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Abstract— We consider the problem of wavelength assignment
in a reconfigurable bi-directional ring network with wavelength
converters. We show that for N -node P -port bidirectional rings, a
minimum number of �PN/4� wavelengths are required to support
all possible virtual topologies in a rearrangeably non-blocking
fashion, and provide an algorithm that meets this bound for con-
nected topologies using no more than �PN/2� wavelength convert-
ers. This improves over the tight lower bound of �PN/3� wave-
lengths required for such rings given in [1] if no wavelength con-
version is available. We also provide another algorithm that uses
more wavelengths yet requires significantly fewer converters. Both
algorithms are then extended to the case of unconnected topolo-
gies using at most one additional wavelength. Finally, we develop
a method that allows the wavelength converters to be arbitrarily
located at any node in the ring. This gives significant flexibility
in the design of the networks. For example, all �PN/2� converters
can be collocated at a single hub node, or distributed evenly among
the N nodes with �P/2� converters at each node.

Index Terms—Graph theory, combinatorics

I. INTRODUCTION

IN RECENT years, optical networks using wavelength divi-
sion multiplexing (WDM) technology have emerged as an

attractive solution for meeting rapidly growing demands for
bandwidth. WDM allows the same fiber to carry many sig-
nals independently as long as each uses a different wavelength.
Calls must therefore be routed and assigned to wavelengths
such that no two calls use the same wavelength on the same
link. This is known as the routing and wavelength assignment
(RWA) problem. Calls are additionally subject to the wave-
length continuity constraint, which requires that a call use the
same wavelength on all hops unless wavelength conversion is
available at intermediate nodes. If full conversion is available at
all nodes, the WDM network is equivalent to a circuit-switched
network; however, the high cost of wavelength converters often
makes it desirable to keep the amount of conversion used in the
network to a minimum.

There has been considerable work done in the area of finding
efficient algorithms for the RWA problem. The literature adopts
a number of different approaches to the problem. In the static
traffic model, the matrix of calls is fixed and does not change
over time. In the dynamic traffic model, the traffic matrix is
allowed to change over time to represent call arrivals and de-
partures.
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In the static model, the objective is typically to minimize the
number of wavelengths, converters, or other cost parameters
[2]. This problem was shown to be NP-complete in [3], and
thus the literature has focused on the development of heuristics
and bounds. Other approaches include attempting to maximize
throughput for fixed capacity [4], to minimize congestion for
a fixed traffic set [5], or to maximize the number of calls sup-
ported for a fixed number of wavelengths [6]. However, this
approach is limited in that it does not allow dynamic call setup
and removals.

The alternative is to use a dynamic model, where calls are
allowed to arrive and depart over time. One method of mod-
elling call dynamics is to adopt a statistical model for call ar-
rival rates and holding times and design algorithms to minimize
the call blocking probability. Numerous papers have focused
on blocking probability analysis under various approximations
for simple wavelength assignment algorithms such as the ran-
dom algorithm [7], [8], [9], [10], [11], [12] and first-fit [13].
However, due to the large state-space size of the problem, the
blocking probability of a WDM network for more sophisticated
algorithms is extremely difficult to analyze. As a result, most
statistical algorithms rely on simplifying approximations and
heuristics [14].

An alternative approach considers designing the network to
accommodate any traffic matrix from an admissible set. Call
arrivals or departures are equivalent to transitioning from one
traffic matrix to another. If the transitions can be accommodated
without rearranging any calls, the RWA algorithm is called
wide-sense non-blocking; algorithms which require call rear-
rangement are called rearrangeably non-blocking. For exam-
ple, [15] considers a traffic set such that the maximum load on
each link is bounded by some constant, and attempts to mini-
mize the number of wavelengths used at that given load; [16]
works on minimizing the wavelength converter usage for net-
works using a number of wavelengths equal to the maximum
link load. Another approach is taken in [1] by admitting any
traffic matrix where each node uses at most P ports. It is shown
that for the case of a bidirectional ring with N nodes and P
ports, a lower bound of �PN/3� wavelengths is required to
support the worst-case traffic set if no wavelength conversion is
employed. Moreover, in [1] a rearrangeably non-blocking RWA
algorithm is provided which achieved this bound. An online
extension based on these ideas was presented in [17] which ad-
ditionally attempts to minimize the number of rearrangements
required. The P -port model is very practical since the admis-
sible set is based on actual device limitations in the network.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



In this paper, we investigate new rearrangeably non-blocking
RWA schemes for this admissible set where wavelength con-
version is available.

A. System Model

We consider a bidirectional ring with N nodes. Adjacent
nodes are connected by two fibers: one supporting wavelengths
travelling in the clockwise direction, the other supporting wave-
lengths in the counterclockwise direction. The two fibers are
represented by a single bidirectional link, where each link can
support calls travelling in both directions on every wavelength.

A wavelength converter, if available at a given node, can be
used to switch a call arriving to that node on one wavelength
onto a different wavelength departing the node. If no conver-
sion is employed, a call passing through a node on one wave-
length must exit the node on the same wavelength. A traffic ma-
trix or traffic set consists of a set of calls that need to be set up in
the network. Each call consists of a source and destination pair.
A traffic set is connected if the directed graph corresponding
to the set of source-destination pairs is connected. In a single-
port network, each node is considered to have a single tunable
optical transmitter and receiver. Hence each node may at most
originate one call (using any available wavelength) and receive
one call (on any wavelength, possibly different from the one
used by the transmitter). In a P -port network, each node has P
transmitters and receivers, and hence can transmit and receive
P different calls. This is a natural problem to consider since
equipment constraints limit the number of ports each node has
available. The set of all traffic matrices which satisfy the P -port
requirement is called the admissible set. Routing and assigning
wavelengths to each of these traffic matrices is the RWA prob-
lem, considered in this paper.

