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Abstract—It has been studied extensively in the literature how
one achieves exact emulation of First In First Out (FIFO) mul-
tiplexers for fixed size cells (or packets) using optical crossbar
Switches and fiber Delay Lines (SDL). In this paper, we take a
step further and propose a new architecture that achieves exact
emulation of FIFO multiplexers for variable length bursts. Our
architecture consists of two blocks: a cell scheduling block and
an FIFO multiplexer for fixed size cells. Both blocks are made of
SDL units. The objective of the cell scheduling block is to schedule
cells in a burst to the right input at the right time so that cells in
the same burst depart contiguously from the multiplexer for fixed
size cells. We show that cell scheduling can be done efficiently
by keeping track of a single state variable, called the total virtual
waiting time in this paper. Moreover, the delay through the cell
scheduling block is bounded above by a constant that only de-
pends on the number of inputs and the maximum number of cells
in a burst. Such a delay bound provides a limit on the number of
fiber delay lines needed in the cell scheduling block.

Index Terms—conflict resolution, exact emulation, optical mul-
tiplexers, multi-stage switches, switched delay lines, variable
length bursts

I. INTRODUCTION

One of the key challenges to build high speed packet
switches that scale with the transmission speed of fiber op-
tics is to resolve conflicts of packets competing for the same
resource. There are two common approaches. The first ap-
proach is to use electronic buffers (see e.g., [7], [14], [2], [16]).
As the accessing speed of electronic memory is considerably
slower than the speed of fiber optics, this approach in general
requires a lot of parallel buffers to achieve the needed speedup
for fiber optics. The other approach is to resolve conflicts di-
rectly by optical Switches and fiber Delay Lines (SDL) (see
e.g., [11], [9], [24], [21] and references therein). Unlike elec-
tronic memory, fiber delay lines are not capable of providing
random memory access. They can only be accessed in a pre-
determined sequential manner. As such, conflict resolution by
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SDL is in general much more difficult than that by electronic
memory.

The approach of using SDL to resolve conflicts was pro-
posed in the CORD (contention resolution by delay lines)
project [4], [5], [6]. The idea is to redistribute packets through
delay lines with different delays so that conflicts can be re-
solved over time and space. As indicated in [11], there are
several architectures proposed in the literature that resolve con-
flicts via SDL. In [20], [8], a genuine SDL design, named COD
(Cascaded Optical Delay-Lines), is proposed for First In First
Out (FIFO) buffers by using 2 × 2 crossbar switches and fiber
delay lines. The control of COD is relatively easy and only
requires local information. However, the number of 2 × 2
switches in COD is proportional to the buffer size. In [10],
a more efficient design, Logarithm Delay-Line Switch, is pro-
posed for the 2 × 2 buffered switch. The number of 2 × 2
switches needed for such an architecture is only O(logB),
where B is the buffer size. In [12], SLOB (Switch with
Large Optical Buffers) is proposed for the extension of optical
buffered switches with more than 2 input/output ports. Such
an architecture relies on a special hardware, called a primi-
tive switching element (PSE). The control of the PSEs is much
more difficult than the control in COD and the 2 × 2 Loga-
rithm Delay-Line Switch. To solve the control problem, in [3]
we developed mathematical theory for recursive construction
of FIFO optical multiplexers with large buffers. Such theory
leads to self-routing multiplexers, where the routing path of a
packet through the multi-stage SDL units can be determined
upon its arrival (a brief review of the self-routing multiplexers
will be given in Section II).

Most of the prior works in [20], [8], [10], [12], [3] are
targeted for exact emulation of multiplexers (or switches) for
fixed size packets (or cells). A natural question is whether one
can use the multiplexers for fixed size packets (or cells) for ex-
act emulation of multiplexers with variable length bursts. As in
electronic buffers, this requires performing burst segmentation
and reassembly. In this paper, we assume that burst segmenta-
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tion is feasible. Each variable length burst can be divided into a
contiguous sequence of fixed size cells, and each cell can then
be transmitted within a time slot in the multiplexer for fixed
size cells. In doing burst segmentation, we note that there is a
granularity problem for choosing the right cell size (see e.g.,
[19], [1]). We will not address the granularity problem in this
paper. Our focus is on how one assembles cells back into bursts
by using optical switches and fiber delay lines.

There are two natural places for burst reassembly: (i) after
the multiplexer for fixed size cells, and (ii) before the multi-
plexer for fixed size cells. The former approach is much more
difficult to realize by SDL as it has to take the multiplexer into
account. Moreover, it incurs additional reassembly delay for
each burst. As such, exact emulation for multiplexers with
variable length bursts cannot be achieved. Only a time shifted
version can be achieved. The latter is the approach we use in
this paper. Its design objective is to schedule cells in a care-
ful manner so that cells of the same burst depart contiguously
from the multiplexer for fixed size cells. As such, we propose
adding a cell scheduling block in front of the multiplexer for
fixed size cells. For such an architecture, we show there is
an efficient cell scheduling algorithm. Starting from an empty
system, we can perform cell scheduling by keeping track of a
single state variable, called the total virtual waiting time in this
paper. Moreover, the delay through the cell scheduling block is
bounded above by a constant that only depends on the number
of inputs and the maximum number of cells in a burst. Such a
delay bound provides a limit on the number of fiber delay lines
needed in the cell scheduling block.

