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Abstract— The delay limited capacity of an ad hoc wireless
network confined to a finite region is investigated. A transmission
and relaying strategy making use of the nodes’ motion to maxi-
mize the throughput is constructed. An approximate expression
for the capacity as a function of the maximum allowable delay
is obtained. It is found that there exists a critical value of the
delay such that: (1) for values of the delay d below critical, the
capacity does not benefit appreciably from the motion, (2) for
moderate values of the delay d above critical, the capacity that
can be achieved by taking advantage of the motion increases
as d2/3, (3) the dependence of the critical delay on the number
of nodes is a very slowly increasing function (n1/14) . Finally,
asymptotic optimality of the proposed strategy in a certain class
is shown.

I. INTRODUCTION

Ad hoc wireless networks [1],[2] represent a promising
new technology in communications that is currently receiving
significant attention due to several successful research pro-
grams. In particular, one early effort was the DARPA packet-
radio network program [3],[4]. Important applications include
range from rescue operations to collaborative computing in
mobile environments to distributed control and command
systems to ubiquitous personal communication systems. Many
researchers in the field of wireless communications believe
that, due to their unique features, ad hoc networks will play an
increasingly important role in the near future. Several attractive
features of ad hoc networks are: (1) ease of deployment
due to the absence of required infrastructure; (2) potentially
low cost due to omission of large-scale hardware such as
base stations; (3) very high degree of flexibility. An ad hoc
network is a collection of (in general mobile) nodes that can
exchange information via a wireless channel characterized by
the absence of any fixed infrastructure or hierarchy. Present
and future designers of such networks have to meet multiple
challenges created by the networks’ very nature. Significant
difficulties arise at all levels of such networks: physical, MAC
(medium access control), and the network layer. The main
source of such difficulties is the same as the source of their
potential advantages: essential lack of inherent organization
in the network due to the absence of infrastructure. The latter
feature implies that all questions of control, due to lack of any

coordinating center, have to be addressed by the participating
nodes themselves. Mobility makes the situation especially
complex since, under such conditions, the topology of the
network is constantly changing, and all the control decisions
have to reflect that.

In this paper, we study the maximum information transport
capacity of an ad hoc wireless network. More precisely, we are
interested in the relationship between the end-to-end delay and
the capacity. This work is motivated by the results of Gupta
and Kumar [5] and Grossglauser and Tse [6] (see also [8] for
a different approach). In [5], it was shown that, in an ad hoc
network of size n, the capacity per node goes down with n thus
making large networks impractical. In [6], it was demonstrated
that, if the nodes’ mobility is taken advantage of, the effect
of decreasing capacity can be overcome. The price one has
to pay for such a dramatic increase in capacity is an end-to-
end delay no smaller than the time scale characterizing the
nodes’ motion. In this paper, we make an attempt to quantify
the relationship between the maximum allowable delay and
the transport capacity.

First, we establish an upper bound on the delay limited
capacity within the class of “one relay” strategies in the
spirit of [6]. We find an analytic expression for the upper
bound and use it to get a simple approximate result valid for
moderate values of the maximum delay. We then construct
a transmission and relaying strategy that achieves the above
upper bound asymptotically. Our approach is based on the
combination of the diversity routing idea of Grossglauser and
Tse [6] and the multipath routing methodology of Tsirigos and
Haas [10] that relies on the diversity coding approach from [9].
Namely, just as in [6] a source node transmits to its current
nearest neighbor at each time slot allocated for transmission.
The difference is that, in our approach, we do not send a packet
to its destination via one relay node. Instead, after adding
redundant information, we split the resulting “enlarged” packet
into many blocks and send the blocks to the destination via
different relay nodes.

As a result, in order to achieve the desired level of service
(measured as the probability of correct reconstruction of the
message by the destination node within time d from the
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moment of the message origination), one needs to employ
a certain redundancy level which in turn directly affects the
maximum capacity. We calculate the required redundancy level
approximately.

The main result that we obtain is that there exists a critical
value of the delay such that for delays below the critical value,
the gain in the capacity that can be achieved by making use
of the motion is negligible. In other words, for such delays
the result of [5] applies: the capacity of the network goes
down roughly as 1√

n
. For the delays d above the critical,

the capacity benefits from the motion, and, for not very long
delays, increases approximately as d2/3. It is interesting to note
that the value of the critical delay increases only very slowly
(as n1/14) with the number of nodes n which is a welcome
feature.