We consider the problem of supporting any possible traffic
set in a P -port network in a rearrangeably non-blocking fash-
ion. In this context, there are a number of metrics which are
relevant to evaluating the performance of a RWA algorithm.
One is the worst-case number of wavelengths required by the
algorithm – the smaller the number, the better. Another is
the total number of wavelength converters the algorithm uses.
Since converters are expensive, an algorithm that uses convert-
ers sparingly is preferred. Finally, in general the converter re-
quirements may be different at each node. Certain distributions
may be more desirable than others depending on the design cri-
teria: in some cases, we may want a hub design where all con-
verters are placed at a single node; in others we may prefer the
converters to be distributed equally at all nodes. We consider
algorithms which attempt to design a RWA for these metrics.

In Section II, we derive a lower bound on the number of
wavelengths required to support the worst-case traffic set, and
present two RWA schemes for both connected and unconnected
traffic sets in single-port networks: an optimal algorithm which
uses the minimum possible number of wavelengths to support
all traffic sets, and a suboptimal algorithm which uses more
wavelengths but requires significantly fewer converters. A re-
sult from [1] is also applied to show that a significant number
of topologies require as many wavelengths as this lower bound
(i.e. the number is not artificially high due to a negligibly small
number of pathological cases). These results are extended to

multi-port networks in Section III. In Section IV we develop a
method for changing the location of wavelength converters in
a given RWA, and apply the method to the algorithms in the
previous sections.

II. SINGLE-PORT NETWORKS

A. The �N/4� Algorithm For Connected Rings

We consider here the case of a single-port network, and re-
quire that the RWA algorithm be able to route any connected
traffic set in a rearrangeably non-blocking fashion. Our initial
goal is to design a RWA algorithm which minimize the num-
ber of wavelengths used. The following theorem gives a lower
bound on the number of wavelengths required by the worst-case
traffic set for this network.

Theorem 1: For a single-port N -node bidirectional ring, at
least �N/4� wavelengths are required by the worst-case traffic
set for N even, and �(N − 1)/4� wavelengths for N odd.

Proof: Consider the case where N is even, and envision
a cut which divides the network into two sets of N/2 nodes
each. Since the nodes were formed in a ring, this cut consists of
two links. Consider a traffic set where each of the N/2 nodes
in one set wishes to communicate to one of the nodes in the
other set. In this case, a total of N/2 calls must cross the cut
in either direction, for a total of N calls. Since each link in the
cut can support at most two calls on a single wavelength (one
clockwise, one counterclockwise), a minimum of �N/4� wave-
lengths are required to support the calls across the cut. Similar
reasoning for N odd gives a bound of �(N − 1)/4�.

It is worth noting that this bound cannot be achieved by a
simple routing scheme such as shortest-path. To see this, con-
sider a ring with an even number of nodes N , and number the
nodes in increasing order from 1 to N in the clockwise direc-
tion. Consider the traffic set where each node ni sends a call
to node ni⊕[(N/2)−1]. (We use ⊕ to denote addition modulo
N .) Then shortest-path would route all calls in the clockwise
direction, with each call requiring (N/2) − 1 hops to accom-
modate it. Since there are N calls total, this would require at
least N · (N/2 − 1)/N = (N/2) − 1 wavelengths to support it.

We next describe the operation of our first RWA algorithm
and assert that it is optimal in the sense that it requires no more
than the lower bound of �N/4� wavelengths. The proof follows
the description.

Consider an arbitrary connected traffic set {c1, c2, . . . , cN}
consisting of source-destination pairs ci. We term a pair of calls
adjacent if the destination node of the first call is the source
node of the second. In a connected traffic set, it is always pos-
sible to traverse all calls in the traffic set in adjacent order; i.e.,
there are no sub-cycles within the traffic set. Therefore without
loss of generality we can renumber the calls so that they are in-
dexed in adjacent order; that is, ci is adjacent to ci⊕1 for every
i.

Denote the number of hops required to route a particular call
ci in the clockwise direction by Li. Denote the average number
of hops required in the clockwise direction by

L̄ =
∑N

i=1 Li

N
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Then the algorithm is as follows:
THE �N/4� ALGORITHM

1) TRAFFIC SET PARTITIONING: Let k = �N2/4L̄�.
Find a set of k adjacent calls with average clockwise hop
length L̃ less than or equal to L̄. Call this set the clock-
wise set. Designate all calls not contained in the clock-
wise set to be members of the counterclockwise set. (We
will shortly show that such sets always exist.)

2) ROUTING: Route all calls in the clockwise set in the
clockwise direction. Route all calls in the counterclock-
wise set in the counterclockwise direction.

3) WAVELENGTH ASSIGNMENT (CLOCKWISE SET):
Assign wavelengths to calls using a forward pass and a
reverse pass as follows: Index all calls cm in the clock-
wise set in adjacent order. Index the wavelengths λn in
arbitrary order. Initialize i = 1 and j = 1.

a) FORWARD PASS: In this part, beginning with the
first call and proceeding in adjacent order, assign as
many calls as possible to the first wavelength with-
out using conversion. When a call cannot be fully
assigned to the wavelength, assign it entirely to the
next wavelength (without conversion) and repeat,
until all �N/4� wavelengths are used. This is made
explicit below:
i) Assign call ci entirely to λj without using any

conversion.
ii) Increment i: i ← i + 1.

iii) If call ci can be assigned entirely to λj without
conversion, goto (i). Otherwise continue.

iv) Increment j: j ← j + 1.
v) If j ≤ �N/4�, goto (i). Otherwise stop.

b) REVERSE PASS: In this part, the remaining calls
are assigned to the wavelengths in the reverse of
the order they were filled in the forward pass, us-
ing converters as necessary. More explicitly:
i) Assign as much of the unassigned portion of call

ci to λj as possible.
ii) If ci is completely assigned, increment i and

goto (i). Otherwise continue.
iii) Using a wavelength converter, convert the last

hop of ci allocated in (i) from λj to λj−1.
iv) Decrement j: j ← j − 1.
v) If all calls have been assigned, stop. Otherwise

goto (i).
4) WAVELENGTH ASSIGNMENT (COUNTERCLOCK-

WISE SET): Repeat Step 3 with the counterclockwise set
in the counterclockwise direction.

