of the subnet con-
straint on cross-domain routing, propose novel routing algo-
rithms and argue that in the emerging network model, subnet
management should shift from being a static configuration
issue to take on a more real-time, dynamic role.

A. Contributions and Outline

To the best of our knowledge, this is the first work that
highlights the impact of IP subnets on WDM mesh networks.
We focus on the problem of finding bandwidth-guaranteed
end-to-end paths in the WDM mesh model. We formally prove
that finding the shortest IP hop path, admitting polynomial
solutions on the WDM mesh network in the absence of
subnets [2], [8], is NP-hard in the presence of subnets. We

1In this paper, we use the word domain interchangeably with layer to refer
to technology domains (IP, SONET, ATM etc.) because of their one-to-one
relationship with network layers.

2IPv6 does not enforce this constraint. [6]
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Fig. 1. Example WDM Mesh Network A

show that subnets impose a routing penalty by potentially
forcing longer paths in the network in order to honor the
subnet constraint. Consequently, we identify three classes of
WDM mesh networks: networks planned with no subnets,
networks with pre-defined subnets assigned to interfaces and
finally, propose a novel network model wherein subnets may
be dynamically re-configured during route setups in order
to minimize the path length penalty. We present efficient
shortest path algorithms for these different scenarios. The
inherent hardness of the problem clearly precludes a low
worst-case complexity. However, we show that in practice,
those algorithms find the optimal shortest-path in polynomial
time, comparable to Dijkstra’s shortest path algorithm. We
present this paper in the context of routing MPLS traffic.
However, the contributions of this paper are relevant to any
bandwidth guaranteed routing context.

The paper is organized as follows. In the next section we
briefly summarize MPLS cross-domain routing and highlight
the benefit of a switched optical core. In Section III, we high-
light the problems imposed by subnets on routing bandwidth
guaranteed paths. Section IV describes relevant work and in
Section V, we outline the network model under consideration
and provide the hardness proof. In Section VI, we present the
MöbiTwist algorithm that finds the optimal shortest path in
the presence of subnets and in Section VII we present the
MöbiFlex algorithm that generalizes the problem to accept
some limited violation of the subnet constraint. Section VIII
provides performance numbers for the algorithms and finally,
we conclude.

II. CROSS-DOMAIN ROUTING FOR MPLS TRAFFIC

ENGINEERING

MPLS traffic engineering over WDM routed networks
promises to be the next big step in the service provider network
evolution. The ability to configure explicit routes for the Label
Switched Paths (LSPs) and rapidly re-configure the virtual
topology to mirror this traffic makes this combination highly
effective. In the absence of a switched core, the virtual topol-
ogy is static, limiting traffic engineering to the connectivity it

provides. This is overly restrictive and makes incomplete use
of network resources.

Consequently, integrated cross-domain routing was pro-
posed that uses topology and traffic information from both IP
and optical domains to determine routes [1], [2]. We define a
cross-domain route as one that uses a combination of existing
IP connectivity in the virtual topology and new optical λs (that
further creates new IP connectivities in the virtual topology)
for the route. In the example below, we highlight the advantage
that a cross-domain route provides over routing independently
on each domain. In fact, we submit that the real utility of
the WDM mesh network is in the improved efficiency that
cross-domain routing provides.

Consider Figure 1(a). It shows a network of four IP routers
(R1-R4) connected to an optical core consisting of four OXCs
(O1-O4). We denote this network as A. The dotted lines inside
the OXCs represent cross-connects and the solid lines inter-
connecting them is the WDM line system network. Each router
is running an IGP with appropriate traffic engineering hooks
such as OSPF-TE, and the virtual topology for each router is
reflected by the IGP’s view of the network connectivity.

Assume that IP links R1-R4 and R1-R2 are at full capac-
ity. If a new MPLS LSP request arrives for some specific
bandwidth from R1 to R3, it would be denied by R1 since
no free path to R3 exists in virtual-topology. In response, on
a switched optical core, one might trigger an UNI to create
additional bandwidth at the IP layer. For example, a UNI
request from R1 to R3 would produce a 2-hop optical λ
(O1-O2-O3) making R1 and R3 IP neighbors via their free
interfaces. This is shown in Figure 1(b). The MPLS request
can now be routed over this new R1-R3 connection on the IP
virtual-topology.

It may not be always possible to UNI a one-hop IP path
through the optical core. Consider a slightly modified network
B that is similar to A but with no free interface on router R3.
In this case, even the UNI approach will fail.

However, there is enough capacity in B if one takes an
integrated cross-domain view of the network. Figure 2 shows
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Fig. 2. Network B topology after cross-domain route

the cross-domain path for the demand on B. The cross-domain
route requires provisioning a λ from R1 to R4 (instead of R3)
and using a pre-existing virtual-topology path from R4 to R3.
The MPLS tunnel is then provisioned via R1-R4-R3.

