
Distributed Construction of
Random Expander Networks
Ching Law

Massachusetts Institute of Technology
Cambridge, MA 02139

ching@mit.edu

Kai-Yeung Siu
Massachusetts Institute of Technology

Cambridge, MA 02139
siu@sunny.mit.edu

Abstract— We present a novel distributed algorithm for
constructing random overlay networks that are composed of d
Hamilton cycles. The protocol is completely decentralized as no
globally-known server is required. The constructed topologies are
expanders with O(logd n) diameter with high probability.

Our construction is highly scalable because both the processing
and the space requirements at each node grow logarithmically
with the network size. A new node can join the network in
O(logd n) time with O(d logd n) messages. A node can leave in
O(1) time with O(d) messages. The protocol is robust against
an offline adversary selecting the sequence of the join and leave
operations.

We also discuss a layered construction of the random expander
networks in which any node can be located in O(log n) time.

The random expander networks have applications in commu-
nity discovery, distributed lookup service, and dynamic connec-
tivity.

I. INTRODUCTION

The area of peer-to-peer networking has recently gained
much attention in both the industry and the research com-
munity. Well-known peer-to-peer networks include Napster,
Gnutella, Freenet, FastTrack, and eDonkey. However, most of
these systems either require a centralized directory or cannot
scale beyond a moderate number of nodes. The problem of
finding an efficient distributed scalable solution has attracted a
lot of research interests [1], [2], [3], [4]. This paper introduces
a distributed algorithm for constructing expander networks,
which are suitable for peer-to-peer networking, without using
any globally-known server.

Interesting properties and algorithms have been discovered
for random regular graphs [5], [6], [7], [8]. In particular, it
has been found that random regular graphs are expected to
have big eigenvalue gaps [9] with high probability, and thus
are good expanders.

In this paper, we form expander graphs by constructing a
class of regular graphs which we call H-graphs. An H-graph is
a 2d-regular multigraph in which the set of edges is composed
of d Hamilton cycles (Figure 1 is an example). Using random
walk as a sampling algorithm, a node can join an H-graph in
O(logd n) time with O(d logd n) messages, and leave in O(1)
time with O(d) messages.

If we want to search the nodes by their identifiers, we can
overlap multiple layers of H-graphs. On layered H-graphs

This work is supported in part by the Auto-ID Center.

Fig. 1

AN H-GRAPH CONSISTING OF 3 HAMILTON CYCLES.

with uniformly distributed identifiers, a join operation takes
O(log n) time and O(log n) messages, while a leave operation
takes O(1) time and O(log n) messages.

Section II describes our network model and gives an
overview of the design of H-graphs. Section III introduces
the protocol for constructing H-graphs. We discuss several
perfect sampling algorithms in Section IV and a random-walk
sampling algorithm in Section V, with simulation results in
Section VI. Two useful maintenance algorithms are discussed
in Section VII. We present layered H-graphs in Section VIII.
We discuss applications in Section IX and related work in
Section X, and conclude with remarks on future work in
Section XI. In this conference paper, most of the proofs are
omitted for brevity.

II. PRELIMINARIES

In this section, we will state our assumptions of the underly-
ing network model and then describe the goals and constraints
that lead to our design based on random regular graphs.

A. Network Model

We assume a network environment where any node u can
send a message to node v as long as node u knows the address
of v. If a node fails to receive a message for whatever reason,
the sending node can repeat sending the message without
causing the algorithm to fail. There can be node failures but
not permanent link failures. Such model is assumed in [10] and
most peer-to-peer research. An example of such an underlying
network is the Internet when using some reliable messaging
protocol such as TCP.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

The space requirement will be expressed in the number of
addresses. Theoretically, O(logN) bits are required to encode
the address of a node, where N is the largest possible number
of nodes. However, for all practical purposes, we can assume
that the length of an address is effectively constant (e.g., 128
bits in IPv6).

We assume that there is a maximum delay between all pairs
of nodes in the underlying network. In practice, the processing
time per message is usually insignificant compared to the
communication time. Also, for a small message, the delivery
time is mostly independent of the message size.

Each execution of a distributed algorithm will lead to a set
of messages sent among the nodes in the graph. The message
complexity of an algorithm is the size of this set. Some of these
messages have causal relationships: there is some sequence
m1,m2, . . . of messages where mi cannot be sent before
mi−1 has been received. We will express the time complexity
of an algorithm as the length of the longest such sequence.

We will be concerned with the logical topologies overlayed
on top of the underlying network. On a set of nodes with labels
[n] = {1, 2, . . . , n}, a topology can be effectively determined
by sets of neighbors N(u), which are nodes known to node u
(not including u itself), for u ∈ [n]. In the rest of this paper,
we represent such logical topology as a graph G = (V,E),
where V = [n] and (u, v) ∈ E if and only if v ∈ N(u).

We consider distributed algorithms on the graph such that
u can send a message to v only if (u, v) ∈ E. During the
execution of our algorithm, an edge (u, v) can be added into
E if u is informed of the address of v.

B. Goals and Requirements

Our first goal is to construct logical topologies that can
support broadcasting and searching efficiently. Our second
goal is to make our construction highly scalable. This implies
the objectives:
A-1 Resources consumed at each individual node should be

as low as possible.
A-2 Time complexities for joining and leaving of nodes

should be as low as possible.
A key factor on the load of a node is the number of nodes

that it has to communicate with. This parameter determines
a node’s minimum storage requirement and the maximum
number of potential simultaneous network connections. The
number of neighbors of a node is its degree in the graph.
Therefore, objective A-1 dictates that the degrees should be
as small as possible. In order to achieve objective A-2, we
need to make sure that the algorithms for nodes joining and
leaving are efficient.

C. A Random Graph Approach

To make worst-case scenarios unlikely, we have decided to
construct the graph with a randomized protocol. We would
like our topology to be ‘symmetric’ in the sense that every
node shares an equal amount of responsibilities. For this reason
and for providing better fault tolerance, we did not choose a
hierarchical approach. After considering various random graph

models, we chose regular multi-graphs that are composed
of independent Hamilton cycles. Regular graphs are chosen
because we would like the degree to be bounded. Also, random
walking on regular graphs, which is a key part of our protocol,
has a uniform stationary distribution. Graphs composed of
Hamilton cycles have the advantage that the join and leave
operations only require local changes in the graph.

Now we shall define the set of H-graphs. Let Hn denote the
set of all Hamilton cycles on set [n]. We shall assume n ≥ 3
for rest of this paper. Consider a multigraph G = (V,E), such
that V = [n] and E = (C1, . . . , Cd), where C1, C2, . . . , Cd ∈
Hn. Let Hn,2d be the set of all such 2d-regular multigraphs.
We call the elements in Hn,2d the H-graphs. It can be derived
that |Hn| = (n − 1)!/2 and |Hn,2d| = ((n − 1)!/2)d. If
C1, C2, . . . , Cd are independent uniform samples of Hn, then
(V, (C1, . . . , Cd)) is a uniform sample of Hn,2d.

