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Abstract— The core-stateless service architecture alleviates the
scalability problems of the integrated service framework while
maintaining its guaranteed service semantics. The admission
control methods proposed to support core-stateless guaranteed
services have significant drawbacks. We propose a scalable and
robust distributed admission control architecture to support core-
stateless guaranteed services. Our architecture maintains high
network utilization while ensuring that resources are not over-
allocated. In our architecture, admission control is performed
at the ingress edge routers of a request on an edge-to-edge
path basis. A token-passing mechanism is used as the resource
management framework. The token helps in dynamic and fair
division of bandwidth and allows completely distributed resource
allocation on a link unless it is close to saturation. The edge
routers co-operate to provide fault tolerance effectively acting as
a resilient overlay network. Our admission control framework
can support statistical guarantees and diffserv architecture’s
premium service as well. The resource management part of
our architecture is well-suited to aid QoS routing algorithms.
Analytical and simulation results are presented to show the
effectiveness of our architecture.

Index Terms— Distributed Admission Control, Core-stateless
Guaranteed Services.

I. INTRODUCTION

IntServ [1] and Diffserv [2] are the two most prominent
architectures to support Quality of Service (QoS) in Internet.
The guaranteed service [3] model of Intserv can provide
per-packet delay guarantees but is not scalable because of
its requirement of per-flow state maintenance at all routers.
Diffserv is scalable because it does not maintain per-flow
states in core routers, however, it can not guarantee per-
packet delays but only guarantees per-flow bandwidth [4].
In [5], a novel core-stateless architecture was proposed which
retained the guaranteed service semantics of Intserv while
having scalability of Diffserv.

Like any other approach to provide QoS guarantees, core-
stateless architecture also requires an admission control frame-
work so that network resources are not over-allocated. Any
admission control method to support guaranteed services in
core-stateless architecture should have the following proper-
ties:

• Scalability: The mechanism should scale in number of
flows and number of routers since scalability is the
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motivation behind the core-stateless approach in the first
place.

• Zero False Positives: Since the aim is to support guaran-
teed services, a request should only be admitted if there
is sufficient bandwidth to support it along its path.

• High Network Utilization: Ideally the mechanism should
be able to allocate the entire link capacity if need arises
and still maintain the zero-false-positives property.

• Robustness: The architecture should be able to gracefully
handle any malfunctions like node failures, link failures
and partial reservation failures.

As described in section VI(Related Work), the admission
control methods proposed in literature are found lacking on
one or more of these properties and hence are not suitable
candidates to support core-stateless guaranteed services. The
non-availability of such a solution is because the problem
of performing distributed admission control is inherently
hard. The following observation made in context of core-
stateless admission control by Stoica and Zhang [5] sums it
up perfectly: “Maintaining consistent and dynamic state in a
distributed environment is itself challenging. Fundamentally,
this is because the update operations assume a transaction
semantic, which is difficult to implement in a distributed
environment.”

In this paper, we propose a new distributed, scalable and ro-
bust method of performing admission control to support core-
stateless guaranteed services. To the best of our knowledge,
our architecture is the first fully distributed architecture which
decouples control plane from core routers and supports core-
stateless service guarantees. It maintains the core-stateless
semantics by performing admission control at edge routers
on an edge-to-edge path basis. The basic framework of this
architecture is provided by our prior work [6] where we used a
token-passing mechanism to provide per-flow bandwidth guar-
antees without modifying the core routers at all. Essentially,
the underlying philosophy is that of co-operative networking
highlighted in context of application-level co-operation for
content distribution in [7]. In our case, the edge routers co-
operate for resource management, admission control and fault-
tolerance.

The edge routers use a token-passing mechanism as a basis
for resource management. All edge routers allocating resources
on a link are allowed to allocate resources in parallel until
some edge router senses imminent over-allocation. In such
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a case, the link is marked and the admission control on
the link is controlled using the token. The scalability of our
architecture emerges from the fact that no co-ordination for
resource allocation is needed unless a link is very close to
saturation. In case the token controlled regulation is needed,
anticipatory reservation is used to amortize the delay in
responding to requests. We prove that our admission control
algorithm has the zero-false-positives property (which is a
must for supporting guaranteed services). We show that our
architecture is highly scalable, robust and maintains high link
utilization.

Although our aim is to provide distributed, scalable and
robust admission control framework for core-stateless guar-
anteed services, our architecture can be used in conjunction
with other QoS approaches as well and thus can support ser-
vice semantics other than guaranteed services. Moreover, the
resource management component of our architecture provides
a scalable way to provide accurate link-state information to
QoS-routing algorithms operating in a domain.

II. NETWORK MODEL & PROBLEM STATEMENT

We assume a network domain to be a collection of edge
and core routers. The edge routers are the ingress and egress
points for all traffic using the network. The core routers switch
the traffic among the routers of the domain. The network
uses a link state routing protocol like OSPF [8] so that the
topology information is available at all edge routers. This is
necessary because the edge routers perform admission test and
reserve bandwidth on entire edge-to-edge paths rather than
using the conventional hop-by-hop reservation semantics. We
assume that some route-pinning mechanism like MPLS [9] or
IP source routing is deployed in the network for intra-domain
route pinning (which is a must for guaranteed services). The
reservation request is signaled using a simple overlay-based
version of RSVP as described in [6] or [5]. Effectively, both
these mechanisms ensure that a flow treats the ingress to egress
path in a domain as a virtual link.

In this framework, our aim is to define a method of
performing admission control and reserving bandwidth on
entire edge-to-edge paths of flows. On receiving a reservation
request, the ingress edge router performs admission test on
ingress-to-egress path for the flow and if the flow is admitted,
it reserves the required amount of bandwidth on all links along
the path. The admitted flow is pinned to the assigned path. This
mechanism of admission control and bandwidth allocation
would provide per-flow guarantees when used in conjunction
with different core-stateless scheduling mechanisms [5], [10],
[11].