We will refer to this as the �N/4� algorithm. The following
example illustrates the use of the �N/4� algorithm for a partic-
ular traffic set.

Example 1: Consider an 8-node ring, where �N/4� = 2.
Number the nodes from 1 to 8 in the clockwise direction. Con-
sider a traffic set consisting of the following calls, listed in adja-
cent order: (1,4), (4,6), (6,2), (2,5), (5,8), (8,3), (3,7), and (7,1).
We will apply the �N/4� algorithm to this problem.

The average clockwise hop length L̄ = 3, and k =
�N2/4L̄� = �16/3� = 5. Choose the clockwise set to be

3

5

7

1

2 4

68

3

5

7

1

2 4

68

(a) (b)

Fig. 1. (a) The routing and wavelength assignment of calls in the clockwise
set after the forward pass. The inner arrows represent calls on λ1, the outer
arrows are calls on λ2. (b) The complete RWA on the clockwise direction after
the backward pass.

the set of calls {(1,4), (4,6), (6,2), (2,5), (5,8)}, with aver-
age hop length L̃ = (3 + 2 + 4 + 3 + 3)/5 = 3 ≤ L̄.
The counterclockwise set then consists of the remaining calls,
{(8,3), (3,7), (7,1)}. Note that the average hop length obeys
L̂ = (3 + 4 + 2)/3 ≥ L̄ in the clockwise direction.

In the forward pass on the clockwise set, calls (1,4) and (4,6)
are assigned to the first wavelength, while (6,2) and (2,5) are
assigned to the second wavelength. This situation is shown in
Figure 1(a). In the reverse pass, the final call (5,8) is assigned
partly on each wavelength and employs a converter at node 6.
The final RWA for the clockwise set is shown in Figure 1(b).

In the forward pass on the counterclockwise set, calls (8,3)
and (3,7) are assigned to the first and second wavelengths, re-
spectively. In the reverse pass, (7,1) is assigned partly to both
and again requires a converter.

We make two claims regarding this algorithm. First, it is
always possible to find a set of k = �N2

4L̄
� adjacent calls with

average clockwise hop length less than or equal to L̄. Second,
using this algorithm, any admissible traffic set requires at most
�N/4� wavelengths and �N/2� converters. These claims will
be formalized as Lemma 1 and Theorem 2.

Lemma 1: There exists a set of n adjacent calls with average
clockwise hop length L̃ less than or equal to the average clock-
wise hop length of the entire traffic set L̄, for any 0 ≤ n ≤ N .
Furthermore, the N −n calls in the complement of that set have
average clockwise hop length L̂ ≥ L̄.

Proof: We will conduct a proof by contradiction. Suppose
there did not exist any set of n adjacent pairs with average hop
length less than L̄. In particular, this would imply that

1
n

· (L1 + ... + Ln) > L̄

1
n

· (L2 + ... + Ln+1) > L̄

· · ·
1
n

· (LN−n+2 + ... + LN + L1) > L̄

· · ·
1
n

· (LN + L1 + ... + Ln−1) > L̄

Summing the entire set of N inequalities, we obtain

L1 + · · · + LN > L̄N
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where the coefficient of each term Li is unity, since each Li is
involved in exactly n of the inequalities and is scaled by a factor
of 1

n . Equivalently,

1
N

· (L1 + · · · + LN ) > L̄

But since by definition L̄ is the average hop length, this cannot
be true. Hence there must exist a set of n adjacent pairs with
average hop length less than L̄.

The second half of the proof also uses contradiction. Suppose
for the remaining N −n calls, the average clockwise hop length
L̂ < L̄. From the definitions of L̂ and L̃, we have that

L̂ = Ln+1 + · · · + LN < (N − n)L̄
L̃ = L1 + · · · + Ln ≤ nL̄

Combining the preceding two inequalities and dividing by N ,
we then obtain

1
N

· (L1 + · · · + LN ) < L̄

which contradicts the definition of L̄ being the average hop
length.

For our purposes, we will mainly be interested in applying

Lemma 1 for the case of n = k =
⌊

N2

4L̄

⌋
in the proof of the

following theorem.
Theorem 2: Given any connected traffic set, the �N/4� al-

gorithm requires only �N/4� wavelengths and at most �N/2�
converters.

Proof: By Lemma 1, it is always possible for the algo-
rithm to find valid clockwise and counterclockwise sets. Con-
sider first the clockwise set. For simplicity, consider those cases
where the total number of wavelengths N/4 is an integer. (For
all other cases, fictitious calls can be added to increase N/4
to the nearest integer.) First note that since N/4 wavelengths in
an N -hop ring can support N2/4 contiguous hops of traffic. By
choice of the clockwise set, the average clockwise hop length in
the clockwise direction L̃ ≤ L̄. Then the total number of hops
required to accommodate the clockwise set, denoted by DC , is

DC = kL̃

≤ kL̄

=
⌊

N2

4L̄

⌋
· L̄

≤ N2

4

Since all required hops are contiguous due to the adjacency
of all calls in the set, the clockwise set fits in N/4 wavelengths.

Next consider the counterclockwise set, which contains the
remaining N−k calls. Denote the average clockwise hop length
L̂, and recall from Lemma 1 that L̂ ≥ L̄. Therefore the aver-
age counterclockwise hop length must be N − L̂. Denote the
total number of contiguous hops required to accommodate the
counterclockwise set by DW . Then,

DW = (N − k) · (N − L̂)

≤ (N − k) · (N − L̄)

=
(

N −
⌊

N2

4L̄

⌋)
· (N − L̄)

It can be shown that for integer N and L̄, the last quantity is
maximized at L̄ = N/2, giving us

DW ≤
(

N −
⌊

N2

4L̄

⌋)
· (N − L̄) ≤ N2

4

which also fits in the N/4 wavelengths. It remains only to show
that L̄ must also be an integer. To see this, note that if the traffic
set is connected, it must form a single cycle; i.e. when all calls
are indexed in adjacent order, the source node of the first call
must be the destination node of the last call. Therefore when all
calls are routed in the clockwise direction, the traffic set must
form an integer number of cycles around the ring. Therefore the
total length

∑
i Li must be an integer multiple of N . Therefore

the average hop length L̄ = 1
N

∑
i Li must be an integer.