Thus, cross-domain routing creates a more efficient end-
to-end network by “discovering” available network capacity
that would be wasted if each domain was routed in isolation.
Clearly, it is the flexibility of the switched core that enables
this novel form of routing. Moreover, the various signaling and
interoperability protocols ensure its applicability in practice.

III. IMPACT OF SUBNETS ON WDM MESH NETWORKS

Subnet and interface address assignment are a key compo-
nent of IP network design and require thoughtful planning. It
has typically been considered as a one-time configuration issue
since the topology was never expected to be re-configurable.
However, the switched nature of the optical core can poten-
tially create new IP connectivities, or, re-configure the existing
virtual-topology as optical λs are setup and torndown. Thus,
the subnet constraint that requires both ends of an IP link
to be on the same subnet can fundamentally limit the re-
configurability potential of a WDM mesh. For example, in
Figure 1(b), UNI-ing a λ from R1 to R3 is of value only if
the free interfaces on both the routers are on the same subnet.
Otherwise, even though the two routers may have link layer
connectivity via the λ, OSPF will fail to recognize the two
routers as IGP neighbors.

A. Impact of Subnets on MPLS over WDM Routing

Recall the examples in Figures 1(a), (b) and Figure 2 where
the shortest path was found to satisfy a bandwidth demand
from R1 to R3. In those cases, there was no restriction placed
on the router connectivities; allowing any two interfaces to be
connected via the optical core.

Now assume that each IP interface in network A is assigned
an address and thus, is on a specific subnet. In OSPF termi-
nology, these would be numbered interfaces [4]. Figure 3(a)
shows the network with each interface colored based on their

subnets.3 Thus, two interfaces can be connected by an optical
λ only if they have the same color. Consider the same problem
of creating a MPLS tunnel from R1 to R3. The UNI solution
of Figure 1(b) is ineffective since the two free interfaces on
R1 and R3 are on the different subnets (red and magenta
respectively).

In order to find the shortest-hop path honoring the subnet
constraint on the virtual-topology, one must find a sequence of
virtual links that add up to create an end-to-end path such that
the following two constraints are met on all the the pair-wise
neighboring interfaces along the path: a) both interfaces are
on the same subnet and b) there are free optical resources to
signal a λ between the two, i.e., they are optically reachable.
For the example network, the shortest path requires two λs
to be dialed as shown in Figure 3(b) — one from R1 to R2
on the red interfaces and a second from R2 to R4 on the
blue interfaces, creating two new connections on the virtual-
topology. The MPLS tunnel is then routed in three hops – on
the new IP links R1-R2 and R2-R4 and the existing R4-R3
virtual link.

B. Making Subnets Re-configurable

The examples thus far highlight an interesting dilemma for
cross-domain routing, namely, that enforcing the subnet con-
straint forces longer network routes. For example, if subnets
are ignored, a one IP-hop path exists between routers R1 and
R3 in network A. However, this path works in practice only if
one or both the interfaces are reconfigured to be on the same
subnet. On the other hand, a three hop path is the shortest
possible when accounting for subnets. It requires two new
λs to be provisioned but no reconfiguration of the interfaces.
Note that it may not always be possible to find a one-hop
path on the virtual-topology for every source-destination pair,
particularly as the network size increases. For example, in
Figure 2, the shortest path ignoring subnets was 2-hop. In
such cases, honoring the subnet constraint creates even longer
shortest paths.

Clearly, there is a routing trade-off between honoring subnet
constraints and the length of the shortest path possible. A
longer path is wasteful of network resources (router interfaces,
OXC ports etc.) and makes the network inefficient over time.
On the other hand, changing subnets (and interface addresses)
involves an upfront reconfiguration overhead while creating a
more efficient network. Given this trade-off, how can the two
conflicts be balanced? More specifically, assuming the network
operator is willing to accept some network reconfiguration,
the issue is in balancing the costs: how much one-time re-
configuration overhead is acceptable to save a routing hop?
Numerically answering this trade-off is beyond the scope of
this paper and would likely vary by network and the specific
demand being satisfied.

From an algorithmic viewpoint, however, one can formulate
the problem as follows — given an end-to-end demand for

3This paper is best viewed in color. However, to make it readable in gray
scale, each interface has been marked using the first letter of its color.
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Fig. 3. Cross-domain routing with subnets

some specific bandwidth between two routers, if t is the length
of the shortest path honoring the subnet constraints and s is the
length of the shortest-path ignoring subnets and thus, requiring
c subnet modifications to route, is it possible to find a path
P of some specific length p, s≤p≤t and requiring at most
d,d≤c subnet modifications? In other words, assuming the
operator has an upper bound on the upfront overhead (e.g., at
most d subnet changes), what is the shortest path one can find
on the virtual-topology?