The key to any admission control mechanism to support
guaranteed services is to have the zero-false-positive property.
We prove that this property holds in our architecture. Other
measures to test the performance of our architecture are:

1) Response Time: The time it takes for the network to
respond to a reservation request. The response may be
positive or negative depending on the network state
perceived by the ingress edge router. Note that the
response time is intrinsically linked to the scalability
of a mechanism.

2) Utilization: The fraction of link capacity that can be
allocated at a given time. From an ISP’s point of
view, utilization is the most important factor. A good
admission control mechanism should keep utilization at
a high level.

Response time is the main criterion that concerns the end
user. It is noteworthy that to have the best possible response
time, an edge router could instantly admit or reject the request
without taking into account available resources. The objectives
of maintaining high utilization and zero-false-positives guard
against being too pessimistic or too optimistic while taking an
admission decision.

III. DISTRIBUTED ADMISSION CONTROL

In this section, we describe how the ingress edge routers
co-operate to perform admission control. First we give the
basic technique for which we prove the zero-false-positives
property. The basic method has high utilization and is scalable
in number of flows because the requests are handled entirely
on ingress edge routers. However, it has limited scalability in
number of edge routers and is not robust. Then we describe
two enhancements, called anticipatory reservation and link
marking, to the basic mechanism to make the admission
control scalable in number of edge routers and robust against
various types of malfunctions while maintaining the other
properties. The resource management framework of the basic
admission control technique is retained in the anticipatory
reservation and link marking techniques and hence is described
here first.

A. Basic Admission Control

The basic admission control technique relies on a simple
token passing protocol. In [6], we described a similar token-
passing protocol for providing per-flow bandwidth guarantees
without modifying any core routers1. This paper shows how
the framework can be modified for scalable admission control
in core-stateless networks.

1) Resource Management: We treat the edge routers of the
domain as a logical token ring. A special packet, called the
token, is circulated around the logical ring in a pre-determined
sequence. Initially, the token contains the capacities of all
the links the network2. Thus, if the network has m links
l1, l2, . . . , lm, the content of the token is essentially a set
C = {C1, C2, . . . , Cm}, where Ci represents the available
capacity of link li. On receiving the token, an edge router
updates its view of the network state using the contents of
the token and updates the contents of the token using the
information about the flows it has admitted since the last

1In [6] we assumed an architecture where the domain had legacy core
routers which were unable to distinguish between best-effort and QoS packets
and only had FIFO scheduling. As a result, the only possible way of service
differentiation was to use co-operative flow control at edge routers. Here we
are not concerned with best-effort flows and also assume some specialized
mechanism deployed in the network, e.g. core-stateless scheduling, in order
to provide the desired service. The problem we address in this paper, is to
provide distributed, scalable and robust admission control in such networks.

2There can be many tokens with each carrying a subset of the links of the
domain. However, each link should be part of only one token.
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Fig. 1. An example illustrating the working of basic admission control mechanism. There are 3 edge routers labeled 1, 2, 3 and one core router labeled C.
All links are assumed to have 10 units of bandwidth. The token circulates around the network in the order 1,2,3 as shown in (A). The token contents are
shown in the tables in each of the figures as it is circulated. The black arrowhead represents the edge router which currently has the token and the token
contents are shown just after the router has forwarded the token. (A) Token is at router 2. A request for 4 units of bandwidth for flow f1 going to router 3
arrives at router 1. The request is enqueued at router 1. (B) Router 1 receives the token and finds sufficient bandwidth in links 1 → C and C → 3. Flow f1
is admitted, the token contents are updated as shown and passed to router 2. Request for flow f2 arrives at router 2 with destination router 3 and requiring 3
units of bandwidth. The request is enqueued at router 2. (C) Router 2 receives the token and finds sufficient bandwidth on links 2 → C and C → 3. It admits
f2 and updates the token contents. (D) Token is at router 3. Flow f1 terminates and another flow f3 arrives at router 1 requesting 2 units of bandwidth with
destination router 3. Router 1 immediately admits f3 allocating it some bandwidth released by f1. (E) Router 1 receives the token and updates its contents
by adding the bandwidth released by f1 minus the bandwidth used by f3.

arrival of the token. It then sends the token to the next edge
router in sequence.

2) Admission Control: Clearly, while state at an edge router
becomes consistent within one token circulation delay, over-
allocation of link bandwidth is still possible when different
edge routers allocate bandwidth on the same link at the same
time. To alleviate this problem, the basic admission control
mechanism uses the token as a semaphore. The edge routers
treat the network state as a common resource and the token
governs which edge router has the right to change the state
of that resource. Thus, on receiving a reservation request,
an ingress edge router does not take admission decision
immediately. Instead, the request is buffered till the router
receives the token. Then the router performs admission test
using the network state contained in the token. If the flow is
admitted, it subtracts the reserved bandwidth from the links
on the flow’s path3. This is repeated for all waiting requests.
Once all requests have been served, the token is sent to the
next router. However, a request can be immediately admitted
if some flows terminate after the token was last released and
if the terminated flows have left sufficient bandwidth on the
ingress-to-egress path of the new request. The basic admission
control method is illustrated in fig 1.

3) Zero-False-Positives Property: Zero-false-false positives
property is a must to support guaranteed services. A simple
proof that the property holds in the basic admission control
mechanism is given below.

Theorem 1: The basic admission control method has the
zero-false-positives property.

Proof: The proof follows by induction on network state.
Consider an edge router which receives the token indicating
an available capacity of Ci on a link li. If the edge router

3If the network has the capability of having multiple paths between an
ingress-egress pair (for example, using MPLS), the flow can be assigned to
any path which has bandwidth to support it.

allocates some capacity c to a flow on li, then Ci should be
at least equal to c and available capacity on li is set to Ci − c
(which is non-negative). Thus, a link’s available capacity is
always non-negative when a token is received at an edge router
and when it leaves it for the next router in the ring. Since a
flow is admitted only if there is enough bandwidth on the path
it follows and the available bandwidth on the path is never less
than the actual available bandwidth, an admitted flow cannot
be a false positive.4

4) Properties of Basic Technique: As proven, the basic
mechanism has the zero-false-positives property and thus can
support core-stateless guaranteed services. It is easy to see that
the trade-off here is to be absolutely sure about the available
bandwidth (resulting in zero-false-positives) while having a
worst case response time equal to one token circulation cycle
delay. Note that, the token circulation delay could be kept
to a minimal level by treating the token as a high priority
packet and thus letting the network size govern the token
circulation delay. For large networks, the token circulation
duration could be large enough to make the response time
to requests unacceptably high. Implicitly this means that
the basic admission control mechanism is not scalable in
number of edge routers thus limiting its usefulness only to
small domains.5 As observed in context of IP telephony, it
is meaningless to try and have a call-setup delay which is
imperceptibly small for humans [13].