By construction, the �N/4� algorithm requires up to one con-
verter on each wavelength (except the last) in each direction,
for a total of 2�N/4�− 2 converters. Additionally, consider the
location of the converters: each converter, where needed, is lo-
cated at the destination node of the last call on each wavelength
after the forward pass on the clockwise and counterclockwise
sets. Since we are dealing with a single-port network, each
node is the destination of no more than a single call. This im-
plies that no node requires more than a single converter at most.

Later, in Section IV, we will show how the wavelength as-
signment can be modified to distribute the 2�N/4�−2 convert-
ers almost arbitrarily among all nodes in the ring.

B. The 2�N/7� Algorithm For Connected Rings

Although the �N/4� algorithm achieves the minimum num-
ber of wavelengths, it may require as many as 2�N/4�− 2 con-
verters to do so. Since converters may be costly, it is desirable to
reduce the number of converters required. In [1] an algorithm is
provided that does not require converters but uses �N/3� wave-
lengths. Motivated by a desire to find a compromise between
these two extremes, we present our next algorithm that requires
2�N/7� wavelengths and only �N/7� converters.

We will begin by restating a result from [1] regarding the
routing of adjacent pairs and giving a new lemma on routing
adjacent triplets. Then, using these results, we will give an al-
gorithm which divides the connected traffic set into smaller sets
of 7 adjacent calls and routes each set of 7 calls onto two wave-
lengths (in each direction).

Lemma 2: Given an adjacent pair of calls, it is possible to
fit the calls onto a single wavelength in either the clockwise or
counterclockwise direction with no wavelength conversion.

Proof: See [1].
Lemma 3: Given a direction around the ring and given an

adjacent triplet of calls, if it is not possible to fit the calls into a
single wavelength (using no converters) in that direction, then
it is possible to fit the calls into two wavelengths (using a single
converter) in the opposite direction.
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n1

n2

n4

n3

Fig. 2. Beginning at node n3, since we first encounter node n1 before n4
when travelling in the clockwise direction, we must encounter n4 before n1
when travelling in the counterclockwise direction.

Proof: Denote the calls by their source-destination pairs
as follows: (n1, n2), (n2, n3), and (n3, n4). Without loss of
generality, suppose by Lemma 2 that (n1, n2) and (n2, n3) fit
on a single wavelength in the clockwise direction. (If the oppo-
site is true, then simply reverse the clockwise/counterclockwise
directions to follow.) We prove the lemma first for the choice
of the clockwise direction, then the counterclockwise.

CLOCKWISE: Suppose the choice of direction was clock-
wise. If all three calls can be routed in the clockwise direction,
then this part of the proof is complete. Suppose they cannot;
i.e., part of the path (n3, n4) overlaps part of the path (n1, n2)
in the clockwise direction. This implies that, travelling in a
clockwise direction from node n3, we first encounter node n1
before node n4. Reversing the directions, it must therefore also
be the case that travelling in a counterclockwise direction from
n3, we first encounter node n4 before node n1. This is illus-
trated in Figure 2.

We can route (n1, n2) and (n2, n3) each onto separate wave-
lengths λ1 and λ2 in the counterclockwise direction. This
leaves the links between n2 to n1 on λ1 and n3 to n2 free on
λ2. Since travelling in the counterclockwise direction we reach
node n4 before n1, the third call (n3, n4) can fit into the free
links on λ1 and λ2 in the counterclockwise direction using a
converter at node n2.

COUNTERCLOCKWISE: Next consider if the choice was
counterclockwise. It is not possible to fit all calls into a sin-
gle wavelength in this direction, so therefore we must show it
is possible to fit all calls in two wavelengths in the clockwise
direction. This is done by noting that since by assumption the
first two calls can fit on a single wavelength in the clockwise
direction, the second can fit alone on a second wavelength.

Figures 3 and 4 illustrate examples of applying Lemmas 2
and 3, respectively. We will now use the two preceding lemmas
to describe a method for fitting any set of 7 adjacent calls onto
at most two wavelengths.

Theorem 3: Given a set of 7 adjacent calls, the entire set can
be routed using at most two wavelengths (in each direction).

Proof: We will provide a proof by construction. Consider
the first four adjacent calls. Divide them into two adjacent pairs.
By Lemma 2, each pair can be routed using a single wavelength
in either the clockwise or counterclockwise direction. First sup-
pose that the two wavelengths are in different directions. Then
they can share the same wavelength, and the first four paths can
be routed using a single wavelength. Of the remaining three
calls, by Lemma 2 the first adjacent pair can again be fit on a
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Fig. 3. (a) This adjacent pair cannot be placed on a single wavelength in the
clockwise direction. (b) Therefore by Lemma 2, it can fit without converters on
a single wavelength in the counterclockwise direction.
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Fig. 4. (a) The adjacent triplet (n1, n4), (n4, n7), (n7, n2) cannot be placed
on a single wavelength in the clockwise direction. (b) Therefore by Lemma
3, it can fit on two wavelengths in the counterclockwise direction using only a
single converter. The converter is required at node 4 in this case. Notice also
that the triplet can fit using two wavelengths in the clockwise direction.

single wavelength in one direction; placing the remaining call
on the same wavelength in the opposite direction completes the
construction in this case.

Next suppose that the first two pairs can only fit on single
wavelengths in the same direction. Without loss of generality,
let this direction be clockwise. Consider the remaining adjacent
triplet.

If these calls can be placed onto a single wavelength in the
clockwise direction, then do so. Also place the first pair on a
second wavelength in the clockwise direction. Then place the
two call in the second pair on the same two wavelengths in the
counterclockwise direction, each using their own wavelength.