In Section VII-B, we present the MöbiFlex algorithm that
aims to solve this problem. We also briefly highlight some
of the challenges in dynamically changing interface addresses
and subnets on a live network and how one can minimize
this overhead. Suffice it to say that operators do re-configure
networks on the field. However, it is a costly process and
thus, often driven by specific events such as addition of new
routers, network failures etc. or, as part of periodic network
engineering. An outcome of the inherent flexibility of the
WDM mesh optical core is that it has the potential to make this
re-configuration process much more frequent, particularly if
the goal were to create a very efficient, highly utilized network.

IV. RELATED WORK

Routing problems have been studied since the fifties and
numerous variations such as shortest path, constrained shortest
path and multi-constraint path have been proposed in the IP
context [9]. Recently, there has been a renewed focus on
optimizing the virtual-topology to best meet the IP traffic
needs [10], [11]. These papers are complementary in the
sense that they are more focussed on optimizing the IP and
optical topologies while our focus is to route a single demand
efficiently.

To the best of our knowledge, this is the first paper to
address the problem of IP-optical integrated routing in the
context of IP subnets. This is largely attributable to the
fact that, once deployed, the network topology was expected
to be fairly static. However, as motivated earlier, with the
deployment of switched optical elements, this assumption is
becoming increasingly obsolete.

The problem of integrated cross-domain IP-optical routing,
was first introduced in [2]. The paper motivated the need for
integrated routing and proposed an efficient routing algorithm.
Our work is closest to that paper in terms of the high-level
goal, but with some fundamental differences. That paper aimed
to provide minimum interference routing in the presence of
OXC nodes that allow wavelength conversion and those that
do not. However, the algorithm did not account for subnets
and thus, its applicability is limited in practice. In this paper,
our goal is to route accounting for subnet constraints. As we
show below, even the simplest case of shortest path routing in
the presence of subnets is computationally hard.

The other related work is in the area of constrained shortest
path routing. The original work on application of Lagrangian
relaxation technique to this problem was by Jaffe [12]. The
generalized algorithm MöbiFlex is based on work on multi-
constraint routing proposed in [13].

V. PROBLEM DEFINITION AND COMPLEXITY

A. Network Model

In this section, we describe the network model. A WDM
mesh network consists of IP routers surrounding a OXC-
based switched optical core. We assume that the OXCs are
wavelength conversion capable [14], i.e., any input port can
be cross-connected to any output port. While orthogonal to the
routing algorithm, we recognize the need for some signaling
mechanism to automate the path provisioning. On the IP
layer, this requires the availability of MPLS for switching and
RSVP or CR-LDP for resource reservation [15]. At the optical
layer, λs may be signaled via a centralized NMS or, a GM-
PLS/ASTN control plane. In order for complete automation,
a router may require an O-UNI style signaling mechanism
to the optical core [16]. We assume all bandwidth guaranteed
path requests are MPLS LSP requests. Additionally, we expect
routers to be running OSPF-TE though this work is appli-
cable to any other IGP with appropriate traffic engineering
extensions. Consequently, we assume that the routing engine
has up-to-date knowledge about the available link bandwidth
extracted from the IGP. OSPF allows IP router interfaces to

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



be marked in one of two ways. They can be numbered, i.e.,
are assigned a physical IP address, or, be unnumbered [4]. Not
being assigned an IP address, an unnumbered interface is not
bound by the subnet constraint. We assume we only know the
demand being requested with no knowledge of the future.

B. Problem Statement

We formally define below the three routing problems we
explore in this paper.

1) Integrated Shortest Path (ISP): Given a WDM mesh
network as outlined in section V-A, a source-destination router
pair and a bandwidth to be routed, find the shortest IP-hop path
that satisfies the bandwidth requirement without considering
the subnet constraints. The solution found will be acceptable
if either all interfaces are marked as unnumbered or one is
willing to change subnet numbers at as many interfaces as
required.

A polynomial time algorithm for this problem was proposed
in [2] and the interested reader is referred there. We simply
present the problem for completeness and will not explore it
further. Henceforth, we assume that we know how to determine
the shortest-hop path if the subnet constraint is ignored.

2) Subnet Shortest Path (SSP): Given a WDM mesh
network as outlined in Section V-A, a source-destination router
pair and a bandwidth to be routed, find a subnet feasible
shortest IP-hop path that satisfies the bandwidth requirement.
A SSP path is subnet feasible if every pair of neighboring
routers along the path satisfies the subnet constraint.

The MöbiTwist algorithm is presented in Section VI-B as a
solution to the SSP problem.

3) Generalized Subnet Shortest Path (GSP): Given the pre-
conditions in the SSP problem and a number K, find a feasible
shortest IP-hop path that satisfies the bandwidth requirement.
A GSP path is feasible if the number of subnet constraint
violations along the path is less than K. A violation is defined
as a link in the virtual-topology, whose end interfaces are
not on the same subnet. A dual of this problem is, given the
maximum acceptable path length, find the path with minimum
number of subnet violations.