This paper is organized as follows. In Section II, we de-
fine the network elements used in this paper, including fiber
delay lines, switches, and multiplexers for fixed size cells. In
Section III, we address the cell contiguity problem if variable
length bursts are put directly into the multiplexer for fixed size
cells. We argue that a cell scheduling block is needed to over-
come the cell contiguity problem. In Section IV, we propose
our architecture for multiplexers with variable length bursts by
adding a cell scheduling block in front of the multiplexer for
fixed size cells. We also describe the cell scheduling algorithm
associated with the architecture. In Section V, we show that
the delay through the cell scheduling block is bounded by a
constant that only depends on the number of inputs and the
maximum number of cells in a burst. As such, our architecture
has limited complexity. We conclude the paper in Section VI
by addressing possible future research topics.

II. BASIC NETWORK ELEMENTS AND OPTICAL

MULTIPLEXERS FOR FIXED SIZE CELLS

In this section, we introduce the network elements that will
be used in this paper, including fiber delay lines, switches, and
multiplexers for fixed size cells. In this paper, we assume that
propagation delay is well compensated so that time is synchro-
nized and slotted. By so doing, a (fixed size) cell can be trans-
mitted within a time slot. Since there is at most one cell within

a time slot, we may use indicator variables to represent the state
of a link. A link is in state 1 at time t (for some t = 0, 1, 2, . . .)
if there is a cell in the link at time t, and it is in state 0 at time
t otherwise.

d

a(t) a(t-d)
Fig. 1. An optical delay line with delay d

Definition 1 (Delay line) An (optical) delay line in Figure 1 is
a network element that has one input link and one output link.
In Figure 1, the delay is d. Let a(t) be the state of the input
link. Then the state of the output link is a(t− d).

An optical delay line acts as a memory element in the con-
struction. Note that at the end of the t− 1th time slot, the cells
that arrive at time t−1, t−2, . . . , t−d, are stored in the optical
delay line with delay d.

Definition 2 (Switch) An N×M (optical) switch has N input
links and M output links. Let ai(t), i = 0, 1, . . . , N−1, be the
states of the N inputs at time t and bj(t), j = 0, 1, . . . ,M −1,
be the states of the M outputs at time t. Then at any time t,
one can specify an M ×N sub-permutation matrix P (t) such
that b(t) = P (t)a(t), where b(t) (resp. a(t)) is the column
vector with elements bj(t), t = 0, 1, . . . ,M − 1 (resp. ai(t),
i = 0, 1, . . . , N − 1).

For example, a 2×2 switch is known to have two connection
patterns. A 2 × 2 switch is said to be in the “bar” state at time
t if b1(t) = a1(t) and b0(t) = a0(t). It is said to be in the
“cross” state at time t if b1(t) = a0(t) and b0(t) = a1(t).

B

d(t)

l (t)1

a (t)0

a (t)1

a     (t)
N-1 l     (t)N-1

Fig. 2. An N -to-1 multiplexer with buffer B

Definition 3 (Multiplexer for fixed size cells) An N -to-1
multiplexer with buffer B (see Figure 2) is a network element
with N input links and N output links. We call the first out-
put link of this multiplexer the departure port and the rest
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of the output links the loss ports. As shown in Figure 2, let
ai(t), i = 0, 1, . . . , N − 1, be the state of the N input links,
d(t) be state of the output link for the departure port, �i(t),
i = 1, 2, . . . , N − 1, be the state of the ith loss port, and q(t)
be the number of cells queued at the multiplexer at time t (at
the end of the tth time slot). Then the N-to-1 multiplexer with
buffer B satisfies the following four properties:

(P1) flow conservation: arriving cells from the N input
links are either stored in the buffer or transmitted
through the N output links, i.e.,

q(t) = q(t− 1) +
N−1∑

i=0

ai(t)

−d(t) −
N−1∑

i=0

�i(t) (1)

(P2) Non-idling: there is always a departing cell if there
are cells in the buffer or there are arriving cells, i.e.,

d(t) =






0 if q(t− 1) +
N−1∑
i=0

ai(t) = 0

1 otherwise
. (2)

(P3) Maximum buffer usage: arriving cells are lost only
when buffer is full, i.e., for i = 1, 2, 3, . . . , N − 1,

d(t) =






1
if q(t− 1) +

N−1∑
i=0

ai(t)

≥ B + i+ 1

0 otherwise

(3)

(P4) FIFO with prioritized inputs: cells depart in the first
in first out (FIFO) order. The priority of the input
links is increasing in the link number. As such, if there
are multiple arriving cells at the same time, the cell
from the largest input link number is put in the multi-
plexer first.

In the queueing context, a multiplexer defined in Definition
3 is simply a FIFO queue with buffer B. Specifically, the q(t)
process of an N -to-1 multiplexer satisfies the following recur-
sive equation:

q(t) = min[(q(t− 1) + a(t) − 1)+, B], (4)

where a(t) =
N−1∑
i=0

ai(t) is the total number of arrivals at time

t, and x+ = max(0, x). Moreover, the departure process d(t)
from the multiplexer is exactly the same as that from the cor-
responding FIFO queue with buffer B. In addition to this, the
multiplexing order of the N inputs is of particular importance
to the later development of this paper. From (P4), we know that

N-1

1 N

N(N-1)

N

N  (N-1)
K-1

d(t)

l     (t)
N-1l (t)1

a     (t)N-1

a  (t)0

a  (t)1

K-1

Fig. 3. A self-routing N-to-1 multiplexer with B = Nk − 1

cells depart in the order of their arrival times and that cells de-
part in the descending order of their input link numbers if they
arrive (and enter) at the same time.