II. MODEL AND PREVIOUS RESULTS

The model we adopt is similar to to those used in [5] and [6].
The network consists of n nodes located on a sphere of area
A. All nodes are mobile, and we assume that the motion of
any node is described by the same stationary ergodic random
process such that at each time there is no preferred direction.
The trajectories of all nodes are assumed to be independent
and identically distributed. We assume that every node i has
an infinite amount of data for its destination f(i), and that the
source-destination association does not change with time.

In the transmission model we use (same as in [6]), a node
i is capable of transmitting W bits/sec to node j at time t if

Pi(t)γij(t)
N0 + 1

L

∑
k �=i Pk(t)γkj(t)

> β,

where Pi is the transmit power of node i, γij is the channel
gain from node i to node j, N0 is the background noise
power, L is the processing gain of the system, and β is the
SIR requirement for successful communication. The channel
gain is assumed to depend only on the shortest distance Dij

between the respective nodes as in

γij(t) =
1

Dα
ij(t)

,

where α is a parameter greater than 2.
At any time a scheduler decides which nodes transmit bits

and the corresponding power levels. The objective is to ensure
a high average throughput for every source-destination pair.
Let us denote by Mi(t) the number of bits that the destination
f(i) receives in time slot t. We say that an average throughput
of C is feasible if for every source-destination pair i,

lim inf
T→∞

1
T

T∑

t=1

Mi(t) ≥ C.

Gupta and Kumar [5] demonstrated that, if a node can
transmit W bits per second over a common wireless channel,
there exist constants c and c′ such that

lim
n→∞

Pr

{
C(n) =

cW√
n log n

is feasible

}
= 1,

and

lim
n→∞

Pr

{
C(n) =

c′W√
n

is feasible

}
= 0,

i.e. up to a factor of log n the throughput per source-destination
pair goes to zero as W√

n
.

Grossglauser and Tse [6] constructed a scheduling policy
according to which, in any time slot t, nS = θn (where θ
is the sender density parameter to be determined) nodes are
designated as senders and the remaining nR nodes as potential
receivers. Each sender node then transmits packets to to its
nearest neighbor among potential receivers using unit transmit
power. Among the nS sender-receiver pairs the policy retains
those for which the interference generated by the other senders
is low enough so that a successful transmission is possible. If
Nt is the number of such pairs then, as was shown in [6],

lim
n→∞

E[Nt]
n

= φ > 0.

III. UPPER BOUND ON DELAY LIMITED CAPACITY

A. Maximum achievable capacity

Let us denote by C∞ the per node capacity of the network
achieved by the one relay node approach [6] in the absence
of end-to-end delay constraints. We now find an upper bound
on the capacity in the presence of a uniform end-to-end delay
constraint.

Theorem 1: In the class of relaying strategies where each
packet goes through at most one relay node, the maximum
capacity Cd of an ad hoc network under the constraint that
the end-to-end delay not exceed d is upper bounded by

Cd ≤ C
(u)
d ≡ C∞ · γ〈p(d)〉, (1)

for sufficiently large n, where 〈p(d)〉 is the ensemble average
of the probability that two nodes come within range of
direct transmission in a time not exceeding d, and γ is the
corresponding capture probability.

Proof: Since the relative contribution of direct source to
destination transmissions to the total capacity is negligible (of
the order 1

n ), we will ignore it in the proof. Let us concentrate
on a fixed source node i with its associated destination f(i).
Suppose node k is the current potential recipient of a packet
intended for node f(i). If it were known in advance that node
k would come within transmission range of f(i) in time d, and
the transmission to f(i) would be successful, the transmission
to k would have to take place. Otherwise, the transmission
from i to k would be useless – the packet would not reach
its destination in time. So, in the ideal case of complete
knowledge of all the trajectories the capacity of C∞ · γ〈p(d)〉
would be achieved.