The MöbiFlex algorithm is presented in Section VII-B as a
solution to the GSP problem.

Note that ISP and SSP are special cases of GSP . In
particular, K is infinite for ISP and zero for SSP .

C. Routing Hardness

We analyze the complexity of the three routing problems.
We prove that the SSP problem is NP-hard. Since GSP is a
generalized version of SSP (for K=0), it follows that GSP
is also NP-hard. ISP has been shown to admit a polynomial
solution in [2].

We prove the hardness of SSP by reducing the well known
NP-complete problem, Constrained Shortest Path (CSP) prob-
lem [17] to it. Broadly, the CSP problem requires determining
the shortest path while additionally minimizing one or more
constraints (e.g., delay). We formally define the CSP problem
as follows. Consider an arbitrary directed graph G(V,A),

V1

V2

V4

V3

(1,1)
(1,3)

(1,1)(1,2)

(1,1)

Fig. 4. Example CSP graph

where V is the set of nodes and A is the set of links with two
cost metrics associated with them, i.e., each link li(vj , vk) has
a cost tuple (di1,di2). Given a source and a destination node
(s, t), find a path P from s to t such that:∑

i di2 < C, ∀ li ∈ P , for some C and∑
i di1 is minimum.

We will now map the CSP to the SSP problem. Assume
that di2 is a natural number for all li ∈ A. Figure 4 shows
an example graph with the cost pair alongside each edge. We
will use this graph as a running example to demonstrate the
mapping construction. The construction is in two steps. In the
first step, we convert Figure 4 to an intermediate graph and
in the second step, we transform this intermediate graph into
a WDM mesh network with subnets.

D. Transformation I

Let n =
∑

i di2. Create two sets of nodes Va =
{v11, ...., v1n} and Vb = {v21, ...., v2n} such that |Va| =
|Vb| = n . Connect a link each between v1i and v2i for all
nodes in Va and Vb. Call the link set L.

Now, for each link li(vj , vk) in the original network with
cost (di1, di2), create (di2 − 1) nodes subject to di2 ≥ 1.
These are shown as filled black nodes in Figure 5. Connect
these nodes to (di2 − 1) nodes of Va and (di2 − 1) nodes of
Vb as shown in the figure. This construction uses up di2 links
of set L and creates a multi-hop path of length 3di2 − 2. Let
the end points of this path (shown in bold in figure 5) now
created be v1a ∈ Va and v2b ∈ Vb. Add link between vj , v1a

and vk, v2b, each with cost di1/2. All other links have a cost
of zero. This path from vj to vk is now used to replace the
link li(vj , vk). Note that cost of going from vj to vk via this
path is di1 and it uses di2 links of set L. Not also that

∑
i di2

links in set L are sufficient for the whole construction.
Our construction has resulted in a network with 2|A| +

2
∑

i(di2−1)+
∑

i di2 links and |V |+
∑

i(di2−1)+2
∑

i di2
nodes. If di2 is bounded i.e., di2 < d ∀ li(v1, v2) ∈ A, then∑

i di2 is O(A) and thus construction is polynomial.
Consider the problem of finding least cost path from some

node s to t in this network that uses no more than C links of

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



V1

V2

V3

V4

Va Vb

Fig. 5. Figure (4) after Transformation 1

set L. If such a path is found, then the sequence of original
nodes in this path is the solution to two constraint shortest path
in the original network with

∑
i di2 < C. Thus, this problem

is NP-hard.

E. Transformation II

We now transform the network generated by Transformation
I into a WDM mesh network of routers and OXCs. For each
link in L in Figure 5 mark two adjacent links (there will be
no more than two) by same color. Replace all nodes of set
Va by a single node Vo1 and similarly for Vb by Vo2. Add C
links between two nodes. Now the problem can be posed as
finding a shortest path (i.e., possibly with loops), from s to t
with the constraint that the ingress color on Vo1 should be the
same as the egress color on Vo2. Figure 6 shows the network
after this construction for the network in Figure 5. If such a
path is found, the sequence of nodes along the path will solve
the original CSP problem.

This construction results in a special case of a WDM mesh
network of routers (vi nodes and the filled black nodes)
connected to a network of OXCs. In this particular case, there
are just two OXCs. Thus, the original SSP problem is NP-
hard. Note that same argument holds if links are bidirectional.

VI. MöbiTwist ALGORITHM FOR SSP
In this section, we describe MöbiTwist, a cross-domain

routing algorithm that accounts for IP subnets and solves
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Fig. 6. Figure 5 after Transformation 2

the SSP problem. MöbiTwist works by first converting the
WDM mesh network into a network graph on which it runs a
path selection algorithm. We first describe the transformation
process and then, present the algorithm.

A. Network Transformation

We present the graph model on which the routing algorithm
operates. We shall refer to the WDM mesh network as the
Original Network (ON ) and the graph model as the Trans-
formed Network (T N ). Let S be the total number of subnets
in the network.