As described in Section I, there are several ways proposed
in the literature that use switches and fiber delay lines to build
multiplexers for fixed size cells in Definition 3. One way to do
it is the self-routing multiplexer in [3]. In Figure 3, we show
the architecture of the self-routing multiplexer with bufferB =
Nk−1 in [3]. In such an architecture, there are k stages of SDL
units (the last one is simply a bufferless multiplexer). Each
stage, except the first stage, consists of an N × N crossbar
switch and N fiber delay lines (with delays specified in the
figure). The first stage requires an N × (2N − 1) switch as
additional output links are used for dropping cells due to buffer
overflow. The buffer size of such a multiplexer is Nk − 1. As
in [10], [12], such an architecture also uses the output buffer
emulation. It keeps track of the number of cells stored in the
system. If such a number exceeds Nk − 1, further arrivals are
dropped immediately. Specifically, let q(t) be the number of
cells stored in the system. Then q(t) is governed by

q(t) = min
[
max[0, q(t− 1)+

N−1∑

i=0

ai(t)− 1], Nk − 1
]
, (5)

where ai(t), i = 0, 1, . . . , N −1, is the number of arrival from
the ith input link. Let q be the number of cells stored in the
system when a particular cell enters the system. In queueing
theory, the number q is known as the virtual delay (or the vir-
tual waiting time) of the cell. Since 0 ≤ q ≤ Nk − 1, there ex-
ists a unique vector r = (r1, r2, . . . , rk) with 0 ≤ rj ≤ N − 1
for all j such that

q =
k∑

j=1

rjN
j−1.

The cell can then be self-routed through the network element
by taking the rj

th output link at the jth N ×N switch. There
will not be any conflicts in the self-routing multiplexer, i.e., no
more than one cell destines for any output link in any switch at
any time.

There is a natural analogy between the self-routing multi-
plexer in [3] and the classical Batcher-Banyan self-routing net-
work (see e.g., Schwartz [18] and Hui [13]). One may view
the virtual delay (or the virtual waiting time) in the self-routing
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multiplexer as the “output address” in the Batcher-Banyan self-
routing network. By routing packets to different “output ad-
dresses,” one then resolves conflicts at the multiplexer. Such a
concept will also be used in our extension to the multiplexers
with variable length bursts.

III. CELL CONTIGUITY PROBLEM

Now we would like to extend the multiplexer for fixed size
cells to cope with variable length bursts. In this paper, we as-
sume that burst segmentation is feasible. Each variable length
burst can be divided into a contiguous sequence of fixed size
cells, and each cell can then be transmitted within a time slot in
the multiplexer for fixed size cells. Note that there is a granu-
larity problem in doing burst segmentation (see e.g., [19], [1]).
Such a problem will not be addressed here. Our objective is to
use SDL units to design a multiplexer that achieves exact emu-
lation of a FIFO finite buffer queue with variable length bursts,
i.e., the departure process from the multiplexer is the same as
that from a FIFO finite buffer queue with variable length bursts.
For this, there are two things we need to do. The first is to
schedule these bursts under the FIFO policy. The second is to
maintain the contiguity of cells in a burst at the output link.
The first thing is rather easy to do. However, maintaining the
cell contiguity becomes a problem as shown in the following
example in Figure 4.

B

l (t)1

l (t)
2

345

0

12

a  (t)0

a  (t)1

d  (t)1

t

t

t+6

0

12 a  (t)
2

1st

2nd
122

0

01345

1st2nd1st2nd1st2nd2nd2nd2nd

t+9

Fig. 4. An illustrating for the contiguity problem

In Figure 4, we show that if we put variable length bursts
directly into the multiplexer (for fixed length cells) in Defini-
tion 3, there will be the cell contiguity problem. In this figure,
we consider a multiplexer with 3 inputs and 3 outputs. As-
sume that the buffer at time t in the multiplexer is empty, i.e.,
q(t) = 0. There are two bursts that arrive at time t. The cells
in a burst are indexed by consecutive integers from zero. We
call the burst with length 3 the first burst and the other one the
second burst. Assume that the buffer B is so large that no cells
are lost (a trivial condition is B ≥ 8 in this case). According
to Definition 3, the order of multiplexing is in the descending
order of the input link number for cells that arrive at the same
time. Thus, the cell order in the departure port is cell 0 of the
first burst, cell 0 of the second burst, cell 1 of the first burst,
cell 1 of the second burst, ..., cell 5 of the second burst at last.
Clearly, cells in the same bursts do not depart contiguously. As
a result, we cannot naively put variable length bursts directly
into multiplexers for fixed size cells. To solve the cell contigu-
ity problem, cells need to be scheduled in a careful manner as
illustrated in Figure 5.