Following the notation in Bollobás [11], a probability space
is a triple (Ω,Σ, P), where Ω is a finite set, Σ is the set of all
subsets of Ω, and P is a measure on Σ such that P (Ω) = 1
and P (A) =

∑
w∈A P ({w}) for any A ∈ Σ. In other words,

P is determined by the values of P ({w}) for w ∈ Ω. For
simplicity, we will write P (w) for P ({w}).

Let UΩ be the uniform measure on set Ω so that UΩ {w} =
1/ |Ω| for all w ∈ Ω. For example, we have UHn,2d

{G} =
(2/(n − 1)!)d for all G ∈ Hn,2d.

We shall consider two basic operations for a randomized
topology construction protocol: JOIN and LEAVE. A JOIN(u)
operation inserts node u into the graph. Any node in G should
be able to accept a JOIN request at any time. Any node in G
can also call LEAVE to remove itself from the graph G. Our
algorithms of JOIN and LEAVE are described in Section III.
Given an initial probability space S0 and a sequence of
JOIN and LEAVE requests, a randomized topology construction
protocol will create a sequence of spaces S1,S2,

Friedman [9], [12] showed that a graph chosen uniformly
from Hn,2d is very unlikely to have a large second largest
eigenvalue. In order to apply Friedman’s theorem, we need
a protocol that would produce a sequence of uniformly dis-
tributed spaces.

Given a probability space S = (Ω′,Σ′, P ′), let Ω[S] = Ω′

and P [S] = P ′. A probability space S is uniformly distributed
if P [S] = UΩ[S]. We would like to have a protocol that creates
a sequence of uniformly distributed probability spaces, given
any sequence of JOIN and LEAVE requests. In addition, a new
node should be free to call JOIN at any existing node in the
graph.

Summarizing the objectives we have so far, we would like
to have a protocol where
B-1 Low space complexity at any node.
B-2 Low time complexities for JOIN and LEAVE.
B-3 Low message complexities for JOIN and LEAVE.
B-4 The probability spaces produced are uniformly dis-

tributed.
Satisfying the first three properties is crucial because they
are necessary for our protocol to be highly scalable. When
property B-4 is not satisfied, we can try to construct sequences

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

of probability spaces S0,S1, . . . having distributions close to
be uniform. This can be achieved by an algorithm based on
random walks presented in Section V. We have yet to find a
protocol satisfying all four properties simultaneously.

III. CONSTRUCTION

In this section we introduce a framework for constructing a
random regular network.

The graphs that we shall construct are 2d-regular multi-
graphs in Hn,2d, for d ≥ 4. The neighbors of a node are labeled
as nbr−1, nbr1, nbr−2, . . . , nbr−d, nbrd. For each i, nbr−i and
nbri denote a node’s predecessor and successor on the ith
Hamilton cycle (which will be referred to as the level-i cycle).

We start with 3 nodes, because there is only one possible
H-graph of size 3. In practice, we might want to use a different
topology such as a complete graph when the graph is small.

The graph grows incrementally when new nodes call JOIN

at existing nodes. Any node can leave the graph by calling
LEAVE.

In the following algorithmic pseudocodes, the variable self
identifies the node executing the procedure. All the actions
are performed by self by default. The expression u ⇒PROC()
invokes a remote procedure call PROC at node u. The call is
assumed to be non-blocking unless a return value is expected.
Expression u ⇒ var means that we request the value var
from node u. Expression (u ⇒ var) ← x means that we
set the variable var of node u to value x. Thus, messages are
exchanged between node self and node u.

Procedure LINK connects two nodes on the level-i cycle.
LINK(u, v, i)
1 (u ⇒ nbri) ← v
2 (v ⇒ nbr−i) ← u

Procedure INSERT(u, i) makes node u the successor of self
on the level-i cycle. We assume that INSERT is atomic. This
can achieved by having a lock for each of the d Hamilton
cycles at each node.

INSERT(u, i)
1 LINK(u, self ⇒ nbri, i)
2 LINK(self, u, i)

A new node u joins by calling JOIN(u) at any existing node
in the graph. Node u will be inserted into cycle i between
node vi and node (vi ⇒ nbri) for randomly chosen vi’s for
i = 1, . . . , d.

JOIN(u)
1 for i ← 1, . . . , d in parallel
2 do vi ← SAMPLE()
3 for i ← 1, . . . , d in parallel
4 do vi ⇒ INSERT(u, i)

Procedure SAMPLE() returns a node of the graph chosen
uniformly at random. Implementations of SAMPLE are pre-
sented in Section IV.

LEAVE()
1 for i ← 1, . . . , d in parallel
2 do LINK(nbr−i, nbri, i)

Theorem 1 shows that procedures JOIN and LEAVE can
preserve uniform probability spaces.

Theorem 1: Let S0,S1,S2, . . . be a sequence of probability
spaces such that

• S0 is uniformly distributed and Ω[S0] = Hk,2d for some
k;

• Si+1 is formed from Si by JOIN or LEAVE;
• |Ω[Si]| ≥ 3 for all i ≥ 0.

Then Si is uniformly distributed for all i ≥ 0.
A graph G of size n has a corresponding n by n matrix A,

in which the entry Aij is the number of edges from node i to
node j. Let λ(G) be the second largest eigenvalue of graph
G’s matrix. Friedman [9] showed that random regular graphs
have close to optimal λ(G) with high probability. Although he
mainly considered the graphs that are composed of d random
permutations, he also showed that his results hold for graphs
composed of d random Hamilton cycles. Theorem 2 restates
a recent improvement [12] over [9].

Theorem 2 (Friedman): Let G be a graph chosen from
Hn,2d uniformly at random. For any ε > 0, λ(G) ≤
2
√

2d − 1 + ε with probability 1 −O(n−p), where p depends
on d.
It has been known that λ(G) ≥ 2

√
2d − 1 + O(1/ logd n)

for any 2d-regular graph. Therefore, no family of 2d-regular
graphs can have smaller asymptotic λ(G) bounds than Theo-
rem 2.

As a consequence of Theorem 2, H-graphs are expanders
with O(logd n) diameter with high probability because of the
relation between eigenvalues and expanders [13], [14].

Corollary 3 is a direct consequence of Theorem 2.
Corollary 3: Let G be a graph chosen from Hn,2d uni-

formly at random. Then λ(G) ≤ 2
√

2d with probability
1 −O(n−p), where p depends on d.

IV. PERFECT SAMPLING

In this section, we will discuss several implementations for
procedure SAMPLE of Section III.