The mapping of routers and OXCs in ON to nodes in T N
is done as follows. For every router Ri in the ON , we create
a corresponding node R

′
i in T N . For each OXC Oa in ON ,

we create a set of S nodes O
′
a1, ..., O

′
as, each representing a

logical OXC for each subnet.
The procedure to map links from ON to T N is as follows.

All links in ON are bidirectional and are mapped as two
unidirectional links. There are two types of links in ON –
external links, that connect an IP interface to an OXC port
and internal links that connect ports in neighboring OXCs.
Consider an external link connecting an interface on subnet
t on router Ri to a port in OXC Oa. If the interface is not
part of the live network (i.e., not in the virtual-topology), then
we connect R

′
i to O

′
at in T N . If the interface features in the

virtual-topology, i.e., it is interconnected via a λ to another
router, say Rj , then, it does so through a sequence of internal
links. We map the two external links and the internal links that
form the connection in ON to a single link in T N that directly
connects R

′
i to R

′
j . We call this a virtual short-circuit link

since such a link also exists in the virtual-topology. A similar
construct was used in [2] to represent such logical links. Any
internal links left over after accounting for all virtual links are
then free (i.e., they are not cross-connected). Consider OXCs
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Oa and Ob. If there exists at least one free link between them
(i.e., Oa and Ob are not disconnected in the residual optical
network), we create S links in T N , each connecting O

′
ai and

O
′
bi, i ∈ {1..S}.
Figure 7 shows the T N for the network in Figure 3 (a).

Note that this transformation is essentially the reverse of
Transformation 2 in Section V-E. In effect, we are exploding
each OXC node into S smaller nodes, one for each subnet.
Thus, if there are less than S links between a pair of OXCs
in the real network, a path may be found in T N that may
in fact be infeasible on the real network. This is an outcome
of the inherent hardness of the problem. We will call such a
path optically infeasible and will account for it in our routing
algorithm. Conversely, note that even if there are greater than S
links between two OXCs in ON , they are reduced to S links
between the logical smaller OXCs representing the subnets.
We prove below that shrinking the size of the network in this
fashion has no impact on the routing.

We now assign costs to each link. Recall that our goal in
this work is to find the shortest IP hop path. Thus, we assign
unit cost when we cross an IP router. Thus all the free external
links between a router and a OXC are assigned a cost of 1/2
and all virtual short-circuit links are assigned a cost of 1. The
free links in optical network are assigned a small cost such
that the algorithm would prefer a logical link over creating
any new IP connectivity and that two paths of equal hops are
distinguished by their optical resource utilization.

We note that the algorithm is independent of the cost
assignment and depending on the requirement, the costs may
be assigned differently (for example, to give preference to
optical resources). We have chosen this scheme to realize our
goal of optimizing IP network performance.

B. MöbiTwist Algorithm

The MöbiTwist algorithm is shown above. It operates on
the T N to find the shortest hop path accounting for the
subnet constraints. However, the path found may be optically

MöbiTwist Algorithm Pseudocode

1) Convert original network of IP routers and OXCs to a
transformed network as outlined in section VI-A.

2) Find N shortest paths in transformed network between
source and destination using Lawler’s algorithm [18].

3) I ← 1.
4) Let P be the Ith shortest path in the transformed

network from source to destination
5) If P ’s analogous path in original network is feasible,

then it is the optimal feasible path that satisfies subnet
constraints. Terminate.

6) Else I ← I + 1;
7) If I > K, exit; else Goto Step 4.

infeasible if it requires more wavelengths between a pair of
OXCs than actually available on the real network. Recall that,
the T N construction scales the capacity of each OXC to S, the
number of subnets and thus, can create infeasibility if there are
less than S free links between two OXCs. MöbiTwist cycles
through various paths, starting from the shortest on, testing
for infeasibility. If after some user defined parameter N for
number of tries, it fails to find a path, it terminates without
finding a path. Of course, one can continue this process until
an optically feasible path is found. N is simply an upper bound
to reduce the run-time complexity since in the worst case there
exist exponential number of paths between any two nodes in
a graph. However, as we show in Section VIII, in practice the
algorithm terminates in very few iterations (often, one) making
a very cheap solution to implement in practice.

C. Optimality

To prove that the algorithm indeed finds the shortest IP hop
path, it suffices to prove that the Kth (K ≤ N ) shortest path
in T N , which is optically feasible, is the shortest feasible path
in ON if all previous K − 1 paths are infeasible. Before we
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prove the correctness, we first make two observations about
our construction.

Theorem 1: The shortest subnet feasible path between any
pair of routers in ON will traverse through any OXC at most
S times.