B

l (t)1

l (t)
2

a  (t)0

a  (t)1

d  (t)1

t

a  (t)
2

0

12345 12 0

tt+6

0

12

1st2nd

0

1

2

3

45

1st1st

2nd

2nd

2nd2nd

2nd

Cell Scheduling 

Block

Multiplexer 

for fixed size 

cells 

345

0

12

b  (t)0

 b  (t)1

tt+6

0

12 b  (t)
2

1st

2nd

Fig. 5. Basic idea for cell scheduling

In Figure 5, we add a cell scheduling block in front of
the multiplexer for fixed size cells. The function of the cell
scheduling block is to route each cell to the right input of the
multiplexer at the right time so that we can receive cells from
the same burst contiguously. We illustrate this by considering
the same traffic in Figure 4. At time t, we can schedule cell
0 of the first burst at input 2 of the multiplexer (for fixed size
cells). In order for the cells in the first burst to come out con-
tiguously from the multiplexer, we can not schedule anything
at input 1 and input 0 of the multiplexer at time t. At time t+1,
we then schedule cell 1 of the first burst at input 2. Similarly,
we do not schedule anything at input 1 and input 0 at time t+1.
At time t + 2, we schedule cell 2 of the first burst at input 2.
Clearly, the cells in the first burst come out contiguously this
way. Now we can schedule cell 0 of the second burst at input
1 and cell 1 of the second burst at input 0 at time t + 2. Since
the multiplexing order is in the descending order of the input
link number for cells that arrive at the same time, cell 0 of the
second burst will come out from the multiplexer after cell 2 of
the first burst. Similarly, cell 1 of the second burst will be out
after cell 0 of the second burst. At time t+ 3, we schedule cell
2 of the second burst at input 2 and cell 3 of the second burst
at input 1, respectively. Note that we can not schedule cell 4 of
the second burst at input 0 at time t+3 as it has not arrived yet
at time t+3. As such, both cell 4 and cell 5 of the second burst
have to be scheduled respectively at time t+4 and at time t+5
at input 2.

IV. THE PROPOSED ARCHITECTURE

A. The overall multiplexer architecture

As addressed in the previous section, we need to add a cell
scheduling block in order to overcome the cell contiguity prob-
lem. In Figure 6, we show our architecture for a variable length
burst multiplexer with N inputs. It consists of two blocks. The
latter is the N -to-1 multiplexer for fixed size cells described in
Section II. The former is the cell scheduling block. The func-
tion of the cell scheduling is to route each cell to the right input
at the right time so that cells of the same burst come out con-
tiguously. To achieve this, the cell scheduling block consists of
two stages. As shown in Figure 6, there are N 1 ×N switches
at the first stage. The objective of these switches is to route
cells to the right inputs of the multiplexer for fixed size cells.
At the second stage, there are N N × M switches. The M
outputs of each switch are connected to fiber delay lines with
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N-2

a     (t)
N-1 l     (t)N-1

(t)bN-1

Cell Scheduling Block
Multiplexer for Fixed 
Length Cells Block

1st stage 2nd stage

Fig. 6. architecture

delay from 0 to M − 1. The objective of the second stage is
to delay cells so that they arrive at the routed input at the right
time. The constant M − 1 is the maximum delay for a cell to
go through the cell scheduling block. One key result of this
paper is that the delay for a cell in the cell scheduling block

never exceeds
⌊

(2N−2)�max−N+1
N

⌋
, where �max is the maxi-

mum number of cells in a burst. Thus, we can choose M so
that M ≥

⌊
(2N−2)�max−N+1

N

⌋
+ 1. One easy choice to satisfy

this requirement is M = 2�max.

B. The cell scheduling algorithm

In order for the variable length burst multiplexer with N
inputs to work properly, we assume that the burst length of
a burst is known when the first cell of a burst arrives. This
can be done either by adding the burst length information in
the header of the first cell or by transmitting such information
through a different channel in advance (see e.g., [25], [22]).
The arrival time of the first cell in a burst is called the arrival
time of that burst. Bursts that arrive at the same time are sched-
uled in the descending order of their input link numbers (as in
the multiplexer for fixed size cells).

Now we describe our cell scheduling algorithm. Note that
there are three natural constraints of the cell scheduling algo-
rithm.

(i) Conflict constraint: no more than one cell can be
scheduled at the same input (of the multiplexer for
fixed size cells) at the same time.

(ii) Causality constraint: no cell can be scheduled before
its arrival.

(iii) Contiguity constraint: cells from the same burst
should be scheduled so that they leave the multi-
plexer for fixed length cells block contiguously.

To satisfy the conflict constraint, we have to keep track of
the time slots used in every input. For this, we let Vj(t), j =
0, 1, · · · , N − 1, be the number of time slots that cannot be
scheduled at input j from t onward. In other words, the next
available time slot for input j is at time t + Vj(t). Following
the queueing context, we call Vj(t) the virtual waiting time of
input j (as a cell that is routed to input j at time t will have
to wait Vj(t) time slots). As we will show later, under our
cell scheduling algorithm (described below) the virtual waiting
times satisfy the following inequalities for all t:

VN−1(t) ≥ VN−2(t) ≥ VN−3(t) · · · ≥
V1(t) ≥ V0(t) ≥ VN−1(t) − 1 (6)

Initially, we set Vj(0) = 0 for all j = 0, 1, · · · , N − 1, so
that the inequalities in (6) are satisfied. Moreover, if there is
no burst arrival at time t, then the next available time slot for
input j is still at time t+ Vj(t). Thus, we have

Vj(t+ 1) = (Vj(t) − 1)+, j = 0, 1, . . . , N − 1. (7)

In this case, one can also easily verify that Vj(t + 1)’s satisfy
the inequalities in (6).