If the last three calls cannot be placed onto a single wave-
length in the clockwise direction, then by Lemma 3 they can be
placed onto at most two wavelengths in the counterclockwise
direction. The first two pairs can then be routed onto the same
two wavelengths in the clockwise direction, each pair using its
own wavelength.

In general, we can route any connected traffic set by dividing
it into adjacent sets of 7 calls and applying the construction in
the proof of Theorem 3 to each set. We will call this the 2�N/7�
algorithm.
THE 2�N/7� ALGORITHM

1) Divide the traffic set into c = �N/7� adjacent sets of 7,
each denoted by Cj , 1 ≤ j ≤ c. Let i = 1.

2) Route each set of 7 calls using 2 wavelengths, follow-
ing the proof of Theorem 3, for a total of 2�N/7� wave-
lengths.

Converter Requirements: By construction, it uses at most
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2�N/7� wavelengths. Furthermore, since each set of 7 uses at
most a single converter, the total number of converters required
is upper-bounded by �N/7�. The converter in each set, if re-
quired, is located at the destination of one of the calls. Since
we are considering a single-port network wherein each node
form the destination of only one call in the traffic set, no node
requires more than one converter. We later show in Section IV
how the wavelength assignment can be modified to distribute
the �(N/7)� converters almost arbitrarily among all nodes.

C. Handling Unconnected Traffic Sets

Thus far we have limited our discussion to connected traffic
sets. We next consider unconnected traffic sets; that is, traffic
sets where in the corresponding directed graph there exist nodes
which do not communicate. For single-port traffic, we will see
that this implies that the traffic set is composed of a number of
cycles.

We consider only maximal traffic sets; i.e., traffic sets con-
taining the maximum number of calls given the single-port re-
striction. Note that any non-maximal traffic set can be con-
verted to a maximal set by adding fictitious calls; hence it is
sufficient to consider the RWA of maximal sets. We can con-
struct the cycles as follows:

1) Initialize i = 1.
2) Choose an arbitrary node, called the cycle start node.

Find the call originating at that node. Move to the des-
tination of that call. Now find the call originating at this
new node, and move to the destination of that call. Re-
peat. By the maximal assumption, each node must origi-
nate a call, so this is always possible. The cycle is com-
plete when the start node is revisited. Designate all calls
traversed in this step as members of the cycle Ci.

3) Remove all calls in Ci from the traffic set. By the single-
port assumption, since each node encountered in the pre-
vious step is the source and destination of some call in Ci,
they are not involved in any remaining calls in the traffic
set.

4) If the traffic set is not yet empty, increment i ← i+1 and
goto Step 2.

This construction divides the traffic set into cycles involving
disjoint sets of nodes. Next we will give a method for dealing
with traffic sets with cycles by using an additional wavelength
to turn it into a different RWA problem for a connected traffic
set that does not contain cycles. The connected traffic set can
then be processed using either of the previous algorithms.

Theorem 4: Suppose there exists an algorithm that uses at
most W wavelengths for any admissible connected traffic set in
a single-port ring network. Then any admissible traffic set with
cycles can be routed using at most W + 1 wavelengths.

Proof: The proof is by construction using the following
algorithm.

Step 1 - CYCLE FORMATION: Consider a traffic set with
c cycles. Group the calls into sets based on which cycle they
belong to. Number these cycles C1, C2, . . . , Cc. From each
set, arbitrarily choose a single call and denote the source and
destination nodes of that call by si and di, respectively, for the
set i. Without loss of generality, renumber the cycles so that d1,

. . . , dc are in clockwise order; i.e. after renumbering, travelling
clockwise around the ring beginning with d1, one encounters
each di in order of increasing index i.

Step 2 - SUPERCYCLE FORMATION: The idea is that we
will break each cycle at the call (si,di) and connect it to the
next cycle, thus forming a single connected supercycle. Con-
sider a given cycle Ci. Remove the call (si,di) from the traffic
set, and replace it with a new call (si, di⊕1). This connects all
nodes in cycle Ci with cycle Ci⊕1. Repeat for all cycles. At the
end of this procedure, we have formed a new traffic set called
the supercycle, denoted by CS . Note that the supercycle is also
a maximal, admissible traffic set that obeys the single-port re-
strictions, since essentially all it did was permute the destina-
tions of the various (si,di) calls of the original set.

Step 3 - RESIDUAL SET: We next need to add a set of addi-
tional calls, which we call the residual set CR, to make CS∪CR

equivalent to the original traffic set. The residual set consists of
calls (di,di⊕1) for 1 ≤ i ≤ c. Then for a given cycle Ci, we can
combine the calls (si, di⊕1) and (di⊕1, di) from CS and CR,
respectively, to form the original call (si, di). At most a sin-
gle converter is needed at di⊕1 if the two calls are on different
wavelengths.

STEP 4 - RWA OF CS AND CR: The RWA algorithm for
connected traffic sets can be used on CS using at most W wave-
lengths by assumption. Thus it remains only to show that CR

can be fit onto a single additional wavelength. The calls in this
set consist of (dc, dc−1), (dc−1, dc−2), . . . , (d3, d2), (d2, d1).
Note that this traffic set simply traverses all the di’s in descend-
ing order. Since the di’s were chosen in clockwise order by
ascending i, it follows that they must be in counterclockwise
order by descending i. Therefore all calls in T1 can be fit onto
a single wavelength in the counterclockwise direction.

Corollary 1: The �N/4� algorithm can handle unconnected
traffic sets using at most �N/4� + 1 wavelengths.

Corollary 2: The 2�N/7� algorithm can handle uncon-
nected traffic sets using at most �2N/7� + 1 wavelengths.

The following example demonstrates the application of this
approach to a traffic set with two cycles.

Example 2: Consider an 8-node ring with nodes numbered
from 1 to 8 in the clockwise direction. Consider a traffic set
consisting of the following calls, listed in adjacent order: (1,4),
(4,6), (6,2), (2,5), (5,1), (8,3), (3,7), and (7,8). Note that the
traffic set has two cycles: C1 = {(1,4), (4,6), (6,2), (2,5), (5,1)},
and C2 = {(8,3), (3,7), (7,8)}. We arbitrarily choose the calls
(1,4) and (8,3) from C1 and C2, respectively. Then d1 = 4, and
d2 = 3. Since there are only two nodes, they are trivially in
clockwise order and we do not need to renumber the cycles.