Another feature of this mechanism is that it results in a
high utilization. A request is enqueued at its ingress edge

4The actual available capacity might be more than that reported in the token
because some reserved flow might have terminated and the released bandwidth
may not have been accounted for in the token at a given instant.

5One measure of acceptable delay for response times might be the standard
target response times required by the ITU standards for telephony [12]. The
average target values are 3 seconds, 5 seconds and 8 seconds for local, toll
and international calls respectively with the corresponding 95th percentiles
set at 6.0, 8.0 and 11.0 seconds respectively.
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router until the router gets the token. If there is sufficient
bandwidth on a path to the request’s destination egress router,
the request is admitted. Thus, the only case when a request
is denied while there are sufficient resources is when enough
resources are released on the flow’s bottleneck link during the
last token cycle and the corresponding ingress routers have
not yet updated the token since their termination. Clearly, if
the token circulation time is small, the number of such false
negatives will be small. Moreover, the ingress edge routers
can allocate bandwidth to new requests out of the bandwidth
released by terminated flows.

Finally, the robustness of this simple protocol is better
than that of a centralized broker based system. We treat the
token to be the highest priority packet in the network to
limit the circulation delay, making the token being dropped
an improbable scenario. Token loss due to equipment failure
can still occur but it is easier to deal with (as described in
section III-D) than a centralized broker node failing.

5) The Need for Improvement: In a larger perspective, the
admission decision being taken only at one edge router at a
time is essentially the same as centralized admission control.
Instead of request being sent to the centralized broker, the
perfect knowledge of the broker comes to the corresponding
edge router. Thus, while this method exhibits the zero-false-
positive and high utilization properties of a centralized broker,
its scalability is limited because of the response time being
proportional to the token circulation delay. Furthermore, while
the single point of failure problem is alleviated and recovery
process simplified, a token loss due to equipment failures
could lead to service unavailability. In subsequent sections, we
show how we make our mechanism highly robust and scalable
while maintaining its high utilization and zero-false-positives
properties.

B. Anticipatory Reservation

A simple enhancement to the basic technique can reduce the
response time significantly while maintaining the zero-false-
positives property. There are two key observations with respect
to the basic mechanism that lead to this enhancement:

• The prohibiting portion of the basic technique is that
the edge routers perform admission tests sequentially.
Allowing them to perform admission tests on the requests
as they arrive, in parallel, would reduce the response time
significantly.

• The routers are allowed to allocate bandwidth to flows
from the bandwidth released by terminated flows. Thus,
increasing the size of this available bandwidth pool at
each edge router would allow them to allocate more
bandwidth to new requests without having to wait for
the token.

These observations lead to a new model which we call
the anticipatory reservation model. Under this model, when
an edge router receives the token, along with deciding the
admission status of the waiting requests, it reserves a small
fraction of bandwidth on all the network links in anticipation
of new requests arriving. This bandwidth is also subtracted
from the available bandwidth values reported in the token.

Conceptually, this bandwidth can be considered allocated to a
dummy flow which terminates immediately after the token is
sent from the router. Clearly, the zero-false-positives property
holds with the proof remaining identical to that for the basic
mechanism.

The trade-off here is between response time and utilization.
When an edge router reserves extra bandwidth, the new flows
whose arrival it anticipated, may not arrive at all. Instead a
new request arriving at another edge router might have to
be rejected because it does not see enough resources when
actually the resources are available (and needlessly reserved
by the first edge router). Thus, the mean response time is
reduced while increasing the chances of false negatives.

This trade-off limits the amount of extra bandwidth that
an edge router can reserve on a link. Clearly, this mecha-
nism is only useful when the available bandwidth is scarce
because waiting for the token in an uncongested network is
meaningless. Moreover, the robustness of this mechanism is
only slightly better than the basic method because token loss
could still lead to service unavailability despite having ample
resources available. Link marking technique is designed for
admission control in such uncongested network.

C. Link Marking

When the network is uncongested, it is overkill to wait for
token for admission test because resources are available with
a high probability for everyone. Under such conditions, link
marking is used along with anticipatory reservation.

The idea is to allow all edge routers to allocate bandwidth
on all unmarked links without waiting for the token. While
the token is constantly circulating to update the network state
at edge routers as described in section III-A.1, it only acts as
admission control semaphore for the marked links. Initially all
links are unmarked. On sensing imminent link over-allocation,
an edge router marks the link. Once a link is marked, only the
edge router having the token can allocate bandwidth on that
link. Similarly, if the available bandwidth increases beyond a
threshold, the link is unmarked and is available for unrestricted
allocation.

Since all edge routers can simultaneously allocate resources
on an unmarked link, the response time is reduced to the lowest
possible level. However, we would have a non-zero probability
of false positives if the parallelism in admission control is
not controlled. This could happen when edge routers see a
sufficient amount of bandwidth to admit all the requests that
they get but as a whole the number of requests exceeds the
available bandwidth.

Thus, there are two important issues to be addressed in order
to use link marking technique:

1) How to control the simultaneity in allocation of re-
sources so that the zero-false-positives can be guaran-
teed.

2) How does the transition between link marking and
anticipatory reservation techniques take place.