To end the proof, we note that stated expression for the
upper bound formally approaches γC∞ as d → ∞. In the
following, we will see that, for an optimally chosen trans-
mission range form relay to destination, γ → 1 as d → ∞.
Moreover for large values of allowable delay, the two given
nodes come close on multiple occasions, thus making the
effective probability of capture approach unity even faster.
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B. Probability of close range transmission

We would like to find an approximate expression for the
ensemble average 〈p(t)〉 of the probability of a close range
transmission within time t. More precisely, we wish to find
the ensemble average of the probability that a given node
comes within distance r or less from another fixed node in
an interval of time of length t. It turns out to be easier to find
the probability of the opposite event: 〈q(t)〉 = 1 − 〈p(t)〉.
Let us denote by q�x,�y(t) the probability of two nodes not
coming within range r provided that at time 0 the two nodes
in question are located at points �x and �y respectively. Then the
the ensemble average 〈q(t)〉 can be defined as the expectation
of q�x,�y(t) with respect to all possible (uniformly distributed
on the sphere) starting points �x and �y which we denote as

〈q(t)〉 ≡ EU�x,U�y
[q�x,�y(t)]. (2)

Due to symmetry of the sphere, we can concentrate on the
relative motion of the nodes by assuming that the second
node is at rest at the north pole at all times. Then the above
definition can be replaced by

〈q(t)〉 ≡ EU�x
[q�x(t)], (3)

where q�x(t) is the probability that the two nodes will not come
within range r in time t provided that at time 0 the first node
is at point �x and the second is at the north pole.

Now fix a point in time s such that 0 < s < t. Then
provided the nodes did not come within r between 0 and s
and the first node is at the (relative to the north pole) position
�x1, the probability of not coming within range r between 0
and t can be written as

q�x(t) = q�x(s)q�x1(t − s), (4)

and taking expectations of both sides in (4) over all initial
points and assuming the motion is independent over non-
overlapping increments (an independent increment process, a
common assumption) we obtain

EU�x
[q�x(t)] = EU�x

[q�x(s)]EP�x1
[q�x1(t − s)], (5)

where EP�x1
stands for the expectation with respect to the

distribution of the position �x1 of the first node at time s
provided the nodes did not come within range between 0
and s. Now let f�x(s) be the probability density function
characterizing the above probability distribution. We will write
it as

f�x(s) =
1
A

(1 + h�x(s)), (6)

where h�x(s) is the difference from the uniform distribution
such that h�x(0) = 0. Substituting (6) into the expression for
the expectation over all possible starting points, we arrive at

EP�x1
[q�x1(t − s)] = 〈q(t − s)〉 + ε(s, t − s), (7)

where

ε(s, t − s) =
1
A

∫
q�x(t − s)h�x(s)d�x

accounts for the difference of the initial distribution in (7)
from the uniform. Now, substituting (7) into (5), we obtain

〈q(s)〉(〈q(t − s)〉 + ε(s, t − s)) = 〈q(t)〉. (8)

Note that in the absence of the term ε(s, t− s) the solution of
(8) with the proper initial condition would be 〈q(t)〉 = e−λt

for some constant λ. Writing 〈q(s)〉 = e−λs+δ(s) and taking
the limit t → s + 0 in (8) we can arrive at the following
ordinary differential equation for δ(s):

δ′(s) = −λδ(s) + z(s)δ(s) + e−λsz(s), (9)

where z(s) = −λh�x′(s), with �x′ being a point at a distance r
from the north pole. The equation (9) with the initial condition
δ(0) = 0 has the solution

δ(s) = e
−λs+

∫ s

0
z(s′)ds′

∫ s

0
e
−

∫ s′

0
z(u)du

z(s′)ds′. (10)

Thus, for 〈q(t)〉 we obtain

〈q(t)〉 = e−λt
(

1 + e

∫ t

0
z(s)ds

∫ t

0
e
−

∫ s

0
z(u)du

z(s)ds
)
.

(11)
The latter expression involves the function z(s) whose exact
form depends on the particular model of random motion of
the nodes. However, the fact that z(s) = −λh�x′(s) combined
with the observation that |h�x′(s)| < 1 for all s allows us to
justify the approximate expression for the ensemble average
of the probability of no direct nearest neighbor transmission
within time t valid for moderate times t such that for λt � 1
we have

〈p(t)〉  1 − e−λt, (12)

where the parameter λ characterizes the nodes’ mobility. In
order to estimate the value of λ, we note that, from (11), that

λ =
∂〈p(t)〉

∂t

∣∣∣
t=0

.