Proof: We prove by contradiction. Assume a shortest path
travels through an OXCs more than S times. Each traversal of
an OXC is always associated with a single subnet since subnets
can change only at the routers. Thus, for a path to traverse an
OXC more than S times, at least one subnet associated with
the traversal should be repeated. We can represent such a path
as
P = Psi <> X(a, b) <> Pii <> X(c, d) <> Pit,
where <> is the concatenation operator, Psi is the sub-path

from source s to intermediate OXC i and X(a, b) is a cross-
connect setup at OXC between port a and b. By the above
argument, the subnet traversed on X(a, b) is same as subnet
traversed on X(c, d). Since port a and d are on the same
subnet we can replace this path by
P

′
= Psi <> X(a, d) <> Pit, and,

|P ′ | < |P |
P

′
is a shorter path between the same source and destination

and it also satisfies subnet constraint. Thus, we can always
replace a path traversing an OXC more than S times by a
shorter path. Hence shortest subnet feasible path traverses an
OXC at most S times.

Corollary 1: The shortest subnet feasible path between a
pair of routers will never require more than S wavelengths
between a pair of OXCs.

Theorem 2: For every shortest subnet feasible path Pon

between a source-destination router pair in ON there exist an
equivalent path Ptn in T N such that cost(Pon) = cost(Ptn).
Proof: Consider the path P in the transformed network that is
formed by choosing links, which are transformed equivalents
of links in Pon. For IP virtual short-circuit links and external
links, there is a clear one-to-one mapping between the links
and thus, their costs are the same (by cost assignment). For
internal links between OXCs, choose the links corresponding
to the subnet. By construction and cost assignment of these
links in T N , the path is well defined and Cost(Pon) =
Cost(P ).

Note that by Corollary 1, Pon will not use more than S
wavelengths between any pair of OXCs, thus scaling the set
of links between a pair of OXCs to S links is sufficient even
when there are more than S wavelengths between the pair of
nodes in ON .

Theorem 3: The path in ON corresponding to the Kth
shortest path in T N is the shortest path in ON , if all previous
K − 1 paths are infeasible.
Proof: We prove by contradiction. Let P k

on be the path in ON
corresponding to P k

tn, the Kth shortest path in T N . Let’s
assume by contradiction that P k

on is different from Pon, the
shortest path in ON . Clearly, Cost(Pon) < Cost(P k

on). Now,
consider the path corresponding to Pon in T N , say Ptn. By
theorem 2, Ptn exists and

Cost(Ptn) = Cost(Pon) and hence
Cost(Ptn) < Cost(P k

tn)
Thus, Ptn should have been one of previous K − 1 paths
found by the algorithm. But since none of the K − 1 paths
were feasible, no such Pon can exist which is different from
P k

on. Hence, the MöbiTwist algorithm finds the shortest subnet
feasible path in the network. QED.

D. Complexity

It is important to note that if number of free wavelengths
between every pair of connected OXCs, is at least equal to
number of subnets, then, the first path found will be the
shortest feasible path. In the worst case, the complexity of
algorithm is exponential as there can be exponential number
of paths in a network. However, as we show in Section VIII,
in practice, the algorithm typically terminates in polynomial
time. If the Kth simple path turns out to be the optimal subnet
feasible shortest path, then the complexity is as below:

Assume that there are R routers and N OXCs in ON , with
A1 unused internal link and A2 λs established resulting in A2
virtual short circuit links and A3 links connecting IP routers
and OXCs. If there are total of S subnets then the T N has
(R +N ∗ S) nodes and (S ∗ A1 + A2 + A3) links. The cost
of finding optimal shortest path is thus:
C = cost of finding K shortest paths +

cost of checking for infeasibility * K
C = O(K ∗ (R+N ∗ S)3) +O(K ∗ (R+N ∗ S − 1))
C = O(K(R+N ∗ S)3).
This complexity is assuming use of Lawler’s algorithm [18].

If one optimistically assumes the shortest path in T N will also
be the optimal shortest path, then one can run the algorithm in
two steps — run Dijkstra shortest path first and only on failure,
run the Lawler’s algorithm. If so, the best case complexity will
be as in Dijkstra [8], namely, O((S ∗A1 +A2 +A3)log((R+
N ∗ S)). As the performance numbers show in section VIII,
this lower value turns out to be the complexity in practice.

VII. MöbiFlex ALGORITHM FOR GSP
The GSP problem relaxes the constraints of SSP by

allowing upto K subnet violations on the path. Recall that, as
motivated in Section III-B, overhead to re-configure network
interfaces and their subnets may be acceptable, if it improves
the routing in return. Thus, a solution for GSP lies midway
between solutions for SSP and ISP .

We present the MöbiFlex algorithm next that finds the short-
est path with at most K subnet violations. As in MöbiTwist
case, we create a transformed network on which the algorithm
operates.