Let V (t) be the total virtual waiting time at time t, i.e.,

V (t) =
N−1∑

j=0

Vj(t). (8)

Using the inequalities in (6), one can relate the total virtual
waiting time to the virtual waiting time of input j as follows:

Vj(t) =






⌊
V (t)
N

⌋
+ 1

for j = N − 1, N − 2,
· · · , N − k

⌊
V (t)
N

⌋ for j = 0, 1, · · · , N − k − 1

(9)
where k = V (t) mod N . Thus, the total virtual waiting

time V (t) is sufficient for the purpose of cell scheduling.
Now suppose that the m+ 1th burst arrives at time τm with

length �m, m = 0, 1, . . .. Let V (τ−
m) be the total virtual wait-

ing time immediately before the arrival of the first cell (cell
0) of that burst. As the multiplexing order of the multiplexer
(for fixed size cells) is in the descending order of the input link
number and in the ascending order of time, cell 0 should be
routed to the input with the smallest virtual waiting time and
the largest input link number. From (9), we know it should be
routed to input N − k0 − 1 with k0 = V (τ−

m) mod N . More-
over, the delay for cell 0 is simply the virtual waiting time of
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input N − k0 − 1, i.e.,
⌊

V (τ−
m)

N

⌋
. By so doing, the inequalities

in (6) are satisfied after cell 0 is scheduled. As the total virtual
waiting time is increased by 1 after cell 0 is scheduled, cell 1
should be scheduled at inputN−k1−1 with k1 = (V (τ−

m)+1)
mod N . The first available time slot at input N − k1 − 1 is

τm+
⌊

V (τ−
m)+1
N

⌋
. As cell 1 arrives at time τm+1, the delay for

cell 1 would be
⌊

V (τ−
m)+1
N

⌋
− 1 if cell 1 is scheduled at input

N−k1−1. If
⌊

V (τ−
m)+1
N

⌋
−1 ≥ 0, then the causality constraint

is satisfied and cell 1 can be scheduled this way. We may con-
tinue the process to schedule the other cells in the burst until
the causality constraint is violated. In general, cell � should be
scheduled at input N−k�−1 with k� = (V (τ−

m)+�) mod N
(as the total virtual waiting time has been increased by � after
scheduling the first � cells). As cell � arrives at time τm + �,

the delay for cell � would be
⌊

V (τ−
m)+�
N

⌋
− � if cell � is sched-

uled at input N − k� − 1. If
⌊

V (τ−
m)+�
N

⌋
− � ≥ 0, then the

causality constraint is satisfied and cell � can be scheduled this

way. If
⌊

V (τ−
m)+�
N

⌋
− � < 0, then the causality constraint is

violated. We have to schedule cell � at its arrival time. In order
to satisfy the contiguity constraint, cell � is scheduled at input
N − 1, the highest priority input at its arrival time. It is easy to

see that if cell � is the first cell such that
⌊

V (τ−
m)+�
N

⌋
− � < 0,

then all the subsequent cells in the same burst also satisfy the
same inequality. As such, all the subsequent cells have to be
scheduled at their arrival times at input N − 1. To illustrate
this, we show in Figure 7 how a burst of length 8 is scheduled.
Cells 0,1,2,3,4 and 5 can be scheduled without violating the
causality constraint. Cells 6 and 7 have to be scheduled at their
arrival times.

time

0

1

2

3

4
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Fig. 7. An illustrating example of the cell scheduling algorithm

To summarize, we let

I0(m, �) = N − 1 − ((V (τ−
m) + �) mod N). (10)

Cell � of the m + 1th burst is routed to the I0(m, �)th input

of the multiplexer for fixed size cells if
⌊

V (τ−
m)+�
N

⌋
≥ �. In

this case, its delay is
⌊

V (τ−
m)+�
N

⌋
− �. On the other hand, if

⌊
V (τ−

m)+�
N

⌋
< �, cell � of the m + 1th burst is routed to input

N − 1 of the multiplexer for fixed size cells. In this case, its
delay is zero. This is formalized in the following algorithm.

Algorithm 4 (Cell scheduling algorithm) Let I(m, �) and
D(m, �) be the routed input (of the multiplexer for fixed size
cells) and the delay of cell � of the m + 1th burst, � =
0, 1, . . . , �m − 1, and m = 0, 1, 2, . . .. Then

I(m, �) =

{
I0(m, �) if

⌊
V (τ−

m)+�
N

⌋
≥ �

N − 1 otherwise
, (11)

and

D(m, �) = (
⌊
V (τ−

m) + �

N

⌋
− �)+. (12)

Now we discuss how we update the total virtual waiting
time. Let V (τ+

m) be the total virtual waiting time immediately
after the cells in the m+1th burst are scheduled. As described
in our cell scheduling algorithm, there are two cases that need
to be considered. The first case is that all the cells in that burst
are scheduled using the rule specified by I0(m, �). In this case,
after the last cell in the burst, i.e., cell �m −1, is scheduled, we
have

V (τ+
m) = V (τ−

m) + �m, (13)

and all the inequalities in (6) are still satisfied. The second case
is that there exists a cell that does not follow the rule specified
by I0(m, �). When this happens, cell �m − 1 is scheduled at
input N − 1 at time τm + �m − 1. In order to satisfy the conti-
guity constraint, no cells (from other bursts) can be scheduled
before τm + �m −1. Thus, the first available time slot for input
j, j = 0, 1, . . . , N − 2, is τm + �m − 1 and the first avail-
able time slot for input N − 1 is τm + �m (see Figure 7 for an
illustrating example). Clearly, the inequalities in (6) are still
satisfied and we have