To evaluate λ from this definition, we must calculate the
number of nodes that enter a circle of radius r during a
differential time interval assuming uniformly distributed nodes
over a sphere of radius R which are moving at speed v. Given
this interpretation the parameter λ can be shown to be equal
to

λ(r) =
2vr
A

=
vr

2πR2 , (13)

Introducing a dimensionless parameter x ≡ r/R we can
rewrite the above expression as

λ(x) =
v

2πR
x, (14)

Let us also introduce notation for the average length of time
during which the identity of a nearest neighbor of a node
remains unchanged. We will denote such an average by τ .
Obviously, in the order of magnitude, τ is equal to the time it
takes a node to travel an average distance between the nodes
so that

τ ∼
√

A

n

1
v

=

√
cR2

n

1
v
, (15)

where c is some constant depending on the details of the
motion model.
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C. Probability of capture

A typical information block on its way from the source node
to the destination performs two hops: from the source to a relay
node, and from the relay to the destination. We describe these
two stages in turn below. For simplicity we assume, following
[6], that in odd time slots the first stage is effected, and in
even time slots – the second.

1) Source to relay: The source to relay transmission is
effected to the nearest neighbor as described in [6]. There,
it was shown that the capture probability approaches a finite
number for very large number of nodes n. Let us denote this
number η. The fact that η is substantially less than 1 reduces
the delay limited capacity by effectively increasing τ – the
average time between two successful transmissions in the first
stage. In this paper, we do not go into the detail of transmission
policy at this stage postponing it to the future work.

2) Relay to destination: In the second stage our transmis-
sion policy is to transmit to the destination once it is at the
distance r from the relay. It is clear that choosing higher value
of r increases the probability of coming into the range within
limited time and, at the same time, decreases the probability
of capture. So one can hope to be able to choose the optimal
value of r given the parameters of the system. The probability
of coming in the range was studied in the previous section.
Here, we approximately compute the probability of capture.
We fix the parameter α describing the decay of the signal in
space to α = 4.

First, note that if any other transmitter is at a distance no
more than r′ = rβ1/4 from our destination then the capture
is impossible. Let us denote by A the event that none of the
other transmitting relays are within distance r′ or less from
our destination. The probability of A can be computed as

P (A) =
(

1 −
√
βr2

4R2

)q

, (16)

where q is the number of simultaneously transmitting relays
which is on average equal to

q = 〈p(d)〉θηn,

where θ is the sender density in the first stage. Using the fact
that r � R (as a consequence of large n) we can write an
approximate expression for (16):

P (A) = e−(1/4)
√
βnθη〈p(d)〉x2

, (17)

where x ≡ r/R.
If A is true, i.e. none of other transmitting nodes is within

distance r′ from our destination, the capture may still be
impossible due to total interference power from all the other
transmitting nodes. Since the number of such nodes is large
(proportional to n), we can approximate the distribution of
the interfering power by the normal one with the mean equal
to qP 1 and standard deviation equal to

√
qStd(P1), where

P 1 and Std(P1) are the mean and standard deviation of the
interfering power of one other node, respectively.

If the transmitting power of each node is equal to 1, we can
calculate P 1 and Std(P1) approximately as

P 1 =
1
4

1
R2r′2 ,

and

Std(P1) =
1

2
√

3
1

Rr′3 .

So, given that A is true, the probability that the transmission
is successful, can be computed as

Φ




1
βr4 − q

4
1

R2r′2
√
q

2
√

3
1

Rr′3



 , (18)

with Φ(.) denoting the standard normal cdf.
Finally, combining (17) and (18), we obtain an approximate

(valid for large n) equation for the probability of capture γ(x):

γ(x) = e−(1/4)
√
βnθη〈p(d)〉x2

Φ



2
√

3(1 −
√
β〈p(d)〉θηn

4 x2)

β1/4
√

〈p(d)〉θηn x



 .