1) Controlling the Parallelism: Multiple edge routers allo-
cating bandwidth on the same link at the same time can result
in violation of zero-false-positive property. In order to prevent
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this from happening, we need to limit the maximum allocation
by an edge router on a link. It is possible to statically limit
each of the N edge routers to a maximum of 1

N allocation.
But static partitioning would result in under-utilization because
some edge routers may not allocate resources on a link at all
and the ones that do, might do so in different proportion.
Hence, limiting the maximum allocation (link partitioning)
should be done dynamically taking into account the actual
load on a link originating from the given edge router. The
following theorem allows us to do so.

Consider a set of N nodes labeled e1, e2 . . . , eN having
constituent-values u1, u2, . . . , uN for some common variable
U which is defined as

∑N
i=1 ui. The nodes use token passing to

update the value of U so that it reflects the recent values of all
nodes. Let the token circulation be started at node e1 going in
order e2, e3, . . . , eN , e1. The time from the initiation of token
circulation is divided into cycles where tth cycle starts at the
time when the token leaves e1 the tth time and ends when
e1 receives that token after the circulation. Let ut

j represent
the value reported by router ej in the tth token circulation
cycle. If the node receives U ′ as the value in the token in the
t + 1th token cycle, then it updates it to U ′ − ut

j + ut+1
j . Let

the last value of U seen in the token at node ei be Ũi. In these
circumstances, the following theorem holds:

Theorem 2: At any given instant, Ũi for all nodes ei is at
least equal to

∑N
j=1 min(utj

j , u
tj−1
j ) where tj is the last token

circulation cycle in which node ej reported its value.
Proof: The proof follows from the observation that

Ũi is the summation of last N values used to update
the token contents when the token leaves router ei. The
stalest possible value of Ũi at node ei is just before ar-
rival of the token (all other nodes will have a more re-
cent value). Consider that the token is just arriving at
node ei in the tth circulation cycle. The last 2N re-
ported values that were used to update the token contents
are ut−2

i , ut−2
i+1, . . . , u

t−2
N , ut−1

1 , ut−1
2 , . . . , ut−1

N , ut
1, . . . , u

t
i−1.

These values contain the last 2 reported values by each node
(and hence also the minimum of the last two reported values
of each node).

Just before the arrival of the token, the U value seen by
node ei is the sum of the second to the (N + 1)th values in
the above set of 2N values.

Ũi =
∑N

j=i+1 ut−2
j +

∑i
j=1 ut−1

j

≥
∑N

j=i min(ut−2
j , ut−1

j ) +
∑i−1

j=1 min(ut−1
j , ut

j)
Hence, Ũi is at least equal to the sum of minimum of

last two reported values by all nodes. After ei updates
the token contents, the set of last 2N updates becomes
ut−2

i+1, u
t−2
i+2, . . . , u

t−2
N , ut−1

1 , ut−1
2 , . . . , ut−1

N , ut
1, u

t
2, . . . , u

t
i

which leaves a similar invariant for node ei+1.

This theorem is general and applies to any variable which
is updated in a similar manner as the updation of U above. In
our case, the value we pass around is the request load for that
link. Request load refers to the sum of all reservation requests
for the link, which are active or which arrived during the last
estimation window. The estimation window size that we used

is the mean flow duration which is calculated using exponential
averaging. Note that the requests which arrived during the last
window includes the requests that are queued or which were
rejected. Thus, each edge router ei has an estimate ui of its
share of the total request load on the link.

We use the above theorem in controlling parallel allocation.
In our context, the theorem says that the total request seen by
any edge router at any instant is an upper-bound on the sum of
the minimum of last two reported values by all edge routers.
Thus, ∑N

j=1 min(utj

j , u
tj−1
j )

Ũi

≤ 1

for all routers ei where tj is the last cycle in which router
ej updated the token. Thus, at any instant, if the maximum
that an edge router ei, is allowed to reserve on the link (with

capacity C) is
C.min(uti

i
,u

ti−1
i

)

Ũi

, the link bandwidth is never
over-allocated. It is important to see that the practicality of
our approach arises from the fact that for computing its share
of a link, an edge router just needs the last two values that it
used to update the token, along with the last aggregate request
load value that it received from the token.

By using the above allocation limit, we ensure two things:
1) The zero-false-positive property is maintained and 2) Within
one token circulation cycle, each edge router is entitled to its
fair share of the link (given by its fraction of request load).
This fast convergence to fair division of link bandwidth is a
salient feature of our architecture. Moreover, only the routers
that are using a link have a share on it.6

2) Limitation of Link Marking: Clearly, under low load
conditions, an edge router’s share of a link would be sufficient
to satisfy all the requests that arrive. Hence, we have full par-
allelism in resource allocation and a link need not be marked.
Under heavy load, however, we may need to revert to the
anticipatory reservation control. This is because even though
the above theorem guarantees that the combined maximum
limits of all edge routers at any instant is never more than the
capacity, the theorem does not predict the future states. For
example, consider a case where an edge router has allocated
its entire share of bandwidth on a link. When it receives the
token in the next cycle, it finds that its fair share has reduced.
This could happen when another router’s request load has a
sudden increase causing an increase in that router’s share.
Thus, if the network never marks the links, the only way to
have a guaranteed prevention of over-allocation is to revoke
the bandwidth allocated. Clearly, this is not a desirable option.
A graceful alternate to handle such a case is to switch to the
anticipatory reservation model.

3) Switching to Anticipatory Reservation: The case of
possible over-allocation described above, provides an implicit
signal to move to anticipatory reservation based admission
control. Note that it is likely that the above case occurs when
the request load on the link is high. This is so because the
allocation limit of the over-allocating router is insufficient to
accommodate all its requests and at the same time leave suffi-
cient bandwidth to release to revert to its new fair share. The

6In practice, if the routers do not have any request load on a link, they can
use dummy request load to keep some portion of the links for their own use.
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maximum allocation limits of all edge routers are allocated
dynamically and fairly, which means that the request load for
other routers in the network is also high. A combination of
the two arguments shows that in all likelihood, the link must
be close to saturation when such a possible over-allocation
occurs.