V (τ+
m) = (N − 1)(�m − 1) + �m = N�m −N + 1. (14)

These two cases can be combined as follows:

V (τ+
m) = max[V (τ−

m) + �m, N�m −N + 1]. (15)

To see this, note that the condition for the first case is equiva-
lent to that cell �m − 1 is routed to the I0(m, �m − 1)th input,
i.e., ⌊

V (τ−
m) + �m − 1

N

⌋
≥ �m − 1. (16)

As �m − 1 is an integer, this is equivalent to

V (τ−
m) + �m − 1

N
≥ �m − 1. (17)
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Thus, in the first case, we have from (13) that

V (τ+
m) = V (τ−

m) + �m = max[V (τ−
m) + �m, N�m −N + 1].

(18)
On the other hand, the inequality in (17) is reversed in the sec-
ond case and we have from (14) that

V (τ+
m) = N�m −N +1 = max[V (τ−

m)+ �m, N�m −N +1].
(19)

Now we describe how we update the total virtual waiting
time between two successive bursts. Suppose that the m +
2th burst arrives at τm+1. There are two cases that need to be
considered:
Case 1. V (τ+

m) − N(τm+1 − τm) > 0: in this case, we
have from (9) that VN−1(τ+

m) > τm+1 − τm. Note from
(6) that Vj(τ+

m) ≥ VN−1(τ+
m) − 1 for all j. Thus, we have

τm + Vj(τ+
m) − τm+1 ≥ 0 for all j = 0, 1 . . . , N − 1. Since

the next available time slot of input j is τm + Vj(τ+
m), we then

have
Vj(τ−

m+1) = τm + Vj(τ+
m) − τm+1.

Summing up over j yields

V (τ−
m+1) = V (τ+

m) −N(τm+1 − τm).

Case 2. V (τ+
m) − N(τm+1 − τm) ≤ 0: in this case, we have

from (9) that VN−1(τ+
m) ≤ τm+1 − τm. Note from (6) that

Vj(τ+
m) ≤ VN−1(τ+

m) for all j. Thus, we have τm + Vj(τ+
m) −

τm+1 ≤ 0 for all j = 0, 1 . . . , N − 1. As the next available
time slot of input j is τm + Vj(τ+

m) ≤ τm+1, we then have
Vj(τ−

m+1) = 0 for all j = 0, 1 . . . , N−1. Thus, V (τ−
m+1) = 0.

From these two cases, we then have V (τ−
m+1) = (V (τ+

m) −
N(τm+1 − τm))+. In the following, we summarize the algo-
rithms for updating the total virtual waiting time.

Algorithm 5 (Algorithms for updating the total virtual
waiting time)

(i) The total virtual waiting time after a burst is sched-
uled is updated as follows:

V (τ+
m) = max[V (τ−

m) + �m, N�m −N + 1]. (20)

(ii) The total virtual waiting time between two successive
bursts is updated as follows:

V (τ−
m+1) = (V (τ+

m) −N(τm+1 − τm))+. (21)

We illustrate how we use the cell scheduling algorithm in
the following example.

Example 6 In Figure 8, we consider multiplexing variable
length bursts over 3 links, i.e., N = 3. As shown in Figure 8,
there are two bursts coming at time t0 and four bursts coming
respectively at time t0 +1, t0 +4, t0 +9, t0 +10. To break the
tie, we choose the burst with length 5 at time t0 to be the first
burst. As shown in the figure, now we have (τ0, �0) = (t0, 5),
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Fig. 8. An illustrating example for N=3

(τ1, �1) = (t0, 3), (τ2, �2) = (t0 +1, 5), (τ3, �3) = (t0 +4, 6),
(τ4, �4) = (t0 +9, 3), and (τ5, �5) = (t0 +10, 3). Assume that
the buffer in the multiplexer is empty at t0 and the buffer size
B is so large that no cells of the six bursts are lost. Initially, set
V0(t0) = V1(t0) = V2(t0) = 0. Thus, V (τ−

0 ) = V (t0) = 0
and the cells in the first burst are all scheduled at their ar-
rival times at input 2. Using the algorithms for updating the
total virtual waiting time, we then have V (τ+

0 ) = 13 and
V (τ−

1 ) = V (τ+
0 ) = 13. According to the cell scheduling

algorithm, cell 0 of the second burst is scheduled at input 1
at t0 + 4, cell 1 of the second burst is scheduled at input 0 at
t0 + 4, and cell 2 of the second burst is scheduled at input 2
at t0 + 5. Thus, V (τ+

1 ) = 16 and V (τ−
2 ) = 13. All the cells

in the third burst are scheduled using the rule by I0(m, �). As
a result, V (τ+

2 ) = 18 and V (τ−
3 ) = 9. Note that the last cell

(cell 5) of the fourth burst does not follow the I0(m, �) rule and
it is scheduled at input 2 at its arrival time. Thus, V (τ+

3 ) = 16
and V (τ−

4 ) = 1. Cell 0 and cell 1 of the fifth burst still follow
the I0(m, �) rule. However, cell 2 of the fifth burst does not
follow the same rule and it is scheduled at its arrival time at
input 2. Thus, V (τ+

4 ) = 7 and V (τ−
5 ) = 4. The cells in the

last burst all follow the I0(m, �) rule.