A. Global Server

In a simple centralized solution using a publicly-known
sampling server, each joining node can obtain d uniformly
random nodes from the sampling server. Each JOIN or LEAVE

operation only takes O(1) time and O(1) messages. The space
required at the sampling server is O(n).

B. Broadcast

Instead of using a central server, a new node u can broadcast
a request to all the nodes. Each node will be asked to reply
with certain probability p = O(1/n). Thus u expects to receive
O(1) replies and can randomly pick one as the sample. A
broadcast on an H-graph sends at most (2d−1)n messages and

terminates in
⌊
2 logd/2(n − 1)

⌋
+1 steps with high probability.

In the worst case, the broadcasting source has to handle O(n)
replies. Instead of asking each node to reply independently,
a protocol can converge the sampling results at the internal
nodes of the broadcast tree, so that each node only need to
handle O(d) messages in the worst case. We omit the details
of the algorithm in this conference paper.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

An efficient implementation of this approach requires an
estimation of n. Estimation algorithms are discussed in Sec-
tion VII-B.

C. Coupling From The Past

Perfect sampling algorithms for Markov chains have been
discovered in recent years. Propp and Wilson [15] intro-
duced faster algorithms based on their ‘coupling from the
past’ (CFTP) procedure. They gave an algorithm COVER-
CFTP which generates a state distributed with stationary π in
expected time at most 15 times the cover time. The expected
cover time for H-graphs is around n log n [16] with high
probability. Thus the running time of COVER-CFTP on an
H-graph is O(n log n).

V. APPROXIMATE SAMPLING

All the sampling algorithms in Section IV require O(n)
messages. We believe that it is unlikely that perfect sampling
with o(n) message complexity is possible for graphs other
than the highly-structured ones such as the hypercube. In
this section, we describe an approach of approximate sam-
pling using random walks. A graph can be considered as a
Markov chain. Sampling by random walks is usually called
Markov chain Monte Carlo [17]. Since H-graphs are regular,
the limiting distribution of random walks on H-graphs is
the uniform distribution. Moreover, since an H-graph is an
expander with high probability, a random walk of O(log n)
steps on an H-graph can sample the nodes of the graph with
a distribution close to be uniform. We shall show that our
protocol with approximate sampling increases the probability
of producing ‘bad graphs’ (those with large λ(G)) by only
a constant factor. Therefore, if the graph is sufficiently large,
the high probability result of Theorem 2 can still be applied.
With approximate sampling, we need to start with a uniformly
distributed probability space of sufficiently large graphs. When
the graph is small, we can use a perfect sampling algorithm
described in Section IV.

Procedure SAMPLE-RW(t) performs a random walk on the
graph and returns the node after t steps.

SAMPLE-RW(t)
1 if t = 0
2 then return self
3 else v ← a random element in N(self)
4 return v ⇒ SAMPLE-RW(t − 1)

For clarify, SAMPLE-RW is presented as a tail recursion
through remote procedure calls. We can as well pass along
the address of the initial node. Procedure SAMPLE-RW can
replace SAMPLE in Section III. The variant of JOIN using
SAMPLE-RW will be denoted as JOIN-RW. Table I summa-
rizes the complexities of the sampling algorithms we have
considered.

A. Nodes Joining

We first consider the case where only JOIN-RW is allowed.
Lemma 4 is a consequence of Theorem 5.1 in [18].

Lemma 4: Let G ∈ Hn,2d be a graph such that λ(G) ≤
2
√

2d, where d ≥ 4. Let t =
⌈
2 logd/2

nr

c

⌉
+ 4 where r and

c are positive constants. Then for any v ∈ G, we have
∣∣∣∣Pr {SAMPLE-RW(t) returns v} − 1

n

∣∣∣∣ ≤ c

dnr
.

Theorem 5 shows that although our protocol with SAMPLE-
RW does not sample perfectly, the probability that we obtain
a graph of large second eigenvalue remains very small.

Theorem 5: Let Sn,Sn+1,Sn+2, . . . be a sequence of prob-
ability spaces where Sk = (Hk,2d,Σk, Pk). Let Sn be
a uniformly distributed probability space and let Sk+1 be
formed from Sk by operation JOIN-RW using SAMPLE-
RW

(⌈
2 logd/2

kr

c

⌉
+ 4

)
with c > 0 and r > 2. Then for

all k ≥ n,

Pk

{{
G ∈ Hk,2d | λ(G) ≤ 2

√
2d

}}
≥ 1 −O(n−p),

where d is chosen such that p > 1.
Proof: Let Υn =

{
G ∈ Hn,2d | λ(G) ≤ 2

√
2d

}
be the

set of ‘good’ graphs in Hn,2d. Let J(G) be the set of graphs
obtained by operation JOIN (it does not matter whether we
consider JOIN or JOIN-RW) on G. For any k ≥ n, let

Υk+1 =
{
G ∈ J(Υk) | λ(G) ≤ 2

√
2d

}
. (1)

The probability space Sk can be considered as a product
space (Ck)d where Ω[Ck] = Hk.

For any C ∈ Hk and l ∈ {1, . . . , d}, let Hk[l, C] =
{G ∈ Hk,2d | C is the level-l Hamilton cycle of G } be the
set of graphs whose level-l cycle is C.

For any probability space (Ω,Σ, P) and any sets A,B ⊆ Ω,
let P {A | B} = P {A ∩B} /P {B}. We shall prove that for
m ≥ n,

Pm {Υm} ≥ 1 −
m∑

j=n

ec
∑ j−1

i=n i1−r

O(j−p), and (2)

sup
C∈Hm
1≤l≤d

Pm {Hm[l, C] | Υm } ≤ e
c
d

∑ m−1
i=n i1−r

(m − 1)!/2
. (3)

Because of our assumption that Sn is a uniformly distributed
probability space and Corollary 3, Pn {Υn} ≥ 1 − O(n−p).
The eigenvalue of a graph depends on the structure of the
graph but not the labels. In other words, a graph has the same
eigenvalue no matter how we label the nodes. Thus, we have

Pn {Hn[l, C] | Υn } = Pn {Hn[l, C]} =
1

(n − 1)!/2
.

Therefore, Inequalities (2) and (3) are satisfied for the base
case m = n.

Now we assume that Inequalities (2) and (3) are satisfied
for m = k. We will show that they are satisfied for m = k+1.

Let t(k, d) =
⌈
2 logd/2

kr

c

⌉
+ 4 be the number of steps

walked by SAMPLE-RW.
The set J(Υk) are those graphs that can be produced by

an operation JOIN on the graphs in Υk. Let C ′ ∈ Hk be the
cycle such that node k+1 is removed from a cycle C ∈ Hk+1.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

TABLE I

THE COMPLEXITIES OF THE SAMPLING ALGORITHMS. “SPACE” IS THE WORST-CASE STORAGE REQUIREMENT AT ANY NODE.