Following the preceding approach, in the superset call (1,4)
becomes (1,3). Similarly, (8,3) becomes (8,4). The superset is
TS = {(1,3), (4,6), (6,2), (2,5), (5,1), (8,4), (3,7), (7,8)}. Re-
ordered into adjacent order, we have TS = {(8,4), (4,6), (6,2),
(2,5), (5,1), (1,3), (3,7), (7,8)}.

The residual set is TR = {(3,4), (4,3)}.
We can now route TS using any algorithm we choose. Here

we will route it using the �N/4� algorithm. The set TR can by
choice fit into a single wavelength. The RWA for TS and TR

are illustrated in Figures 5 and 6 respectively. Finally, the calls
that were split during the creation of TS and TR are reconnected
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Fig. 5. The RWA for superset TS of Example 2.
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Fig. 6. The RWA of residual set TR.

using wavelength converters in Figure 7.
Converter Requirements: By construction, one converter is

required per cycle in addition to any converter requirements by
the RWA algorithm.

III. MULTI-PORT NETWORKS

A. The �PN/4� Algorithm

1) Symmetric Multi-Port Networks: We first consider the case
of connected symmetric P -port networks. By symmetric, we
mean that each node has the same number of ports P . In such a
network, each node has P transmitters and receivers, and can
therefore send and receive P calls. Since each node is the
source of at most P calls, and there are N nodes, a full traf-
fic set contains at most PN calls. Again using a cut-set bound,
it is apparent that a minimum of �PN/4� wavelengths are re-
quired to support the worst-case traffic set.
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Fig. 7. (a) and (b) show the final RWA for Example 2 in the clockwise and
counterclockwise directions, respectively. Note that although the call (8,3) in
(b) ended up being routed partly in the counterclockwise direction and partly
in the clockwise direction, the hops in the clockwise direction do not require
an additional wavelength since those hops are free on one of the existing wave-
lengths in (a). Also note that the RWA could be simplified by routing call (8,3)
entirely in the clockwise direction, although this does not result in a savings in
total wavelengths used.

If the logical topology is connected, then the directed graph
contains a directed Euler trail [18] which contains all edges of
the graph. By finding and following the Euler trail, we can
obtain the PN calls in adjacent order. We can apply a modified
version of the �N/4� algorithm, which we will call the �PN/4�
algorithm, to this traffic set.
THE �PN/4� ALGORITHM

1) TRAFFIC SET PARTITIONING: Let k = �PN2/4L̄�.
Find a set of k adjacent calls with average clockwise hop
length L̃ less than or equal to L̄. Call this set the clock-
wise set. Designate all calls not contained in the clock-
wise set to be members of the counterclockwise set.

2) ROUTING: Route all calls in the clockwise set in the
clockwise direction. Route all calls in the counterclock-
wise set in the counterclockwise direction.

3) WAVELENGTH ASSIGNMENT: Assign wavelengths to
calls using a forward and reverse pass on both the clock-
wise and counterclockwise sets, as in the original �N/4�
algorithm.

This algorithm requires at most �PN/4� wavelengths. The
proof follows the same procedure as Section II-A.

For the �PN/4� algorithm, up to one converter on each
wavelength (except the last) is required in each direction, for
a total of 2�PN/4� − 2 converters. However, since we have a
P -port network, similar examination of the construction of the
wavelength assignment shows that since each node can be the
destination of up to P calls, it may require at most P converters.
Again, in Section IV we will show how the wavelength assign-
ment can be modified to distribute the 2�PN/4�− 2 converters
nearly arbitrarily among all nodes. In particular, a modified
wavelength assignment can be given that requires no more than
�(P/2) + 1� converters per node.

The �PN/4� algorithm can also be applied to general un-
connected networks containing cycles by using the approach of
Section II-C, where one additional wavelength is used to con-
vert the traffic set into a connected traffic set.

2) Asymmetric Multi-Port Networks: We next consider asym-
metric networks where each node i has Pi ports, and is able to
transmit and receive at most Pi calls. Let Ptot =

∑N
i=1 Pi be

the total number of calls in the system. For a connected topol-
ogy, we can find the Euler trail and obtain a sequence of Ptot

adjacent calls.
It can be shown that the proof of the fact that only �PN/4�

wavelengths were required in the symmetric port case relied
only on PN being an integer multiple of N . Therefore the
results still hold if Ptot is an integer multiple of N . This leads
to the following theorem.

Theorem 5: For an asymmetric multi-port network with a
traffic set containing a maximum of Ptot calls, the �PN/4�
algorithm requires at most �Ptot/4� wavelengths to provide a
RWA for the traffic set.

Here a total of at most 2�(Ptot/4)� − 2 converters are re-
quired, and each node i requires no more than Pi converters if
the traffic set is connected.

The approach of Section II-C can be used for unconnected
networks, with some minor modification to the cycle forma-
tion. At the end of Step 4, it is possible that the same node may
be contained in multiple cycles. Therefore a final step, Step 5,
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is required where any two cycles which contain the same node
should be merged into a single, larger cycle. At the completion
of Step 5, the minimal number of cycles will then have been
obtained. Then again this set can be routed using only one ad-
ditional wavelength, as described.

B. The 2�PN/7� Algorithm

Again we consider the case of a connected network. The net-
work can be either symmetric or asymmetric; again let node i
have Pi ports, and define Ptot =

∑N
i=1 Pi to be the total num-

ber of calls in the system. Find the Euler trail and list the calls
in adjacent order.

By dividing the calls into adjacent sets of 7, the results of
Theorem 3 can be applied to route each set using at most 2
wavelengths. Therefore a total of �2Ptot/7�. For a symmetric
network, Ptot = PN , where P is the number of ports per node,
and this number simplifies to 2�PN/7�. For this reason, this
slightly modified algorithm is called the 2�PN/7� algorithm.