A. Network Transformation

The model on which MöbiFlex operates on is very similar
to that presented in the MöbiTwist case except for free links
between an IP router and an OXC. We replace all of the free
links between an IP router and an OXC by S links, each
connecting the router to one of the S virtual OXC nodes
created (one for each of the S subnets). This construction
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increases the number of links emanating from the router on
the T N compared to the MöbiTwist case. We associate two
costs with them. The first cost is the same as in the MöbiTwist
case. The second cost of a link is either 1 or 0. All the links
that connect to virtual OXCs whose subnets are present in the
router have a value 0, else it is 1. This construction models
the cost of subnet violations by forcing a higher cost on links
that cause it. Figure 8 shows the network after applying the
transformation. Note that all dotted links between the router
nodes and virtual OXC nodes are the ones which are newly
added to model and have a non zero second cost (cost of
modifying subnet) associated with them. It is important to
note that the scaling of number of free external links does not
introduce any new infeasibility since a router is never traversed
twice on a shortest path. Thus, as long as there is one external
link in the ON , any shortest route in T N will be feasible.
Note that the optical infeasibility still remains.

Thus, the GSP problem is now equivalent to finding a
shortest path based on first link cost, such that the sum of
second link cost is less than K. It then reduces to a Constraint
Shortest Path problem on the transformed network.

B. MöbiFlex Algorithm

As motivated above, the MöbiFlex algorithm attempts to
find a solution midway between a solution to the ISP
and SSP problem. It starts with solutions provided by the
shortest path algorithm which ignores subnets (ISP) and
the MöbiTwist algorithm for SSP as the two extremes. It
then attempts to narrow down the range of available options
using a Lagrangian relaxation technique [12], [13]. Note that
since there are two metrics being optimized (path length
and number of subnet violations), the relaxation requires
mapping the two variable into one. For MöbiFlex, we choose
a linear transform function. The interested reader is referred
to research on Lagrangian relaxation on the general technique
and other alternative polynomial transformation functions one
may use [12], [13].

MöbiFlex Algorithm Pseudocode

1) Find the best solution to the ISP problem. This is the
shortest path on the integrated network ignoring subnets.
Let the path found be P .

2) If P is not found, terminate. There exists no path from
source to destination on this network.

3) If d2(P ) < K, terminate. P is the required solution.
4) Find the SP(di1 +∞di2) and let the path found be Q.

This is the path corresponding to no subnet violations.
5) If no path is found (i.e., no solution honoring subnet

constraints), find SP(di1 + θdi2) for very large value
of θ.

6) If d2(Q) > K then there is no solution terminate.
7) γ = d1(Q)−d1(P )

d2(P )−d2(Q) .
8) Find SP(di1 + γdi2) and let the path found be R.
9) If d2(R) ≤ K then Q ← R.

10) Else P ← R.
11) Check new Q for optical feasibility and if feasible,

record the route as current best known solution.
12) If terminate() then terminate.
13) Else Goto Step 7.

For the following discussion, we follow certain shorthand
notation for convenience. For any path P in the network
obtained after applying the transformation of section VII-
A, we define d1(P ) =

∑
i di1 ∀ li ∈ P and d2(P ) =∑

i di2 ∀ li ∈ P . We also assume a routing engine that
given a transformed network and the cost of various links, will
compute the shortest path. Calls to this engine are denoted by
SP(func(di1, di2)), where func(di1, di2) is the cost function
which represents the cost of link li.

The MöbiFlex algorithm is given above. It starts with
solutions at two extremes from the SSP and ISP problem
(algorithms MöbiTwist and [2] respectively) and continually
narrows the range until the desired conditions are met. The
correctness of the MöbiFlex algorithm is based on the follow-
ing two results from [13]. Given a network:

• Let P be the shortest cost path for each link cost li set
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to di1 + αdi2 and Q the shortest cost path for each link
cost li set to di1 + βdi2. If α > β then

d1(P ) ≥ d1(Q) and d2(P ) ≤ d2(Q).

• Let γ = d1(Q)−d1(P )
d2(P )−d2(Q) . Let R be the shortest cost path for

each link cost li set to d1 + γd2 then
d1(P ) ≥ d1(R) ≥ d1(Q) and
d2(P ) ≤ d2(R) ≤ d2(Q).

Every iteration of the algorithm reduces the operating range
and if the current path is optically feasible, MöbiFlex makes
it the best path seen so far. When the scope for further
improvement is minimal, the algorithm terminates and outputs
the best known solution. The termination condition is captured
by the terminate() subroutine and we leave it upto the
user to specify what the conditions may be. There could be
various factors that influence when to terminate the search.
For example, d2(Q) = K since no valid solution can be
found by further search. Another criterion could be if the value
(d1(P )−d1(Q)) becomes less than some acceptable threshold.

It is instructive to note that the dual problem, where hop
count is bounded and intent is to minimize the number of
subnet violations can be solved using same procedure by
interchanging the two costs.