(19)
It is convenient to introduce the dimensionless parameter
w ≡ vd

2πR which measures the delay d in “natural” units
counting how many times a node could traverse the spherical
region if it moved in a straight line. Using this new parameter
and remembering that, in the first approximation, the quantity
〈p(d)〉 is equal to λd, we can rewrite (19) as

γ(x) = e−(1/4)
√
βθηnwx3

Φ



2
√

3(1 −
√
βθηnw

4 x3)
β1/4

√
θηnw x3/2



 . (20)

IV. ASYMPTOTICALLY OPTIMAL RELAYING STRATEGY

A. Strategy description

We now describe our relaying strategy. The goal is to get
close to the maximum capacity. We achieve it by using a
different approach from that in [6]. Specifically, we spread
the packet traffic between many nodes. Namely, after adding
redundant information, we split the resulting packet into blocks
and send the latter via different routes (relay nodes). We
employ the coding scheme used in [10] in which Y extra bits
are added to the packet of X information bits as overhead
thus resulting in B = X + Y bits that are treated as one new
network-layer packet. The additional bits are calculated as a
function of the original X bits so that the original bits can be
correctly reconstructed from any subset of the B bits of size
no less than X . The quantity

z =
B

X
(21)

is the overhead factor. Our strategy consists of splitting the
resulting B-bit packet into m equal size blocks and sending
them via different (consecutive) relay nodes. Similarly, the
blocks are communicated from the relays to the destination.
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B. Approximate capacity calculation

The key question we have to answer is, given the maximum
allowable delay d, how do we select the overhead ratio in order
to achieve the required probability (close to 1) that a correct
message is received in the required time. If we are able to find
the minimum sufficient overhead ratio zmin then obviously the
capacity such a strategy can achieve will be equal to

Cd =
C∞

zmin
. (22)

In this paper we will limit ourselves to the case when, for
each B-bit packet, exactly one block is sent to the destination
via each relay node. Observe that, in establishing the upper
bound, we assumed the perfect knowledge of the future
trajectories of the nodes. Thus we could get the information
to the corresponding destination in time 100% of the time.
Here, due to the lack of such knowledge, all we can aim at is
to get the packets to the destination in time with some fixed
(although arbitrary) average probability. Note though that if
100% on-time delivery were needed that could be achieved
by combining our relaying strategy with occasional multi-
hop transmissions. The asymptotic result that we report below
would still hold.

Let us fix the desired level of service Q, the average
probability that a packet will reach the destination within time
d. Our task is to determine the minimum overhead ratio such
that the desired level of service Q can be achieved. Using the
results of [10], we can write an approximate expression for
the probability of successful reconstruction of a packet at the
destination within time t as

Pm(t) =
1
2

+
1
2

· erf

( ∑m
i=1 γpi(ti) − �m/z� + 1/2√
2
∑m

i=1 γpi(ti)(1 − γpi(ti))

)
,

(23)
where m is the number of blocks the packet is split into, pi(ti)
is the probability the i-th block reaches the destination within
time ti

1, and z is the employed overhead ratio.
We demand that the ensemble average of Pm(t) be equal

to Q so that

1
2

+
1
2

·

〈
erf

( ∑m
i=1 γpi(ti) − �m/z� + 1/2√
2
∑m

i=1 γpi(ti)(1 − γpi(ti))

)〉
= Q.

(24)
The LHS of (24) seems to be hard to evaluate, so we simplify
it by first noting that

∑m
i=1 γpi(ti)(1 − γpi(ti)) ≤ m/4 and

hence, if we demand that

1
2

+
1
2

·

〈
erf

(∑m
i=1 γpi(ti) − �m/z� + 1/2√

m/2

)〉
= Q (25)

then the resulting level of service will be no less than Q. Next,
we assume that the probabilities pi(ti), i = 1, . . . ,m, are in-
dependent and identically distributed2. Under this assumption,

1ti is the amount of time it has left until the ‘deadline’ t. Since the
transmission from the source to the i-th relay for i > 1 happens later than
time 0, ti < t unless i = 1.

2This assumption is a reasonable approximation provided τm � d.

TABLE I

µ(Q) FOR SOME LEVELS OF SERVICE Q.