Sampling Algorithm Time Messages Space Sampling

Global Server O(1) O(1) O(n) perfect
Broadcast O(logd n) O(dn) O(d) perfect
CFTP O(n log n) O(n log n) O(d) perfect
Random Walk O(logd n) O(logd n) O(d) approximate

A graph in Hk+1[l, C] ∩ J(Υk) must be created by inserting
the node k + 1 at level l between two nodes of a graph in
Hk[l, C ′] ∩ Υk. We have

sup
C∈Hk+1, 1≤l≤d

Pk+1 {Hk+1[l, C] | J(Υk) }

≤ sup
C′∈Hk, 1≤l≤d

Pk {Hk[l, C ′] | Υk } ×

sup
v∈[k],G∈Υk

Pr {SAMPLE-RW(t(k, d)) on G returns v} .

Let supv∈[k],G∈Υk
Pr{SAMPLE-RW(t(k, d)) on G returns

v} = 1/k + εk. Informally, εk is the amount of deviation
resulted from the approximate sampling on some G ∈ Υk

by a random walk. It would be zero if a perfect sampling
algorithm is used. By Lemma 4, εk ≤ c

dkr . By the inductive
assumption of Inequality (3) when m = k, we have

sup
C∈Hk+1, 1≤l≤d

Pk+1 {Hk+1[l, C] | J(Υk) }

≤ e
c
d

∑ k−1
i=n i1−r

(k − 1)!/2
1 + c

dkr−1

k

≤ e
c
d

∑ (k+1)−1
i=n i1−r

((k + 1) − 1)!/2
.

Since all pairs (C, l) are symmetric, we have

sup
C∈Hk+1, 1≤l≤d

Pk+1 {Hk+1[l, C] | Υk+1 }

= sup
C∈Hk+1, 1≤l≤d

Pk+1 {Hk+1[l, C] | J(Υk) } .

Thus Inequality (3) is true for m = k + 1.
Since a new node is inserted into the d Hamilton cycles

independently during each JOIN operation, we have

sup
G∈J(Υk)

Pk+1 {G | J(Υk) }

≤
∏

1≤l≤d

sup
C∈Hk+1

Pk+1 {Hk+1[l, C] | J(Υk) }

≤

(
e

c
d

∑ (k+1)−1
i=n i1−r

((k + 1) − 1)!/2

)d

.

Dividing both sides by UHk+1,2d
{G}, we have

sup
G∈J(Υk)

Pk+1 {G | J(Υk) }
UHk+1,2d

{G}
≤ ec

∑ (k+1)−1
i=n i1−r

. (4)

Starting from Equation (1), we have

Pk+1 {Υk+1}

= Pk+1

{{
G ∈ J(k) | λ(G) ≤ 2

√
2d

}}

=
∑

G∈J(Υk), λ(G)≤2
√

2d

Pk+1 {G}

=
∑

G∈J(Υk)

Pk+1 {G} −
∑

G∈J(Υk), λ(G)>2
√

2d

Pk+1 {G} .

The first term can be derived from our inductive assumption
that Inequality (2) is satisfied for m = k:

∑

G∈J(Υk)

Pk+1 {G} = Pk+1 {J(Υk)}

= Pk {Υk}

= 1 −
k∑

j=n

ec
∑ j−1

i=n i1−r

O(j−p). (5)

Given Corollary 3 and Inequality (4), the second term can
be bounded as follows:

∑

G∈J(Υk), λ(G)>2
√

2d

Pk+1 {G}

≤
∑

G∈J(Υk), λ(G)>2
√

2d

Pk+1 {G | J(Υk) }

≤
∑

G∈J(Υk),λ(G)>2
√

2d

ec
∑ (k+1)−1

i=n i1−r

UHk+1,2d
{G}

< ec
∑ k

i=n i1−r

UHk+1,2d

{{
G ∈ Hk+1,2d | λ(G) > 2

√
2d

}}

< ec
∑ k

i=n i1−r

O((k + 1)−p). (6)

Combining Equations (5) and (6), we obtain

Pk+1 {Υk+1} ≥ 1 −
k+1∑

j=n

(
ec

∑ j−1
i=n i1−r

)
O(j−p).

Since r > 2, ec
∑ k

i=n i1−r

is bounded by a constant.
Similarly,

∑k
j=n j

−p is bounded by a constant if p > 1. In

fact,
∑k

j=n j
−p becomes negligible quickly with moderate p.

For example, when p = 4 and n = 50, we have
∑∞

j=50 j
−4 <

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

3 × 10−6. Therefore, for any k ≥ n,

Pk

{{
G ∈ Hk,2d | λ(G) ≤ 2

√
2d

}}

≥ Pk {Υk}

≥ 1 −
k∑

j=n

ec
∑ j−1

i=n i1−r

O(j−p)

= 1 −O(n−p).

We note that Theorem 5 is useful only when the initial graph
size n is sufficiently large for O(n−p) to be close to zero. We
can use complete graphs when the size n is small.

B. Nodes Leaving

The operation LEAVE can have a much larger effect on the
probability of obtaining bad graphs. We can obtain a similar
result if the number of operations is bounded by a power of
the size n of the graphs in the initial uniformly distributed
probability space. The proof of Theorem 6 is similar to that
of Theorem 5.

Theorem 6: Consider a sequence S0, . . . ,SN of probability
spaces and an integer n such that

• 〈σ1, σ2, . . . , σN 〉 is a sequence of operations, such that
each operation σi is either a LEAVE or a JOIN-RW using
SAMPLE-RW(

⌈
2 logd/2

kr

c

⌉
+4), where c > 0 and r > 2.

• S0 is a uniformly distributed probability space and
Ω[S0] = Hn,2d;

• Si is obtained from Si−1 by operation σi for i =
1, . . . , N ;

• |Ω[Si]| ≥ n for all i ∈ {0, . . . , N}.
If N = O(nq) such that q < r − 1, then

Pi

{{
G ∈ Ω[Si] | λ(G) ≤ 2

√
2d

}}
≥ 1 −O(nq−p)

for i = 1, . . . , N and some p > 1.
In the long run, the probability spaces may deviate further

and further away from the uniformly distributed spaces. (We
expect that, in practice, the ‘degradation’ will be very slow,
especially if the leaving nodes are not chosen by an adversary.)
In the following, we outline two strategies for slowing down
the deviation. When the request sequence is unbounded and ar-
bitrary, we can also use a regeneration algorithm (Section VII-
A) to refresh the probability space.

1) The Youngest Node: We observe that if the node to
leave is always the node just joined (the youngest node), then
Theorem 5 would remain valid. Of course we cannot avoid
other nodes leaving before the youngest node z. Nevertheless,
when some node v wants to leave, it can just swap its set
of neighbors N(v) with the neighbors of z. Thus, for the
graph topology, it would appear as if the youngest node z
has left instead. We call the ordered list of the neighbors
〈nbr−1, nbr1, nbr−2, . . . , nbr−d, nbrd〉 the shell of a node.
Swapping shells takes O(1) time and O(d) messages.