V. DELAY BOUND

We have introduced the architecture and the associated cell
scheduling algorithm for the variable length burst multiplexer
with N inputs. In this section, we will further show that both
the total virtual waiting time and the delay through the cell
scheduling block are bounded by constants that only depend
on the number of inputs and the maximum number of cells in
a burst.

Theorem 7 Let �max = supm≥0 �m be the maximum number
of cells in a burst.
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(i) The total virtual waiting time is bounded by (2N −
1)�max −N + 1 for all t, , i.e.,

V (t) ≤ (2N − 1)�max −N + 1. (22)

(ii) The delay for every cell through the cell scheduling

block is bounded by
⌊

(2N−2)�max−N+1
N

⌋
, i.e., for all

m = 0, 1, 2, . . ., � = 0, 1, . . . , �m − 1,

D(m, �) ≤
⌊

(2N − 2)�max −N + 1
N

⌋
. (23)

Note that the bounds in Theorem 7 can be achieved in
the worst case. We now construct a worst case to achieve
these bounds. To see this, consider the scenario that there
are N bursts arriving at time 0 at the N inputs of the vari-
able length burst multiplexer. The burst lengths of these N
bursts are all �max. Thus, we have τm = 0, �m = �max, for
m = 0, 1, . . . , N−1. Under our cell scheduling algorithm, we
then have

V (τ−
0 ) = V (0) = 0,

V (τ+
m) = V (τ−

m+1) = N(�max − 1) + 1 +m�max,

m = 0, 1, . . . , N − 2,

and

V (τ+
N−1) = N(�max − 1) + 1 + (N − 1)�max.

Thus, V (τ+
N−1) in this scenario achieves the upper bound

in (22). Moreover, the delay of cell 0 of the N th burst is

�V (τ−
N−1)
N �, which is exactly the maximum delay in (23).

One important consequence of Theorem 7 is that the number
of the delay lines,M , used in each switch at the second stage of

the cell scheduling block is bounded by
⌊

(2N−2)�max−N+1
N

⌋
+

1. A simple choice is M = 2�max. Such a choice is indepen-
dent of the number of inputs N .

The rest of this section is devoted to the proof of Theorem
7. We will need Lemma 8 and Lemma 9 below for the proof
of Theorem 7. In Lemma 8, we first expand the recursive
equations in (20) and (21) to derive closed form expressions
of V (τ+

m) and V (τ−
m).

Lemma 8 Let L(n) =
n−1∑
m=0

�m be the total number of cells in

the first n bursts. Suppose V (τ−
0 ) = 0.

Then V (τ+
m) =

max
0≤n≤m

( N�n −N+1−N(τm −τn)+L(m+1)−L(n+1) ),

(24)
and V (τ−

m) =

max
0≤n≤m−1

((N−1)�n−N+1−N(τm−τn)+L(m)−L(n))+.

(25)

Proof. We prove (24) by induction. Since we assume that
V (τ−

0 ) = 0, we have from (20) that

V (τ+
0 ) = max( V (τ−

0 ) + �0, N�0 −N + 1)
= N�0 −N + 1

and (24) is satisfied trivially for m = 0.
Now suppose it holds for some m ≥ 0 as the induction hy-

pothesis. It follows from (20) and the induction hypothesis that

V (τ+
m+1) = max(N�m+1 −N + 1,

(V (τ+
m) −N(τm+1 − τm))+ + �m+1)

= max(N�m+1 −N + 1,
V (τ+

m) −N(τm+1 − τm) + �m+1, �m+1)
= max(N�m+1 −N + 1,

max
0≤n≤m

(N�n −N + 1 −N(τm − τn) +

L(m+ 1) − L(n+ 1) −N(τm+1 − τm)
+�m+1))

= max(N�m+1 −N + 1,
max

0≤n≤m
(N�n −N + 1 −N(τm+1 − τn)

+L(m+ 1) − L(n+ 1) + �m+1))
= max

0≤n≤m+1
(N�n −N + 1 −N(τm+1 − τn)

+L(m+ 2) − L(n+ 1)).

This completes the inductive argument for (24).
Since V (τ−

m) = ( V (τ+
m−1) − N(τm − τm−1) )+ in (21),

using (24) yields

V (τ−
m) = ( max

0≤n≤m−1
(N�n −N + 1 −N(τm−1 − τn)

+L(m) − L(n+ 1) ) −N(τm − τm−1) )+

= max
0≤n≤m−1

(N�n −N + 1 −N(τm − τn)

+L(m) − L(n+ 1))+

= max
0≤n≤m−1

((N − 1)�n −N + 1

−N(τm − τn) + L(m) − (L(n+ 1) − �n))+

= max
0≤n≤m−1

((N − 1)�n −N + 1

−N(τm − τn) + L(m) − L(n))+.

In Lemma 9, we establish a bound for the multiplexed traffic
of N inputs. This bound will be used for the proof of Theorem
7.