Q 0.90 0.95 0.98 0.99 0.999
µ 1.28 1.65 2.05 2.33 3.10

the sum
∑m

i=1 pi(ti) is approximately normally distributed
with mean

∑m
i=1〈pi(ti)〉 and standard deviation not exceeding√

m/2 (since the standard deviation of pi(ti) is no more than
1/2 for all i). Therefore, the argument of erf(·) in (25) is
approximately normally distributed with the mean of

µ =
∑m

i=1 γ〈pi(ti)〉 − �m/z� + 1/2√
m/2

and standard deviation s ≤ 1/
√

2. This allows us to find the
value of µ such that (25) holds from

1√
π

∫ ∞

0

(
1
2

+
1
2
erf(x)

)
e−(x−µ)2dx = Q. (26)

Table I shows the numerical values of µ for some fixed levels
of service Q.

We can now find the value of zmin by solving the following
optimization problem and equating the objective value to
µ(Q):

max
m

∑m
i=1 γ〈pi(ti)〉 − �m/z� + 1/2√

m/2
= µ(Q). (27)

The above equation states that we want to reach the desired
level of service Q for at least one (optimal) value of the
number of blocks m which we denote m∗. The maximization
over m will lead to the smallest value of zmin as illustrated
in Fig.1. For further convenience, let us denote

g(m, r) ≡
∑m

i=1 γ〈pi(ti)〉 − �m/z� + 1/2√
m/2

so that (27) reads

max
m

g(m, z) = µ(Q). (28)

We can now substitute the approximate expression (12) for
〈pi(ti)〉 into (27). Strictly speaking, since the time periods
during which the identity of the nearest neighbor of a node is
unchanged are random variables, we would have to take the
averages over the corresponding distributions for calculating
the quantities 〈pi(ti)〉 for all values of the index i. However
we can use the fact (confirmed by the results) that the typical
number m∗ of the blocks into which a packet is split is large
for large n and, therefore, we can get a good approximation
by replacing the random variables by their means. In this way,
we obtain

g(m, z) =
γ(m − e−λd ∑m

i=1 e
(i−1)λτ ) − �m/z� + 1/2√
m/2

(29)
Obtaining a closed form solution of (28) still seems to be

a difficult task. Therefore, we use yet another approximation.
For a large total number of nodes n, the optimal value of m

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



0

0.5

1

1.5

2

2.5

3

3.5

g

500 1000 1500 2000 2500
m

z > zmin

z = zmin

z < zmin

µ = 2.33

Fig. 1. g(m, z) (as given by (29)) as a function of m for different values of
r and Q = 0.99. We can see that for z < zmin the required level of service
(µ = 2.33) is not achieved for any m, while for z > zmin it is achieved or
exceeded for a whole range of values of m.

is going to also be large. Thus we: (1) replace the sum by an
integral; (2) replace �m/z� in (29) by m/z; (3) drop terms
which are small compared to m. As a result of the above
approximations, (29) becomes

g(m, z) = γ

√
2
m

(
m

(
1 − 1

γz

)
− e−λd 1

λτ
(emλτ − 1)

)
.

(30)
Differentiating (30) with respect to m, and Taylor expanding
the result to first order in the small parameter λτ , we obtain
the value m∗ maximizing g(m, z) for a fixed z.

m∗ =
2
3

1
λτ

(
eλd

(
1 − 1

γz

)
− 1

)
. (31)

Now substituting (31) back into (30) we obtain

g(m∗, z) =
4γ

3
√

3
e−λd

√
1
λτ

(
eλd

(
1 − 1

γz

)
− 1

)3

. (32)

Finally, solving (28) for z using (32) we arrive at the following
expression for zmin:

zmin =
1
γ



1 − e−λd −




(

3
√

3µ
4γ

)2

e−λdλτ





1
3




−1

,

(33)
provided the expression in the outmost brackets is positive.
Otherwise, the required level of service Q cannot be achieved.

Thus, the capacity under the constraint that the end-to-
end delay not exceed d with probability no less than Q is
approximately equal to

Cd = γ



1 − e−λd −




(

3
√

3µ(Q)
4γ

)2

e−λdλτ





1
3


C∞,

(34)
if the expression in the brackets is positive. Otherwise, the
required level of service Q cannot be achieved, and we can
consider the corresponding capacity to be equal to 0.