Fortunately, we can have a smooth transition into the antici-
patory reservation phase while still maintaining the zero-false-
positive property. The router which senses the imminent over-
allocation (the router which would have to revoke allocations
to remain within its fair limit), serves as the starting point
for anticipatory reservation phase. It marks7 the link under
consideration and substitutes the request load field of the link
with its actual allocation on the link. The other routers seeing
the link marked for the first time, add their actual allocations
on the link in the field. After one circulation cycle, the link
is effectively available for anticipatory reservation control.
During the cycle in which this switching takes place, the
routers are only allowed to allocate the bandwidth that was
released by some flows which terminated during the cycle.

The transition back to link marking phase occurs when a
router sees that the link usage has gone down below a certain
threshold. The transition phase is the same as described for
switching to anticipatory reservation.

An important point that should be noticed here is that the
the token could have some links unmarked and some using an-
ticipatory reservation. This is a key feature of our architecture
because the congested links of the network form part of the
same token that carries information about uncongested links
as well. Thus, parallel allocation can continue on uncongested
paths despite some links being congested.

D. Robustness

At an initial glance, this architecture may appear very fragile
because of its susceptibility to token loss. In fact, as described
in [14], this architecture of co-operating edge routers can
actually be highly fault tolerant and quick to recover from
network failures when it operates as a resilient overlay network
(RON).

We treat the token as the highest priority packet in the
network effectively reserving some bandwidth along its cir-
culation path. However, this overhead in terms of bandwidth
is distributed across the entire network. This minimal overhead
in making the token the highest priority packet leads to a major
benefit in that it is unlikely to be dropped inside the network.
Using a centralized broker node as in [11] is significantly
worse because each edge router has to reliably communicate
each reservation request and flow termination message to the
broker. Moreover, all edge routers sending requests to the
broker would lead to high overhead on the links leading to
the broker node.

Having token as the highest priority packet would lead to it
not being dropped. However, a router holding the token or a
link carrying the token could fail. In such a case, the RON
based technique of maintaining a robust overlay is useful.
The edge router ring is essentially an overlay of admission

7Marking requires using 1 bit per link in the token.

control nodes. Since our purpose is maintenance of the logical
ring structure, instead of pinging all edge routers, each router
can periodically ping its one and two hop ring-neighbors
(assuming at most one router failure at a time) to be sure that
they are alive. As soon as the failure of a neighbor router is
detected (for example, if k pings were unanswered), the token
could be routed around the failure to the second hop neighbor.

In case the failed router had the token, there is a need
to regenerate the token. This is easily accomplished using a
simple technique. The router next in the token sequence to the
failed router, would have detected the failure of its previous
router. Thus, it can contact its two-hop neighbor previous to
the failed router to check the sequence number of the last token
that it had sent. If the token sequence number that neighbor
sends is higher than what it had last received, it would know
that the failed router took the token with it. It then creates
a new token (tags it using a flag) and puts the local values
that it last reported in the token. Seeing a new token, the
other edge routers, add their last reported values (request load
or actual allocation depending on whether a link is marked
or not) in the token and after one token circulation cycle
the token contents are consistent and the normal circulation
process continues. Note that, this procedure is necessary to
eliminate the resource share of the failed router and thus to
ensure soft-state semantics. A similar technique is used for
routing around link failures.

A significant advantage in using the link marking technique
is that at any given point of time, the link bandwidth is
apportioned to routers according to their fair share (based on
request load). Thus, in case of token loss, while the process
of regenerating the token takes place, the edge routers can
continue to operate in the fair share of bandwidth that they
got before the token was lost. The fast recovery from token
failure ensures that unless drastic traffic changes occur within
a few seconds, the routers will keep on operating within
their fair shares without noticing the failure. In contrast, if
the central broker node fails, the entire network’s admission
control mechanism fails and no requests can be processed until
the node comes back up. Similarly, if a link fails, certain
edge routers might not be able to communicate at all with
the broker node until the network routing creates a new path
between them. As shown in [14], a RON is significantly
better than having to wait for routing updates to provide
failure information. Moreover, having a centralized control
node leads to the formation of hot spot in the network. Thus,
congestion and link failures lead to unavailability problems
in any architecture relying on a central node. Essentially,
our architecture moves the possible failures from hardware to
software. The key advantage obtained form this transformation
is that if a packet is dropped, it could be regenerated, whereas
a node crash requires some time (possibly human intervention)
before it can come up again.

Lastly, our architecture doesn’t suffer from the inconsistent
state problem caused by partial reservation failures. Since we
are using an overlay-based version of RSVP and the edge-to-
edge path is just a virtual link to RSVP, the soft-state semantics
of RSVP will ensure state consistency at the edges (the core
routers are not affected by RSVP in any way).

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



Ingress 1

Ingress 2

:

Ingress N

Egress

Core
Single link on which
performance is measured

Fig. 2. The topology on which simulations are run. There are N ingress
routers connected to one core router. The core router is connected to the egress
router by a single link.
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Fig. 3. The response times to individual requests around the time that the
link is marked.

IV. SIMULATION RESULTS

In this section, we show some simulation results showing
the effectiveness of our admission control architecture. As the
zero-false-positives property of our mechanism has already
been proven, the simulations are primarily aimed at showing
the level of network utilization and the scalability of our
architecture in number of flows and number of routers.

We used a simple single link topology shown in fig. 2. A
single link connects a core router and the egress edge router
with capacity varying across simulations. The core router is
also connected to a set of ingress edge routers (the number
of edge routers is varied) with links of infinite capacity with
propagation delay varying across simulations. Recall that, all
edge routers treat each link as a single entity irrespective of
where it is located in the network. Thus, the key criteria
that governs the performance of our architecture is not the
underlying topology but (1) the number of contending ingress
edge routers, (2) the capacity of the link (relative to that of an
average request) (3) the rate at which traffic intended for the
link arrives and (4) the token circulation delay. We evaluate
our architecture by varying these parameters while measuring
the performance on a single link. The default values of the
simulation parameters are: core-egress link bandwidth = 20000
units, propagation delay of access links (ingress-core links)
= 1ms, number of requests arriving during the simulation
= 40000, request arrival rate = 50 requests/sec, mean flow
duration = 500 sec exponentially distributed.