Lemma 9 For all n ≤ m,

L(m) − L(n) −N(τm − τn) ≤ (N − 1)�max. (26)
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Proof. Let τk(n) and �k(n), k = 0, 1, . . . , N − 1, n =
0, 1, 2, . . ., be the arrival time and the burst length of the n+1th

burst at the kth input of the multiplexer with variable length
bursts. Also, let Lk(n) =

∑n−1
m=0 �k(m) be the total number

of cells in the first n bursts from the kth input.
Without loss of generality, suppose that in the first n (resp.

m) bursts, there are nk (resp. mk) bursts from the kth input,
k = 0, 1, . . . , N−1. Moreover, suppose that the m+1th burst
is from the jth input for some j. Thus, we have

L(m) − L(n) =
N−1∑

k=0

(Lk(mk) − Lk(nk)). (27)

Note that Lk(mk) − Lk(nk) =
∑mk−1

i=nk
�k(i) is the total

number of cells from the nk + 1th burst to the mth
k burst

at input k. These cells must arrive during the time interval
[τk(nk), τk(mk − 1) + �max − 1]. Since there is at most one
cell arrival within a time slot, we then have

Lk(mk) − Lk(nk) ≤ τk(mk − 1) + �max − τk(nk). (28)

As there are exactly nk bursts from the kth input in the first n
bursts, the arrival time of the nk +1th burst from the kth input
cannot be earlier than the arrival time of the n+1th burst, i.e.,

τk(nk) ≥ τn. (29)

Similarly, as there are exactly mk bursts from the kth input in
the first m bursts, the arrival time of the mth

k burst from the kth

input cannot be later than the arrival time of the m+1th burst,
i.e.,

τk(mk − 1) ≤ τm. (30)

Using (29) and (30) in (28) yields

Lk(mk) − Lk(nk) ≤ τm − τn + �max. (31)

Now we refine the bound in (31) for the jth input. As the
m + 1th burst is from the jth input, the cells in Lj(mj) −
Lj(nj) must arrive during the time interval [τj(nj), τm − 1].
Thus,

Lj(mj) − Lj(nj) ≤ τm − τj(nj) ≤ τm − τn. (32)

It then follows from (27), (31) and (32) that

L(m) − L(n) = Lj(mj) − Lj(nj)

+
∑

k �=j

(Lk(mk) − Lk(nk))

≤ N(τm − τn) + (N − 1)�max.

Proof. (Proof of Theorem 7) (i) Note that V (t) is decreasing
between the interarrival time of two successive bursts and that
V (τ−

m) ≤ V (τ+
m) for all m. Thus,

V (t) ≤ sup
m≥0

V (τ+
m).

It suffices to show that V (τ+
m) ≤ (2N − 1)�max − N + 1 for

all m = 0, 1, 2, . . .. Note from (24) in Lemma 8 and (26) in
Lemma 9 that

V (τ+
m) = max

0≤n≤m
( N�n −N + 1 −N(τm − τn)

+L(m+ 1) − L(n+ 1) )

= max
0≤n≤m

(
(N − 1)�n −N + 1 −N(τm − τn)

+L(m) + �m − (L(n+ 1) − �n)
)

≤ max
0≤n≤m

( (N − 1)�n −N + 1 −N(τm − τn)

+L(m) − L(n) + �max)
≤ max

0≤n≤m
( (N − 1)�n −N + 1 +N�max)

≤ (2N − 1)�max −N + 1.

(ii) Note from (25) in Lemma 8 and (26) in Lemma 9 that

V (τ−
m) = max

0≤n≤m−1
((N − 1)�n −N + 1 −N(τm − τn)

+L(m) − L(n))+

≤ max
0≤n≤m−1

((N − 1)�n −N + 1 + (N − 1)�max)

≤ (2N − 2)�max −N + 1

Thus, we have from (12) that

D(m, �) = (
⌊
V (τ−

m) + �

N

⌋
− �)+

≤
⌊
V (τ−

m)
N

⌋

=
⌊

(2N − 2)�max −N + 1
N

⌋
.

VI. CONCLUSIONS

In this paper, we proposed an architecture that achieves ex-
act emulation of FIFO multiplexers for variable length bursts.
Our architecture consists of two blocks: a cell scheduling
block and an FIFO multiplexer for fixed size cells. Both blocks
are made of SDL units. The cell scheduling block schedules
cells in a burst to the right input at the right time so that cells
in the same burst depart contiguously from the multiplexer
for fixed size cells. We showed that cell scheduling can be
done efficiently by keeping track of the total virtual waiting
time. Moreover, the delay through the cell scheduling block is
bounded above by a constant that only depends on the number
of inputs and the maximum number of cells in a burst. Such a
delay bound provides a limit on the number of fiber delay lines
needed in the cell scheduling block.
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Fig. 9. An N × N Knockout switch

One may use the multiplexer developed in this paper to build
all optical Knockout switches. In Figure 9, we show the ar-
chitecture of an N × N Knockout switch in [23]. There are
three basic network elements in Figure 9: 1 × N switches, N
inputs/K outputs concentrators and K-to-1 multiplexers. As
shown in Fig. 8 of [23], it is possible to realize the N inputs/K
outputs concentrators using SDL units. As we have shown in
this paper that the K-to-1 multiplexers with variable length
bursts can be realized by SDL units, Knockout switches (with
variable length bursts) can also be realized by SDL units.

In this paper and our previous paper in [3], we only focused
on designing FIFO multiplexers using SDL units. In order to
achieve quality of service (QoS), more sophisticated schedul-
ing policies, such as priority queues [15], [26], [17] and the
earliest deadline first policy, might be needed. It would be of
interest to investigate the complexity of implementing these
sophisticated scheduling policies using SDL units.
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