C. Optimal transmission range

Analyzing eq. (32), we can see that, for a given level of
service Q, there exists a critical delay dcr such that:

• For d < dcr, the transmission strategy discussed above is
unable to achieve the required level of service.

• For d > dcr, the capacity increases with d as illustrated
in Fig. 2.

We can estimate the value of dcr from (34) by equating Cd to
0 as

dcr =

(
3
√

3µ(Q)
4γ

) 2
3 ( τ

λ2

) 1
3
. (35)

Expanding (34) to the first order in λd, we see that Cd as
a function of delay d behaves approximately as

Cd
C∞

=
{

0 if d < dcr
γλ(d − dcr) if d > dcr

, (36)

provided λd � 1. It is interesting to compare (36) with the
corresponding approximate expression for the upper bound
C

(u)
d :

C
(u)
d = γλd,

which can be obtained from (36) by setting dcr = 0.
So far we have not chosen the transmission range r. Recall

that the quantities λ and γ in (35) and (36) depend on r
(or its dimensionless version x) as shown in (14) and (20),
respectively. So we can choose the value of x such that the
capacity is maximized for any fixed value of the delay d.

By inspection of (36) we can see that the capacity for
values of the delay greater than dcr depends linearly on the
combination γ(x)λ(x). At the same time, the value of dcr
from (35) is inversely proportional to a positive power of the
same combination. Therefore, one can maximize the capacity
by choosing the value of x so that γ(x)λ(x) is maximized. In
order to achieve this goal, note that, as x increases, the first
factor in the expression (20) for γ(x) drops much faster than
the second one which stays at nearly 1 until the argument of
Φ(·) becomes roughly less than 2 (Φ(2) = 0.977, Φ(1.5) =
0.933). Therefore we can try to maximize γ(x)λ(x) by setting
the second factor in γ(x) to 1 and later verifying that the
resulting argument of Φ(·) is large enough to justify the
approximation. Thus we need to maximize the function

v

2πR
x e−(1/4)

√
βθηnwx3

with respect to x which yields the optimal x equal to

xopt = 3

√
4

3
√
βθηnw

, (37)

so that the argument of Φ(·) in the expression for γ(x) is equal
to 2 and our approximation is well justified.

Substituting (37), (14) and (20) into (35), and solving the
resulting equation for dcr, we obtain:

dcr =

(
3
√

3µ
4

) 6
7

(3π2e
√

βθη)
2
7 c

3
14 n

1
14

R

v
, (38)
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or, in the “natural” units:

wcr =

(
3
√

3µ
4

) 6
7 (3π2e

√
βθη)

2
7

2π
c

3
14 n

1
14 . (39)

We also get:

γ(xopt)λ(xopt)d =
(

v2d2

3π2e
√
βθηnR2

) 1
3

. (40)

Thus the behavior of the capacity as a function of d for
moderate values of d is such as shown in Fig. 2.
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Fig. 2. The ratio y = Cd/C∞ as a function of delay d.

Several observations are now in order.

• The dependence of the critical delay dcr on the number
of nodes n turns out to be very slow (n1/14) which is a
desirable feature.

• Beyond dcr, the dependence of the capacity on d is as
d2/3 so significant capacity is reached relatively quickly.

• As can be seen from (37), the optimal transmission range
decreases as n−1/3, i.e. for large values of n it can be
significantly larger than the typical internode distance that
scales as n−1/2. It is also interesting to note that the
optimal transmission range decreases with d as d−1/3.

From the above expressions, we can easily find that, for the
optimal value of the transmission range,

λτ =
1
π

√
c

(
1

6
√
βθηw

) 1
3 1
n5/6 ,

and the upper bound on the delay limited capacity C
(u)
d can

be approximated as C
(u)
d = (1 − e−λd)γC∞. So if we fix

C
(u)
d and increase the number of nodes n we see that the ratio

Cd/C
(u)
d approahes3 1. Thus we have proved the following

theorem.
Theorem 2: There exists a transmission strategy that

asymptotically achieves the upper bound C
(u)
d on the delay-

limited capacity of an ad hoc network.