Now our problem reduces to locating the youngest node z
by any node that wants to leave. Let g be a server known to

all nodes in the graph. Each node u ∈ G contains a field prev
that points to the node that joined just before u. Server g’s
variable youngest should always point to the current youngest
node.

• When the youngest node z leaves, g ⇒ youngest is
updated to z ⇒ prev.

• When a new node u joins the network, (u ⇒ prev) ←
(g ⇒ youngest) and then g ⇒ youngest is updated to u.

Only O(1) messages are required for each JOIN-RW or
LEAVE operation. We note that only O(1) space is required
at the global server.

2) Shell Recycling: The previous approach either requires
a global server or a broadcast during every JOIN-RW or
LEAVE. We now investigate a distributed solution without
broadcasting.

When a node v departs, it can ask a neighbor u to store
v’s shell. Then u will simulate node v and have (at most) 4d
effective neighbors. We call u a shell-host. The idea is to save
the shell and wait for a new node to adopt it. When there are
sufficient shell-hosts, a new node can easily find a shell-host
and adopt a shell.

When the set of shell-hosts occupies a proportion ψ of the
graph, a new node will only need O(ψ−1) expected time to
find a shell-host. In the worst case that the set of shell-hosts
is determined by an adversary, it will still only take O(ψ−1 +
log n) expected time to locate a shell-host.

We note that this will only have a limited effect on the
performance of the algorithms running on the graph. If we
allow b extra shells for each shell-host, then a graph of size n
will be simulating a graph of size (b+ 1)n in the worst case.
Each node has to store (2d)b additional addresses. Since the
time complexity of JOIN-RW is O(log n), the extra time cost
is only O(log b) plus the cost of finding a shell-host.

Although this approach is distributed and efficient, it has
the limitation that shell-hosts can become saturated in the
extreme case. The number of shells per shell-host dictates the
maximum factor that a graph can shrink. For example, if we
set the load factor b to be 2, then the entire graph can host at
most 2n additional shells. This means that a graph reducing
its size by two-third will run out of shell-hosts. In this case,
we will need a regeneration algorithm (Section VII-A).

At last, we note that it could be beneficial to pre-build some
shells so that a new joining node can simply adopt a shell,
especially if an expensive perfect sampling algorithm is used.

VI. SIMULATION RESULTS

We have performed some simulations to gain more insights
into the constructions of the H-graphs. We would like to
obtain some guidelines for setting the various parameters of
our algorithms. For example, we would like to know what
should be the sufficient size of d for an H-graph of certain
size.

According to Theorem 2, if an H-graph G is chosen from
a set Hn,2d uniformly at random, then for any ε > 0,

λ(G) ≤ 2
√

2d − 1 + ε (7)

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Graph Size

N
um

be
r

of
B

ad
G

ra
ph

s

200 400 600 800 1000

500

1000

1500

2000
2500
3000
3500
4000
4500
5000

ε=0.05

ε=0.01

ε=0.025

ε=0.1 ε=0.075

Fig. 2

NUMBER OF GRAPHS NOT SATISFYING INEQUALITY (7) IN 100,000

TRIALS, FOR d = 4 AND ε = 0.01, 0.025, 0.05, 0.075, 0.1.

with probability 1−O(n−p), where p depends on d. However,
it is not clear that given ε, what size of n is sufficient so that
O(n−p) is insignificant.

Our program first creates a 3-node H-graph and then have
new nodes joined sequentially. When the size of the graph is
50, 100, . . . , 1000, we find the second largest eigenvalue of the
graph by calling ARPACK++ [19], an eigenvalue package.

We simulate our construction algorithm using sampling
algorithm SAMPLE-RW. As suggested by Lemma 4, number
of steps taken is set to

⌈
2 logd/2

nr

c

⌉
+4. We fixed c = 1 and

r = 3 (no observable effects on the results when r is set to
1 or 5). Since the purpose of the simulations is to evaluate
the second largest eigenvalues of the graphs produced by our
protocol, we used the graph size n, instead of an estimate
(discussed in Section VII-B), for determining the number of
random walk steps.

Let us call a graph ‘bad’ if it does not satisfy Inequality (7).
In our simulations, we count the number of bad graphs
observed in 100,000 independent trials. In Figure 2, with
d = 4, we can see that the number of bad graphs drops quicker
against increasing graph size when the ε in Inequality (7) is
larger. For example, when ε = 0.1, we observed 218 bad
graphs when n = 250, 26 bad graphs when n = 500, and 0
bad graph when n = 1000. Our results in Section V are based
on Corollary 3 that takes ε = 2(

√
2d −

√
2d − 1), which is

around 0.37 for d = 4. With this ε value, only 20 graphs of
size 50 were bad. No bad graphs were observed for any graph
of size at least 100 in the 100,000 trials.

Next, we investigated the effects of parameter d (half of
the node degree). The solid lines in Figure 3 represent the
number of bad graphs for d = 4, 8, 16, with ε = d/100.
The ε is set to be proportional to d because the eigenvalues
should be normalized by dividing 2d, the largest eigenvalue,
for a fair comparison. The number of bad graphs decrease
with increasing d. The dashed lines represent the graphs using
perfect sampling. We did not observe a significant difference
between the results using perfect sampling and the results

Graph Size

N
u

m
b

er
o

fB
ad

G
ra

p
h

s

200 400 600 800 1000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

d=4

d=8

d=16

Perfect Sampling

Approximate Sampling by
Random Walks

Fig. 3

NUMBER OF GRAPHS NOT SATISFYING INEQUALITY (7) IN 100,000

TRIALS, FOR d = 4, 8, 16 AND ε = d/100.

using approximated sampling.
According to our simulation results, d = 4 is sufficient

to obtain a high probability of satisfying Inequality (7) for
ε = 2(

√
2d−

√
2d − 1). A larger d will give us smaller eigen-

values for small graphs, lower time complexity for joining
and diameter (both O(logd n)), but higher space and message
complexities.

The high probability results in Section V only apply when
we start with a uniform probability space of sufficient graph
size. However, the simulations show that even if we start from
the 3-node H-graph, there is a small probability of obtaining
bad graphs in the long run, as most of the bad graphs become
‘good’ when the graph size increases.

VII. MAINTENANCE ALGORITHMS

A. Regeneration

By various reasons, the probability space produced by
our protocol may deviate too far away from the uniformly
distributed space. It could be caused by the extraordinary
shrinkage discussed in Section V-B.2, or by some node fail-
ures. Although we are unable to find a distributed algorithm
to ‘repair’ a probability space, we can regenerate the graph by
creating a new set of Hamilton cycles. In the following, we
will present a regeneration algorithm.