For all simulations, we assume that each flow requests 1 unit
of bandwidth at a time. The arrival of requests is assumed to be
Poisson with mean varying over different simulations. The pro-
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Fig. 4. The distribution of link utilization levels at the time when false
negatives occur.

cessing time per-request is assumed to be a constant 0.5ms.8

The offered load is controlled using different mean request
arrival rates and different flow durations. Each simulation was
run 10 times on different traffic pattern files generated with
the same control parameters and the results show the mean of
these runs.

The first simulation intends to show the relative differences
between the parallel allocation phase (where link is unmarked)
and the token-controlled phase (where link is marked) of the
admission control framework. For this simulation, the number
of ingress routers was set to 50 with a request arrival rate of 50
request/sec (with a mean flow duration of 500 sec implying
an offered load of 25000 units/sec). The response times to
individual requests in our architecture are shown in fig 3. A
small portion of the x-axis is shown with the center being the
point where the link gets marked. The plot has two classes of
points representing the response times for accepted requests
and the rejected requests. As the dark line at the bottom shows,
before the link gets marked, all the requests are responded
to within 0.5ms (the minimum possible time). The response
times are higher after the point when link is marked. Hence,
for response times to remain small, it is essential for a link to
remain unmarked for as long as possible.

Another thing evident from the figure is that the number
of accepted requests after the link gets marked is relatively
lower than the number of rejected requests. Note that this
depends on the mean flow duration which is expected to
be relatively high for flows which request QoS. Hence, in
the anticipatory reservation phase, we would expect more
requests being rejected than accepted and more acceptances
than rejections in parallel allocation phase. This is a desirable
feature because the mean response time for accepted requests
would be lower than the mean response time for rejected
requests. Having a higher response time for rejected requests
is not worrisome because they are rejected anyway. Buffering
these requests just gives them an extra chance to be accepted
in case another flow terminates.

The second simulation is aimed at showing the effectiveness

8We ran a simple test on a 1Ghz Pentium machine running Linux 2.4.9 to
perform admission test for requests in a network of 18 edge nodes with an
average of 5 hops per path and found the mean time per request to be around
0.5ms over 10000 requests.
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of our architecture in terms of utilization. The metric we
chose for this purpose is the link utilization level when false
negatives occur, i.e., if a request is denied even when requests
are available, we would like to know how much resources
were available at the time. For this simulation we set the
core-egress link capacity to 20000 units and had 50 ingress
routers. 40000 requests arrive at the routers with the first 20000
of them arriving at 30 requests/second with equal probability
of arrival at each router. The next 20000 requests arrive at
70 requests/second with one of the routers having 10 times
higher probability of being the ingress. The reason behind
using such a traffic arrival pattern was to test the architecture
where there is sudden traffic pattern change at the time
when link is close to be marked. The histogram shown in
fig 4 shows the actual link utilization levels when the false
negatives occurred in the simulation. The effectiveness of our
mechanism is evident from the fact that false negatives occur
only after link utilization is above 99% mark. We found this
to be true across different simulation scenarios with different
traffic patterns. In fact, one of the key reasons to use this
contrived traffic pattern was that in our simulations with
constant traffic patterns, we found similar high levels of link
utilization before false negatives occur.

The ability of our architecture to have high link utilizations
before having false negatives is explained as follows: There
are two sources which may cause false negatives: 1) Flows
may have terminated leaving enough bandwidth for a new
flow to be admitted, but this information is not available to
the edge router at the time it takes admission decision and 2)
Due to dynamic nature of request load and the finite delay
in information propagation introduced by the token, the sum
of shares of the link over all edge routers could be less than
its capacity. The impact of first cause is limited because the
ingress router of the terminated flow could immediately admit
new requests that arrive at it. Thus, the likelihood of a request
at another router becoming a false negative is very less. The
case where the ingress router of the terminated flow does not
have new requests and at the same time another edge router
rejects a request due to unavailability of this freed unit of
bandwidth, is likely to occur at a high utilization level anyway.
The second cause of false negatives not showing a significant
impact on the number of false negatives is an indication of the
ability of our architecture to quickly converge to fair shares of
the routers. Moreover, the buffering of requests when moving
into anticipatory reservation stage eliminates its impact in the
token-controlled regime. It is possible to construct pathological
cases where false negatives could occur at lower utilization
levels. However, in our simulations we did not see false
negatives occur at below 99% utilization levels in any runs,
with different network parameters, different traffic parameters
and irrespective of the link marking point (the utilization level
where allocation changes from parallel to token-controlled).

The previous simulation highlights the ability of our mech-
anism to keep utilization level high by not rejecting requests
if there are resources to support them. Thus, minimizing
response time becomes the main performance criteria to be
evaluated. As is evident from the first simulation (fig 3),
to have minimal response time, it is necessary for the link
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Fig. 5. The utilization levels at which the link was marked for the single
link case when the ingress routers are chosen uniformly.
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Fig. 6. The utilization levels at which the link was marked for the single
link case when one of the ingress router was 10 times more likely to get a
request than any other routers.

to remain unmarked for as long as possible. Thus, the link
marking threshold (the utilization level at which the link is
marked) is of utmost importance. Subsequent simulations aim
at testing the impact of various parameters on link marking
threshold.

First we test the impact of increasing number of routers
contending for the link. Note that, an increase in number
of routers increases the token circulation delay along with
the number of contenders for the same link. The number of
ingress routers is increased from 50 to 450 (in increments
of 100). The number of requests was set to 40000 and the
mean arrival rate into the system was increased from 10
flows arriving per second to 90 flows per second. The mean
flow duration is exponentially distributed with a mean of 500
second. The results in fig. 5 are for the case when the ingress
point of the flow was chosen uniformly and those in fig. 6
are for the case when one of the ingress routers had a ten
times higher probability of being the ingress point than the
other routers (leading to a biased traffic profile). There are
several points indicated by these figures: 1) In both cases our
admission control mechanism performs well by allowing the
routers to allocate more than 90% of the link capacity before
having to revert to anticipatory reservation. 2) Traffic bias does
not seem to make any significant difference in link marking
threshold indicating that our mechanism partitions links fairly
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Fig. 7. The impact of increasing link delay of access links between ingress
edge routers and the core routers on the utilization level at which the link is
marked.