3We should note that this ratio approaches 1 rather slowly as shown in
Fig.3.
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Fig. 3. The ratio R = Cd/C
(u)
d

as a function of number of nodes n. Note
that the ratio approaches 1 rather slowly. This example uses Q = 0.99 and
λd = 0.2.

V. CONCLUSION

In this paper we have conducted a preliminary exploration
of the problem of the influence of the end-to-end delay on
the maximum capacity of a wireless ad hoc network confined
to a certain area. Aiming at general results, we have made
a number of simplifying assumptions. Thus, we adopted a
“totally random” model of motion ignoring both the details
of the corresponding distributions and possible patterns in the
nodes’ motion. We also limited ourselves to “one relay” class
of strategies in the spirit of ref. [6]. Confining the analysis
to the above class of strategies we found an expression for
the upper bound of the delay limited capacity that involves
the ensemble average of the probability of two nodes coming
within certain range within the maximum delay time and
the corresponding capture probability. In order to establish
that upper bound we assumed the perfect knowledge of the
future trajectories of the nodes. We then obtained a general
expression for that ensemble average which depends on the
transmission range from the relay to the destination. Next, we
found an approximate expression of the average probability of
success of that transmission as a function of the transmission
range.

We then proceeded to construct a relaying strategy that
would asymptotically achieve the upper bound. We used the
diversity coding approach in combination with the “secondary”
diversity routing of [6] in order to asymptotically achieve
the upper bound for this class of strategies in the absence
of any information about the nodes’ motion. We also made
use of a number of approximations that allowed us to end up
with closed form expressions. Analyzing the dependence of
the resulting capacity on the transmission range, we found an
approximate expression for the optimal range that maximizes
the capacity for any fixed value of the delay. We found that, for
moderate delays, the dependence of the optimal capacity on
the delay is characterized by the “critical delay” below which
our relaying and transmission strategy does not lead to any
appreciable capacity. For the values of the delay higher than
the critical value, the capacity grows approximately as d2/3.
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The critical delay has a very slow dependence on the number
of nodes n so that it practically is independent on n. It is
interesting to note that the existence of that minimum delay
is precisely the price we have to pay for the lack of the
knowledge of the nodes’ motion.

Finally, we have shown that our transmission and relaying
strategy is asymptotically optimal in the sense that the ratio
of the achieved capacity and the upper bound approaches 1
(albeit rather slowly) as the number of nodes n grows.

REFERENCES

[1] A. ALWAN ET AL., Adaptive mobile multimedia networks, IEEE Personal
Communications Magazine, 2, no. 3 (1996) 34.

[2] Z.J. HAAS AND M. PEARLMAN, Panel report on ad hoc networks,
Mobile Computation and Communication Review, 2, no. 2 (1998).

[3] A. EPHREMIDES, J.E. WIESELTHIER, AND D. BAKER, A design concept
for reliable mobile radio networks with frequency hopping signaling,
Proceedings of IEEE, 75, no. 1 (1987) 56.

[4] J. JUBIN AND J.D. TORNOW, The DARPA packet radio network proto-
cols, Proceedings of IEEE, 75 no. 1 (1987).

[5] P. GUPTA AND P.R. KUMAR, The capacity of wireless networks, IEEE
Transactions on Information Theory, 46, no. 2 (2000) 388.

[6] M. GROSSGLAUSER AND D. TSE, Mobility increases the capacity of ad
hoc wireless networks, In INFOCOM 2000 Proceedings, 3 (2000) 1360.

[7] P. GUPTA AND P.R. KUMAR, Towards an information theory of large
networks: an achievable rate region, In Proceedings of 2001 IEEE
International Symposium on Information Theory, (2001) 159.

[8] S. TOUMPIS AND A. GOLDSMITH, Capacity regions for wireless ad hoc
networks, working paper.

[9] E. AYANOGLU ET AL. Diversity coding for transparent self-healing and
fault-tolerant communications networks, IEEE Transactions on Commu-
nications, 41 no. 11 (1993).

[10] A. TSIRIGOS AND Z. HAAS, Multipath routing in the presence of
frequent topological changes, IEEE Communications Magazine, 39, no.
11 (2001) 132.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003


	INFOCOM 2003
	Return to Main Menu