Our approach is to start from a small graph again and insert
nodes until the new graph has taken in all existing nodes.
Apparently, it would take up to n steps to construct a new
Hn,2d graph. However, it is possible to speed up this process
by joining nodes in parallel. For example, consider a set of new
nodes joining G at the same time so that some node v ∈ G is
picked simultaneously by k new nodes at level i. In this case,
v needs to insert the k nodes between v and v ⇒ nbri in a
random order.

During each round, we will let each node in the new graph
invite its neighbors in the old graph to join. For example, let
v0, v1, v2 be the initial members of the new graph. In the first
round, they will invite all their neighbors to join the new graph.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Let these neighbors be v3, . . . , vk1 . In the second round, after
nodes v3, . . . , vk1 have joined, they can in turn invite their
neighbors to join. At every step, the number of new nodes
is at most 2d − 1 times the current size of the new graph.
Therefore, each existing node in the new graph expects to see
O(d2) LINK requests. Effectively, this process expands like a
broadcast, which takes O(logd n) rounds to cover the entire
graph.

We can use a perfect sampling algorithm when the graph is
small and switch to SAMPLE-RW after some size n0. The
overall time and message complexities are O(log2

d n) and
O(d(n2

0 + n logd)).
We can invoke a regeneration based on a fixed schedule or

an estimate of the number of LEAVE operations.

B. Size Estimation

In a distributed setting, any node in a graph would not know
the total size of the graph. However, most of our algorithms,
like sampling with broadcasts (Section IV-B) or random walks
(Section V), would run more efficiently if we have a good
estimation of the graph size. Therefore, we would like to have
an efficient distributed algorithm to gather and disseminate
estimates of the graph size.

Estimating the size of a graph distributedly is an interesting
algorithmic problem. Our goal is for every node to have a
lower-bound estimate on the graph size. Since JOIN-RW has
time complexity O(log n), if our estimate of the graph size
is nµ, µ ≥ 1, then the complexity is increased by a factor
of µ. An estimate can be obtained with a central server or
with a broadcast tree, with algorithms similar to corresponding
ones in Section IV. We note that although size estimation
is not cheap, the cost can be amortized over many join and
leave operations. We discuss two estimation protocols in the
following.

a) Random Walk: Feige [20] gave a randomized
LOGSPACE algorithm COMPONENT to estimate the size of an
arbitrary connected graph in O(n3) time and a regular graph
in O(n2) time. COMPONENT was used as a subroutine for
testing graph connectivity. For expander graphs, we can apply
Gillman [21]’s Chernoff bound for random walks. Adapting
Gillman’s modified Aldous’s procedure [22], we can show
that, in O(β2n log n) time and with O(β2n) messages, a node
can estimate the size of the graph within error βn with high
probability.

b) Covering Walk: We are currently working on a new
distributed estimation algorithm based on long-lived random
walkers on the graph. A walker counts the number of nodes
that it has visited by marking the nodes. It also notifies the
nodes with its current count.

VIII. LAYERED H-GRAPHS

An H-graph is efficient for locating a member of a subset,
when the size of the subset is not too small when compared
with the size of the entire graph (see Section IX-A). However,
if we want to locate a particular node, the expected time is
Θ(n). In this section, we will improve the performance for

0...

10..

11..

layer

1

2

0

identifier

Fig. 4

A LAYERED H-GRAPH WITH d = 1.

such application by overlaying multiple H-graphs on the same
set of nodes.

Let us start with two layers. Let G be connected as an
H-graph by our protocol. We can randomly color half of the
nodes red and half of the nodes blue. All the red nodes are
then connected by an H-graph consisting of red nodes only.
And there is an H-graph for the blue nodes. In this case, if we
want to find a particular red node v, we first find any red node
using the original H-graph, and then locate node v following
the edges of the red H-graph.

The next natural step is to consider having layers of
H-graphs until the deepest layer consists of graphs of O(1)
size. We call such topology a layered H-graph. Let layer 0
refers to the H-graph connecting the entire graph.

We will assign an identifier to each node. Let an identifier
be a string z1z2 · · · zm such that zi ∈ {0, . . . , qi − 1} for all
i ∈ {1, . . . ,m}. We will assume that qi = q in this paper,
although our results can be extended to the general case of
distinct qi’s. Let id(u) be any node u’s identifier.

We first describe how identifiers can be used to construct a
layered H-graph. Consider a set of n nodes such that each node
is assigned an identifier. The nodes are connected by layers
of H-graphs. In layer 0, the nodes are connected as a standard
H-graph. Then for each layer i and each prefix z1 · · · zi, the
nodes with this prefix are connected as a H-graph (if there are
at least three such nodes). For example, nodes with z1 = 0
should be connected as an H-graph, and all nodes with z1 = 1
should be connected as a separate H-graph. Figure 4 shows
an example of a 3-layer H-graph.

To search for a node z in a layered H-graph, we first search
for a node u with id(u)1 = z1 using the layer-0 links. After
that, we can use the layer-1 links of the z1-subgraph to search
for a node v with id(v)2 = z2. We can repeat this process
until we reach a subset of O(1) size, which can be connected
as a complete graph.

For any node u in a layered H-graph G, let layer(u, i) =
(V ′, E′), such that

V ′ = {w ∈ V (G) | w can reach u with layer-i edges} ,
E′ = {(x, y) | x, y ∈ V ′ and (x, y) is in layer j ≥ i} .

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Let |layer(u, i)| be the number of nodes in layer(u, i). Our
protocol will maintain the property that if v ∈ layer(u, i), then
id(v)h = id(u)h for 0 ≤ h < i, i.e., v and u share the same
(i − 1)-prefix.

The number of layers of a graph does not need to be the
length of the identifiers. When the graph is small, few layers
are sufficient. Let basesize > d be a constant such that for any
G = layer(u, i),

• if |G| < basesize, then G is a complete graph and does
not contain deeper layers;

• if |G| > 2 × basesize, then G is a layered H-graph and
contains at least one deeper layer.

Transitions (procedures TOCOMPLETE and TOREGULAR) be-
tween a complete graph and an H-graph are not complicated
and are omitted in this conference paper.

If layer(u, i) is a complete graph, then layer(u, j) =
({u} , ∅) for j > i.

IDSEARCH(z, i)
1 return a node u such that id(u)i = zi

Procedure IDSEARCH can be implemented by walking
along a Hamilton cycle. It can shown that the expected time
complexity is the inverse of the proportion of nodes satisfying
id(u)i = zi. We omit the details of the algorithm in this
conference paper.

Now we present the algorithms for joining and leaving a
layered H-graph.