For a connected network, a total of at most �Ptot/7� convert-
ers are required. Again, in Section IV we will show how the
wavelength assignment can be modified to distribute the con-
verters nearly arbitrarily among all nodes. In particular, for
symmetric networks, a modified wavelength assignment can be
given that requires no more than �P/7+1� converters per node.

IV. THE CONVERTER-SHIFTING ALGORITHMS

A. The Converter-Shifting Lemmas

In general, when a RWA algorithm gives a wavelength as-
signment for a traffic set, it will also specify the number of con-
verters required at each node to support its wavelength assign-
ment. However, this may result in inefficient use of converters
since the network will have to be designed with the maximum
number of converters at each node that the algorithm may re-
quire. For example, consider a 2-node network that sees one
of two possible traffic sets, A and B. Suppose for a particular
RWA traffic set A requires that node 1 have 3 converters and
node 2 have 6, whereas in the RWA for traffic set B node 1 re-
quires 6 and node 2 requires 3. Then if sets A and B are to
be supported in a rearrangeably non-blocking manner, nodes 1
and 2 must both have 6 converters, for a total of 12 converters
between them, even though at most 9 converters are ever used
at any given time.

In this section we provide a procedure for modifying a given
wavelength assignment so that the conversion requirement can
be moved arbitrarily from any node to any other node while
preserving the routing of the calls. If certain criteria are met,
removing one converter from a given node will require the ad-
dition of only one converter at a different node. We call this
one-to-one exchange. Otherwise, removing one converter from
a given node will require the addition of two converters at a
different node; we call this one-to-two exchange.

We first define some terminology which we will find useful.
A wavelength converter, when in use, converts an input wave-
length to a different output wavelength. Suppose two converters
are operating in the same direction (either clockwise or counter-
clockwise). If the output wavelength of converter 1 is the same

as the input wavelength of converter 2, then we say that con-
verter 1 is adjacent to converter 2, and vice versa. In particular,
converter 2 is forward adjacent to converter 1, and that con-
verter 1 is backward adjacent to converter 2. Converters cannot
be adjacent if they are operating in different directions.

The next two lemmas give conditions under which convert-
ers can be moved from one node to another in a one-to-one ex-
change. The lemmas differ in the direction a converter is shifted
relative to its adjacency to the destination.

Lemma 4: If for a given RWA a converter cj at node j is for-
ward adjacent to a converter ci at node i, a modified wavelength
assignment can be devised that does not require a converter at
node i but may require an additional converter at node j.

Proof: Without loss of generality, suppose the converters
are operating in the clockwise direction. Call the set of all links
encountered travelling from i to j in the clockwise direction the
swap set. Let the input and output wavelengths of ci be λ1 and
λ2, respectively. Let the output wavelength of cj be λ3.

Move all traffic in the swap set on wavelength λ1 to λ2, and
move all traffic in the swap set previously on λ2 to λ1. Now
ci is no longer required, since the call coming into node i on
λ1 continues on λ1 after the swap. Also notice that calls in
the swap set on λ1 must have started at or after node i. The
input wavelength of cj becomes λ1 after the swap, since the
call which previously had been coming in on λ2 was moved to
λ1. The output wavelength of cj remains the same.

There remains one loose end to tie up. There may previously
have been a call which entered node j on λ1 and continued
out on λ1. Since after the swap this call is now entering on
λ2, an additional converter is required to convert it to λ1 for
it to continue out on λ1 as before. Note that if the call had
terminated at node j, then this converter would not be needed.

Lemma 5: If for a given RWA a converter cj at node j is for-
ward adjacent to a converter ci at node i, a modified wavelength
assignment can be devised that does not require a converter at
node j but may require an additional converter at node i.

Proof: The proof is very similar to the proof of Lemma
4. Call the set of all links encountered travelling from i to j in
the clockwise direction the swap set. Let the input and output
wavelengths of ci be λ1 and λ2, respectively. Let the output
wavelength of cj be λ3.

Move all traffic in the swap set on wavelength λ3 to λ2, and
move all traffic in the swap set previously on λ2 to λ3. Now cj

is no longer required, since the call previously entering node j
on λ2 has been moved to λ3, and may continue on λ3 without
needing a converter. The output wavelength of ci becomes λ3
after the swap, since the call which previously exited on λ2 was
moved to λ3. The input wavelength of ci remains the same.

Again there is a loose end to tie up. There may previously
have been a call which entered node i on λ3 and continued out
on λ3. Since after the swap this call is continuing on λ2, an
additional converter is required to convert it from λ3 to λ2. Note
that if the call had started at node i, then again this converter
would not be needed.

An example of a one-to-one exchange of the type described
in Lemma 4 is shown in Figures 8 and 9. Finally, we have a
general theorem for shifting converters if no adjacent converter
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Fig. 8. (a) The original RWA of calls on the clockwise direction. Note that
there is no requirement that the traffic set obey a P -port condition. Converters
are used at nodes i and j. (b) The same ring, with related calls marked. Calls
affected by the converter shifting are in bold, while unaffected calls are in light
grey. The swap set consists of the dotted calls and parts of calls.
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Fig. 9. All calls or parts of calls in the short dotted lines have exchanged
wavelengths with those on the long dotted lines. Note that while a converter is
no longer required at node i, an extra one is now being used at node j.

is available at the destination node.
Lemma 6: If for a given RWA there does not exist any con-

verter at node j that is adjacent to any converter at node i, a
modified wavelength assignment can be devised that requires
one less converter at i but may require up to two more convert-
ers at node j.

Proof: The proof is identical to the proof of Lemma 4,
except that since there is no existing adjacent converter cj to
use at node j, a new one is required.

An example of one-to-two exchange is shown in Figure 10.
The proofs of the preceding theorems provide an algorithm for
shifting converters from node to node. In the following two
parts, we use the converter-shifting lemmas to first describe a
method for moving all converters to a single node (typically
called the hub), then describe a method for distributing them
arbitrarily among all nodes while requiring at most one addi-
tional converter per node.