10 20 30 40 50 60 70 80 90
85

90

95

100

105

arrival rate (flows/sec)

Li
nk

 M
ar

ki
ng

 T
hr

es
ho

ld

15000 units
20000 units
25000 units

Fig. 8. The impact of increasing link bandwidth of the link between core
and egress router on the utilization level at which the link is marked.

(otherwise the router getting a higher number of requests is
more likely to mark the link at a lower utilization level.)
3) Link marking thresholds tend to become constant with
increase in arrival rate. This is an indication that link marking
thresholds are more dependent on the network characteristics
than traffic characteristics. 4) These results hold even under
a heavy offered load (90 flows arriving per second requiring
1 unit bandwidth with a mean holding time of 500 seconds
gives roughly a 45000 units per sec load which is more than
twice the capacity of the link) 5) The link remains unmarked
under lighter request loads which again is an indication of the
mechanism’s fast convergence to fair sharing and its ability
to remain in unmarked phase for sustained durations under
relatively lower loads.

The next simulation result tests the impact of token-
circulation delay on our architecture. For this simulation we
had 450 ingress routers. The bandwidths of access links
connecting ingress routers to the core routers is infinite but
the link propagation delay on each link was set to 1ms, 3ms,
5ms and 7ms in different runs giving token circulation delays
of 0.9sec, 2.7sec, 4.5sec and 6.3sec. The other simulation
parameters were set to their default values. The link marking
thresholds under these conditions are shown in fig. 7. The link
starts getting marked at lower utilization level with increase
in propagation delay. This is expected because the number of

flows arriving at the router in a token cycle increases with the
circulation delay. Thus it is more likely to have used up its
entire fair share and hence more likely to have the need to
mark the token when its fair share shrinks. The link marking
threshold reducing to lower levels indicates the need to have
anticipatory reservation in order to maintain high utilization.

Finally, we test the impact of link capacity on our admission
control mechanism. For this simulation, we set the core-egress
link bandwidth to 15000, 20000 and 25000 units in 3 sets of
simulation and test their impact on link marking threshold with
40000 requests arriving at different arrival rates. The topology
has 450 ingress routers connected via infinite bandwidth link to
the core and with each link having propagation delay of 1ms.
The flow durations are exponentially distributed with mean
1000 sec. The utilization level at which the link is marked
is shown in fig. 8. As the available bandwidth increases, the
link marking threshold increases with it. This result indicates
that the link marking threshold is dependent on the ratio of
available bandwidth to the total offered load on the link. This
makes our mechanism fit well with the Internet architecture.
As we move towards the core of Internet, the available
bandwidth increases to very high levels. On the other hand,
the collective offered request load also increases in the core
because more routers would have flows utilizing the core. As
this result suggests, despite increase in the offered load in the
core, the increased bandwidth counters the possible reduction
in link marking threshold. Thus, at each level of links in
the Internet, the link marking threshold could be expected to
remain high thus requiring infrequent use of token-controlled
admission control.

The gist of all the above results is that our architecture
provides the ability to have all edge routers operate in parallel
over extended periods of time until a link is very nearly
saturated. These results effectively show both a high utilization
(when used with anticipatory reservation) and low response
time (because of very high degree of parallelism). Moreover,
having a high degree of parallelism along with a simple result
from basic queuing theory establishes the scalability of our
architecture vis-a-vis a centralized broker: N servers operating
in parallel gives roughly an N times improvement in the
mean response time over a single server because each of the
N servers would be serving 1

N requests (if the requests are
uniformly distributed) [15].

V. DISCUSSION

In this section, we discuss possibilities and issues regarding
our architecture. Primarily the focus is on how the token
passing mechanism could be useful for other purposes.

A. Support for QoS Routing

QoS routing is used to find suitable paths for flows under
the given network conditions. Assuming that the route is
decided at the ingress edge router, the correct state of the
network is needed at the edge for providing a good route to a
flow. However, this means that each link should be updating
the edge about its available bandwidth constantly. As noted
in [16], the overhead in updating link state constantly (with
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each observed change) is significant and hence the authors
propose that the links propagate updates only if their states
change “significantly” (e.g. the available bandwidth halves
or doubles). The distributed resource management of our
architecture would serve as an ideal mechanism to provide
the desired information to the edge routers at a minimal cost.

B. Statistical Admission Control

The discussion in the paper assumes that admission control
is meant for core-stateless guaranteed service. This makes the
zero-false-positive property of utmost importance. However, if
we wish to support only statistical guarantees, our architecture
needs to be modified slightly. In this case token passing can
be completely decoupled from the admission control portion
of the architecture. Thus, the token would only serve to
periodically update the network state at an edge router. The
admission decisions would be based on estimation of link state
based on the link state history reported by the token. For
example, a simple exponential averaging or Gaussian predictor
algorithm can give an estimate of the link state at any given
instant and the admission decision would be based on the this
estimate. The token periodically corrects any deviations in the
estimate. Note that the response time to requests in this case
is minimal, however there is an inherent trade-off between
network utilization and the number of false positives. We plan
to investigate this aspect of the token passing architecture in
future.

C. Using Traffic Prediction

The link marking mechanism just uses the lower of the
last two reported values (divided by the total traffic as seen
from the token) as the indicator of fair share. It does not
mandate a particular way of choosing the values to report.
This leads to an interesting question of determining which
functions provide the best view of the fair share under different
conditions. We chose to use request load (based on exponential
averaging) to serve as the indicator of fair share. On the other
hand, complicated traffic prediction algorithms may be used to
estimate an expected value of traffic. The better the algorithm,
the fairer the division of link bandwidth and the higher the
probability to remain in the unmarked phase.