LAYERJOIN(u, i)
1 if layer(self, i) is a complete graph
2 then insert u into the complete graph
3 if |layer(self, i)| > 2 × basesize
4 then TOREGULAR(i)
5 else JOIN(u, i)
6 IDSEARCH(id(u), i + 1) ⇒ LAYERJOIN(u, i + 1)

For any node u in a layered H-graph G, let depth(u) be the
deepest layer that it belongs to. Let depth(G) be the maximum
depth of the nodes in G.

LAYERLEAVE(i)
1 if |layer(self, depth(self) − 1)| < basesize
2 then TOCOMPLETE(depth(self) − 1)
3 for each j ∈ {i, . . . , depth(self)} in parallel
4 do LEAVE(j)

Procedures JOIN(u, i) and LEAVE(i) are like the original
JOIN and LEAVE except that they only use the edges in layer
i.

The LAYERSEARCH algorithm moves recursively from
layer 0 to the deepest layer of the target node.

LAYERSEARCH(z, i)
1 if id(self) is a prefix of z
2 then return self
3 else return IDSEARCH(z, i + 1) ⇒ LAYERSEARCH(z, i + 1)

The major advantage of layered H-graph over plain H-graph
is that any node can be located efficiently given its identifier.

Given a layered H-graph G and a node u ∈ G. We say
that a non-complete-graph layer(u, i) is δ-balanced if for any
v ∈ layer(u, i),

|layer(v, i + 1)|
|layer(u, i)|

≥ δ

q
.

If layer(u, i) is δ-balanced for all u ∈ G and all i ∈
{0, . . . , depth(G)} where layer(u, i) is not a complete graph,
then we say G is δ-balanced.

Corollary 7: If G is δ-balanced, then LAYERSEARCH

takes at most (q/δ − 1) logq n hops in expectation.
The best possible expected number of hops is log2 n on a
1-balanced layered H-graph when q = 2.

As indicated by Corollary 7, it is crucial that the layered
H-graph is balanced. We will consider two approaches of
assigning the identifiers.

A. Random Identifiers

In this subsection we assume that identifiers are chosen
uniformly at random. A hash function can be used to map the
name of a node into an identifier z. Alternatively, each new
node can pick an identifier randomly. We will also assume that
the identifiers have sufficient number of bits.

One can expect that a uniform hash function or a good
random number generator should be able to produce layered
H-graphs with good bounded δ. We will verify this intuition
in the following.

We can show that layered H-graphs of sufficient size are
likely to be 1/2-balanced, and prove Theorems 8 and 9,
which give the time complexities of LAYERJOIN and LAY-
ERSEARCH.

Theorem 8: Let G be a layered H-graph with uniformly
distributed identifiers. With high probability, the expected time
complexity of LAYERJOIN(u, 0) is O(logq n + logd n).

Theorem 9: If the identifiers of a layered H-graph G are
randomly distributed, then with high probability (with respect
to the topology G), LAYERSEARCH(z, 0)

• returns in expected times O(q log n), and
• returns in O(q log2 n) steps with high probability (with

respect to the random choices during the search).

B. Sampling Identifiers

Sometimes a solution based on random or hashed identifiers
is unsatisfactory because of the potential collisions and the
uncertainty when n is small. Moreover, even though we
can assume that joining nodes have uniformly distributed
identifiers, if the leaving nodes are picked by an adversary,
then the graph can become unbalanced.

For certain applications, we can construct a layered H-graph
that is “self-correcting” by allowing the new nodes to choose
their own identifiers with the goal of enhancing the balanced-
ness of the graph.

We will illustrate the approach for the case that q = 2.
The idea is to balance the tree by trying to join the smaller
subset. For example, in a graph with 1000 nodes, if there
are 700 nodes with z1 = 0 and 300 nodes with z1 = 1, a
new node joining the graph should try to set its z1 to 1. It
is very expensive to actually count the number of nodes with
z1 = 0 or z1 = 1. However, it is not difficult for a node to
guess intelligently which set is larger. If node u samples one
node in the graph, there is a probability of 7/10 observing a
z1 = 0 node and a probability of 3/10 observing a z1 = 1

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

node. So if u observes a z1 = 0 node, then it should set its
z1 to 1, and vice versa. For a more prudent decision, u can
sample more nodes and pick the one with the least-frequently
observed prefix. This method can be generalized to arbitrary
q:

SAMPLING-IDENTIFIER(q, i)
1 u ← SAMPLE(i − 1) // using the layer-(i − 1) edges only
2 return a random number in {0, . . . , q − 1} \ id(u)i

For example, we can consider a 2-layer H-graph. For any q,
let S(q)n be the number of z1 = 0 nodes in a layered H-graph
of n nodes is constructed with SAMPLING-IDENTIFIER(q, 1).
Let random variable X(q)n be the number of z1 = 0 nodes
when identifiers chosen uniformly at random.

The analyses of S(q)n are omitted in this conference paper.
The following summary of results, comparing S(q)n with the
binomially distributed variable X(q)n, confirms our intuition
that sampling identifiers should lead to better load-balancing.

E [X(q)n] = n/q E [S(q)n] = n/q

Var [X(q)n] =
(q − 1)n

q2 Var [S(q)n] ≈ (q − 1)2n
q2(q + 1)

E
[
etX(2)n

]
=

(
et + 1

2

)n

E
[
etS(2)n

]
<

(
et − 1

t

)n

Pr
{

X(2)n <
n

4

}
< (0.883)n Pr

{
S(2)n <

n

4

}
< (0.665)n

IX. APPLICATIONS

A. Community Discovery

In many situations, we want to locate a subset of nodes
sharing some common interests with us. For example, consider
the following scenarios:

• Alice likes to locate other anime fans of a certain studio,
so that she can share unlicensed video clips with them.

• Bob wants to discover some peer-to-peer servers storing
open-sourced software packages.

H-graphs can be used to discover such communities. Let A be
a subset of nodes in an H-graph G such that |A| / |G| = ψ. For
any such set A, we can find a member of A in O(logd ψ

−1)
time with O(dψ−3) messages with high probability by a
broadcast. Moreover, we can find a member of A by random
walk in O(ψ−1 + log n) hops in expectation even if set A
is selected by an adversary. Analyses are omitted in this
conference paper.

We suggest that H-graph can be used to establish a large
global network with potentially millions of nodes, in which
smaller communities can be formed and searched easily. These
communities can be connected as smaller H-graphs or by other
domain-specific protocols.

B. Lookup Service

A layered H-graph can be used to implement a distributed
lookup service similar to those supported by CAN [1], Chord
[2], Pastry [3], and Tapestry [4]. A lookup service stores
key-value pairs in the network, such that the values can be
looked up efficiently when given the key. To implement a
lookup service on the layered H-graph, keys can be hashed

into identifiers. A key is stored at the node whose identifier has
the longest prefix match with the hashed identifier. Insertions,
deletions, and updates of entries have the same time and
message complexities as procedure LAYERSEARCH. In par-
ticular, the O(log n) routing time and O(log n) neighbor size
of layered H-graphs match the corresponding complexities in
these four systems.