C. Practical Implications of Subnet Changes

While orthogonal to the paper, we briefly discuss the impact
of subnet violations. Once the algorithm returns a path, the
links with subnet violations have to be re-configured. This
may require one interface to switch its subnet to the other,
or, both to move to a new subnet. Note that there is an
additional constraint imposed by routers which disallows more
than one interface to be on the same subnet. The details of how
one may “sanitize” the network to ensure the validity of the
route is beyond the scope of this paper. However a simple
technique would be to use an unused pool of /30 subnets.
Changing interface addresses may additionally lead to OSPF
routing table updates. However, this overhead can be reduced
by appropriate planning. For example, an interface that is not
“live” (a requirement to be able to UNI to it) can be engineered
to not generate OSPF link state updates and thus, changing its
address has minimal overhead.

VIII. PERFORMANCE FIGURES

In this section, we show the performance of the MöbiTwist
algorithm. We do not present any numbers for MöbiFlex
since it uses the same underlying shortest path technique
as MöbiTwist and its performance follows similarly. The
complexity of MöbiTwist clearly depends on N , i.e., how often
the sequence of paths found by the algorithm turn out to be
optically infeasible. We present results of extensive tests over
a large number of randomly generated WDM mesh networks,
varying the number of subnets in the network and number of
interfaces available on IP routers.

The Figures 9, 10 and 11 present the results of one such test.
In this case, we used a network of 15 IP routers and 15 OXCs.
The number of subnets were varied from 5 to 20 keeping the
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Fig. 9. Max resource requirement for shortest path among all pairs

maximum number of interfaces per router limited to 4 with
an average of 2 interfaces per router. Requests among routers
were generated for all source destination pairs, and the test
involved computing 10 shortest paths that satisfy the subnet
constraints for each request.

For all such computed paths, we tabulated the resources
required in the core to make the path optically feasible. For
each path, we consider the following three parameters that are
presented in the graphs:

1) The maximum number of wavelengths(links) required
between a pair of OXCs to make the path feasible (Link).

2) The maximum number of times any OXC features on
the path (OXC), and,

3) Number of new λs that need to be dialed to setup this
path (Lambda).

As shown earlier, if the number of available wavelengths
between a pair of OXCs exceeds the number of subnets, every
path found by the algorithm will be feasible on the original
network. However, in practice having fewer free wavelengths
also suffices and the first parameter aims to capture that.

Figure 9 and 10 present the data for the first shortest path
among all source destination pairs. Figure 9 plots maximum
values while Figure 10 shows the average value of evaluation
parameters. Figure 11 depicts the maximum value of the
parameters required such that all 10 paths between any source
destination pair are feasible.

Figure 9 and 10 show that the algorithm produces feasible
paths as long as there are at least 2 free wavelengths. Since
typical OXCs have upwards of 128 ports, the network has to
be extremely loaded for this to be not true. In fact, Figure 11
shows than the numbers do not change much even if 10
shortest paths were considered. Thus, the number of iterations
required will be very small (often, just 1) and hence, in
practice MöbiTwist not only finds the optimal path but does
so extremely efficiently.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the problem of routing
bandwidth guaranteed paths in a WDM mesh network. We
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Fig. 11. Max requirement for first 10 shortest paths over all pairs

showed that the constraint imposed by IP subnets on the link
connectivity threatens the flexibility and re-configurability that
a WDM mesh network aims to provide. We proved that having
to honor the subnet constraint transforms the problem of find-
ing the shortest IP hop path, admitting a polynomial solution
on a WDM mesh, into a NP-hard problem. Furthermore, we
showed that honoring the subnet constraints imposes a penalty
of longer paths. Consequently, subnets create a new trade-
off of having to make the network less efficient by honoring
subnets (due to longer paths) or, accepting an upfront overhead
of dynamically changing subnets in order to get more efficient
routing paths.

We proposed two shortest path algorithms, MöbiTwist and
MöbiFlex, to route in the presence of subnets. The MöbiTwist
algorithm finds the optimal shortest hop path honoring the
subnet constraints. The MöbiFlex algorithm works in the
dynamic subnet case wherein given an upper bound on the
subnet violations an operator is willing to tolerate, it finds a
shorter path than MöbiTwist subject to the violation constraint.
The algorithm provides a good balance between large-scale
network re-configuration and good quality shortest paths. Both
the algorithms are efficient and in practice, find the shortest

path in polynomial time making them attractive to implement.
This paper has focussed on shortest path routing in the

presence of subnets. Over the last few years, there has been a
considerable interest in enhanced routing algorithms in WDM
meshes such as for shared and dedicated protection. However,
these have been considered in the absence of subnets and this
paper provides a launching pad to extend those works in the
context of subnets.

Till date, there are no mechanisms to automatically change
the subnets assigned to interfaces and any updates require
manual intervention. We submit that being able to automate the
above process will be a key driver for IP-Optical interoperabil-
ity in WDM mesh networks. Similarly, optimal network design
and planning in view of the WDM re-configurability is an
open issue. Thus, we believe that going forward management
of subnets, currently a one-time configuration issue, will be
an active area for research and standards activity.
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