B. Applications to the �PN/4� Algorithm

In this section, we demonstrate the use of the converter-
shifting lemmas on the �PN/4� algorithm to create two inter-
esting network architectures, the hub architecture and the sym-
metric node architecture.

1) Hub Architecture: It may be desirable to concentrate all
converters at a single node, called the hub. This can be done
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Fig. 10. (a) The original RWA of calls on the clockwise direction. A single
converters is used by node i. Calls affected by the converter shifting are in bold,
while unaffected calls are in light grey. The swap set consists of the dotted calls
and parts of calls. (b) All calls or parts of calls in the short dotted lines have
exchanged wavelengths with those on the long dotted lines. Note that while a
converter is no longer required at node i, two are used at node j.

using the converter-shifting lemmas to move all converters to
the hub at a cost of at most two additional converters.

Recall that by construction at most �PN/4� − 1 converters
are used in each direction. Consider first the clockwise direc-
tion. Since by construction the converters can be traversed in
adjacent order, without loss of generality we may index the con-
verters so that converter ci has input wavelength λi and output
wavelength λi+1, for i = 1, . . . , �PN/4� − 2.

Suppose node h is chosen to be the hub node. According to
Lemma 6, we can move c1 to node h using a one-to-two ex-
change. Next, move converter c2 to node h. Since by choice of
indexing the input wavelength of c2 is the output wavelength of
c1, by Lemma 5 it can be moved using a one-to-one exchange.
Iterating through the rest of the converters, the same argument
can be applied to perform one-to-one exchanges. After all ex-
changes are complete, there are a total of �PN/4� converters
at the hub – one more than the previous total, due to the initial
one-to-two exchange.

The same procedure can be repeated for the counterclock-
wise direction, resulting in an additional �PN/4� converters
being collected at the hub. After this procedure, all conversion
is now concentrated at the hub, which requires �PN/2� con-
verters.

2) Symmetric Node Architecture: In other cases, we may
prefer to have each node have the same number of converters.
Again, this can be accomplished by using the converter-shifting
lemmas to move the converters such that each node has no more
than �P/2� + 1 converters.

The procedure is as follows: first, apply the method of the
previous section to create a hub architecture. There are now
�PN/4� adjacent converters at the hub in either direction. Di-
vide the remaining N − 1 nodes into two sets of equal size
(N odd). Call one set the clockwise set, and the other the
counterclockwise set. First consider the clockwise direction.
Move �P/4� of the converters in adjacent order to one of the
(N − 1)/2 nodes in the clockwise set. The first requires a
one-to-two exchange, while all remaining converters are moved
one-to-one. This places �P/2� + 1 converters at that node. Re-
peat with all remaining nodes in the clockwise set. At the end
of the procedure, all nodes in the clockwise set have �P/2� + 1

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



converters in the clockwise direction.
Repeat this procedure with the counterclockwise set using

the counterclockwise converters. This leaves all nodes in the
counterclockwise set with �P/2� + 1 converters in the counter-
clockwise direction. The hub itself has a total of �P/2� con-
verters, half in either direction. Thus no node requires more
than �P/2� + 1 converters. (Note that the original algorithm
required up to P converters at any given node.)

C. Applications to the 2�PN/7� Algorithm

In this section, we demonstrate the use of the converter-
shifting lemmas on the 2�PN/7� algorithm to again create a
hub and symmetric node architectures.

1) Hub Architecture: The converter-shifting lemmas can be
used to move all converters to a single node. For the 2�PN/7�
algorithm, converter adjacency is not guarenteed, and hence re-
distribution requires one-to-two exchanges. Hence the hub has
at most 2�PN/7� converters.

2) Symmetric Node Architecture: It can be shown that after
redistribution no more than �P/4� + 1 converters are required
at each node.

V. CONCLUSIONS

We considered the problem of implementing all virtual
topologies on an N -node P -port network in a rearrangeably
non-blocking fashion while trying to minimize the number of
wavelengths and converters required. We show that a lower
bound on the number of wavelengths is �PN/4�. We present an
algorithm which achieves this lower bound by using �PN/4�
wavelengths for connected topologies while using a total of no
more than �PN/2� converters. We also present a second al-
gorithm which uses 2�PN/7� wavelengths but requires fewer
converters, a total of no more than �PN/7�. The first algo-
rithm achieves the minimum number of wavelengths required,
while the second uses more wavelengths but greatly reduces the
number of converters used. We also show how to turn the prob-
lem of implementing an unconnected traffic set into a modified
problem of implementing a connected set by using a single ad-
ditional wavelength.

Finally, we demonstrate a method for changing wavelength
assignments to move converters arbitrarily from one node to
another. If certain conditions are met, we show that this ex-
change is one-to-one; otherwise, the exchange is one-to-two.
We also show how to apply this method to both the �PN/4�
and 2�PN/7� algorithms. We demonstrate a hub topology for
the �PN/4� algorithm which uses �PN/2� converters at the
hub and no converters elsewhere, and a symmetric node topol-
ogy which uses �P/2� + 1 converters at each node. We also
give a hub topology for the 2�PN/7� algorithm which uses
2�PN/7� converters at the hub and no converters elsewhere,
and a symmetric node topology which uses at most �P/4� + 1
converters at each node.

It is worth comparing the worst-case wavelength requirement
to the wavelength requirement for static and uniform all-to-all
traffic. In all-to-all uniform traffic, each node communicates
with every other node. For N odd, this requires (N2 − 1)/8

longs to the admissible set of an N -node network with N − 1
ports, which have a worst-case bound of N(N − 1)/4 wave-
lengths. Thus designing a network to support P = N − 1 calls
per node uses twice as many wavelengths as a uniform all-to-
all design. However, the P -port traffic model provides signif-
icantly more flexibility than the uniform all-to-all model. Fur-
thermore, an argument given in [1] can be used to show that a
large number of worst-case topologies require the lower bound
of �PN/4� wavelengths for the P -port case, showing that this
bound is not inflated to support only a small number of worst-
case scenarios.
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