D. Limitations

Relying on edge routers to perform complete path based
admission control has some disadvantages as well. Internet
is fundamentally a hierarchical network with topology infor-
mation available only in routing domains. At a higher level of
hierarchy, a domain is just a virtual node to which connectivity
is provided using BGP. Thus, using complete topology knowl-
edge limits our solution to edge-to-edge admission control.

For large networks, the number of links could be high
enough not to fit into a single token. In such cases, there
could be more than one tokens such that each link in the
domain is part of exactly one token. Moreover, different tokens
could circulate among different, possibly overlapping, subsets
of edge routers. For example, if a link is used only by a

subset of routers, the token carrying its information need only
circulate among the corresponding subset.

In general, devising any mechanism which uses the entire
Internet topology is neither feasible nor practical. We believe
that having per-domain QoS framework is much more likely
in practice rather than having a single framework across the
Internet. In this regard, our solution fits perfectly within the
purview of domain-specific protocols.

VI. RELATED WORK

Admission control has been a well-researched topic. The
main focus of this discussion is on the approaches explicitly
meant to support core-stateless guarantees. We also give a
brief overview of why modified versions of some of the other
solutions are unsuitable for the purpose.

In [5] admission control is performed hop-by-hop. Edge
routers maintain per-flow state and core routers estimate an
upper bound on the available link capacity on their adjacent
links and perform local admission test. While not maintaining
per-flow states makes this method scalable, the network can
remain underutilized because of over-estimation of aggregate
reservation on a link. This algorithm puts an additional burden
on core routers by requiring them to update the aggregate
reservation state at each packet arrival by performing com-
putations on the state carried in packet header. Lastly, the
correct functioning of the algorithm requires that maximum
inter-packet departure time for a flow’s packet be small(for
a reasonably small estimation window size). Thus, authors
propose sending dummy packets from edge, in case no packets
from a flow arrive at the ingress within the specified duration.

With these limitations in mind, a case for decoupling
control functionality from core routers in the core-stateless
framework was proposed in [11]. A bandwidth broker based
architecture was proposed where the ingress edge router
redirects a reservation request to a centralized broker node
which has the complete network state database. The broker
performs admissibility test and informs the ingress router
of the admission decision along with parameters (like rate,
delay and path allocated) for the flow. Since, the broker is a
centralized node this architecture is not scalable in number of
requests. This flaw is highlighted when we consider the case
where the rate of arrival of requests is high but the bandwidth
requested by each flow is small (for example, lot of requests
for VoIP calls on a gigabit link). Moreover, the robustness of
the architecture is questionable as it is a single point of failure.
In fact, even if the broker node is assumed to be fail-safe, link
failures, which occur quite frequently, could make the broker
unavailable to edge routers for long durations.

The scalability limitations of the centralized broker archi-
tecture were addressed in a recent work [17]. A two-tier
hierarchy of brokers was proposed where at the higher level
there is a central broker node which is only supposed to
maintain link state and allocates path-based quotas to edge
brokers. The edge brokers can allocate resources on paths to
individual flows as long as their quotas are sufficient. If an
edge broker’s quota on a path is used up, it requests additional
quota from the central node. Our architecture retains the
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scalability of this approach while being more robust because
it does not rely on a central node to control the allocation.
The single point-of-failure problem exists in this approach
because if the central node dies, the edge brokers would not
be able to allocate bandwidth once their quotas expire (despite
bandwidth being available). Lastly, this approach requires the
communication between central broker and the edge brokers
to be reliable in order to maintain consistency and the central
broker should be able to allocate and revoke quotas from edge
brokers without failure. In congested networks, the requests
and state updations might get delayed inside the network
resulting in an increased response time. We can leverage the
guaranteed service framework to reserve small amount of
bandwidth for token to ensure a fast transmission.

Another body of work exists which is core-stateless in na-
ture but is only aimed at statistical guarantees. The distributed
bandwidth broker architecture of [18] arranges brokers into
hierarchy. It is easy to see that the zero-false-positive property
could be violated here when different broker entities allocate
bandwidth on the same link at the same time resulting in over-
allocation. Measurement based admission control [19–21] is
another core-stateless approach for admission control which
is aimed at controlled load service in Intserv and in general
at providing statistical guarantees [22]. Admission control is
performed at edges (or endpoints) by taking decisions based
on service received by probes. This approach is fundamen-
tally unsuitable for guaranteed services because it relies on
QoS received by probes which may be incorrect because of
transient events like a burst of cross-traffic. Moreover, in a
comprehensive comparison of measurement-based admission
control schemes in [21], it has been shown that none of the
schemes were able to meet a target packet loss rate.

VII. CONCLUSION

Core-stateless architecture retains the guaranteed service
semantics of Intserv while having the scalability of diffserv.
We addressed the problem of providing admission control
support to a core-stateless network in a scalable and robust
fashion while maintaining the zero-false-positive property. In
our architecture, the edge routers perform admissibility test
for requests on an edge-to-edge path basis. Our method uses
a token passing scheme for resource management with the
token doubling up as a semaphore for admission control on
congested links. The token contents are used to dynamically
partition a link’s bandwidth among contending edge routers in
proportion to their traffic for the link. The routers perform ad-
mission control in parallel until one of them senses imminent
over-allocation on a link. At that point the token starts serving
as the regulator of allocation on that link.

Our simulation results are very promising indicating that
even under very high request load it is possible to perform
resource allocation in parallel without suffering in terms
of response time or utilization. Under different simulation
conditions the ability to fairly and dynamically partition link
bandwidth allows edge routers to serve requests independently
till very high utilization levels. These results need to be
verified in a real setting, possibly in a diffserv domain. Another

area worth investigating would be to formally establish the
interdependence of various parameters and their impact on
core-stateless admission control. Our work is a first step in
what we believe should be a concerted effort in studying
the fundamental and practical aspects of distributed admission
control for guaranteed services in core-stateless networks.
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