Thus the randomness of these topologies solely depends on
the hash functions used. On the other hand, the randomness
of H-graphs arises from the independent random walks (in
addition to the hash function). As a consequence, H-graphs
are tolerant to an adversary selecting the leaving nodes.

H-graphs are particularly efficient for node departures be-
cause a leaving node only needs to notify its immediate
neighbors. In other systems, some re-organization is neces-
sary. In addition, layered H-graphs support a ‘self-balancing’
technique by sampling the existing identifiers. This leads to
better load-balancing.

C. Dynamic Connectivity

Layered H-graph can implement a community where the
underlying network address of any node may change from
time to time. For example, a node connected to the Internet by
DHCP can have its IP address changed every few days. On a
laptop or PDA with wireless access, the IP address may change
frequently. A layered H-graph allows us to form such dynamic
networked community (for chatting, gaming, file-sharing, etc.)
without using a centralized directory. Any node can reach
another node in O(log n) hops given the identifier. Layered
H-graph is particularly suitable for such application because
a) a node changing its IP address only needs to notify O(log n)
neighbors in O(1) time, and b) the network is tolerant to a
large number of nodes temporarily unavailable.

X. RELATED WORK

Little has been done on distributed algorithms for random
graphs. Frieze and McDiarmid [23]’s survey on random graphs
algorithms included several parallel algorithms but no dis-
tributed algorithms. There were several sequential algorithms
for generating random regular graphs [24], [25], [26]. Random
graphs constructed by centralized algorithms were also used
for communication networks [27], [28].

Kermarrec, Massoulié, and Ganesh [29] and Eugster et
al. [30] have studied randomized networks for probabilistic
broadcasts and membership management. The analysis in [30]
is based on the assumption each node having “uniformly
distributed random view” of a constant size, justified by some
simulation results. It is not clear how fast their graphs converge
to a topology satisfying the assumption. In [29], the random
views of the nodes are provided by a set of dedicated servers
that require O(n) storage space.

Pandurangan, Raghavan, and Upfal [31] proposed an al-
gorithm for building low-diameter peer-to-peer networks
with bounded degrees. Although their random topology also
achieves O(log n) diameter with high probability, their ap-
proach and techniques are different from ours. First, they

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

assume a stochastic model for the arrivals and departures of
nodes, while H-graph assumes arbitrary sequence of arrivals
and departures. Second, their protocol uses a special server
that is known to all nodes in the network, which is not
required in H-graphs. Third, their network is connected with
high probability instead of with certainty.

XI. CONCLUDING REMARKS

This paper introduces a distributed approach for construct-
ing overlay networks as random graphs. Using random walks
as a sampling subroutine, we have demonstrated a scalable
construction of expander graphs without any centralized server
support.

Previous studies of random regular graphs indicate that they
are robust against failures [32], [33]. We expect that most
isolated faults would have limited effects on the probability
spaces. Further work is required to devise efficient schemes
for recovering from node failures and schedules for the regen-
eration algorithm.

In a large network, there can be a large variation of network
distance (which can be a function of the network delay,
bandwidth, or reliability) between pairs of nodes. We can have
a hierarchy of H-graphs based on the underlying network
topology. For example, there can be an H-graph for each
regional network, an H-graph for each country, and then a
global H-graph. Each search query will first try to search
within the smaller H-graphs before querying nodes in the
larger H-graphs.

In a heterogeneous network, a powerful machine can serve
as several nodes in the (layered) H-graphs, thus increasing the
number of its effective neighbors by a constant factor. Such
scheme effectively utilizes machines of different capacities and
is transparent to our algorithms.

At last, we expect that the distributed sampling algorithms
and estimation algorithms discussed in this paper could lead
to interesting further investigations, and be useful in other
situations.

REFERENCES

[1] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content addressable network,” in Proceedings of SIGCOMM
2001, Aug. 2001, pp. 161–172.

[2] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proceedings of SIGCOMM 2001, Aug. 2001, pp. 149–160.

[3] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object lo-
cation and routing for large-scale peer-to-peer systems,” in Proceedings
of the 18th IFIP/ACM International Conference on Distributed Systems
Platforms.

[4] B. Y. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: An infrastructure
for fault-tolerant wide-area location and routing,” University of Califor-
nia, Berkeley, Tech. Rep. CSD-01-1141, 2001.

[5] A. Frieze, M. Jerrum, M. Molloy, R. Robinson, and N. Wormald,
“Generating and counting Hamilton cycles in random regular graphs,”
Journal of Algorithms, vol. 21, no. 1, pp. 176–198, July 1996.

[6] A. M. Frieze and L. Zhao, “Optimal construction of edge-disjoint paths
in random regular graphs,” in Proceedings of the Tenth Annual ACM-
SIAM Symposium on Discrete Algorithms, Jan. 17–19 1999, pp. 346–
355.

[7] H. Garmo, “The asymptotic distribution of long cycles in random regular
graphs,” Random Structures and Algorithms, vol. 15, 1999.

[8] M. Krivelevich, B. Sudakov, V. H. Vu, and N. C. Wormald, “Random
regular graphs of high degree,” Random Structures and Algorithms,
vol. 18, 2001.

[9] J. Friedman, “On the second eigenvalue and random walks in random
d-regular graphs,” Combinatorica, vol. 11, pp. 331–362, 1991.

[10] M. Harchol-Balter, T. Leighton, and D. Lewin, “Resource discovery in
distributed networks,” in Proceedings of the 18th ACM Symposium on
Principles of Distributed Computing, May 1999.

[11] B. Bollobás, Random Graphs, 2nd ed. Cambridge University Press,
Sept. 2001.

[12] J. Friedman, “A proof of Alon’s second eigenvalue conjecture,” 2002.
[Online]. Available: http://www.math.ubc.ca/˜jf/pubs/index.html

[13] N. Alon, “Eigenvalues and expanders,” Combinatorica, vol. 6, no. 2, pp.
83–96, 1986.

[14] N. Kahale, “Eigenvalues and expansion of regular graphs,” vol. 42, no. 5,
pp. 1091–1106, Sept. 1995.

[15] J. G. Propp and D. B. Wilson, “How to get a perfectly random sample
from a generic Markov chain and generate a random spanning tree of a
directed graph,” J. Algorithms, vol. 27, no. 2, pp. 170–217, May 1998.

[16] D. J. Aldous and J. A. Fill, “Reversible Markov chains and random
walks on graphs,” monograph in preparation.

[17] M. Jerrum and A. Sinclair, “The Markov chain Monte Carlo method: an
approach to approximate counting and integration,” in Approximation
Algorithms for NP-hard Problems, D. S. Hochbaum, Ed. PWS
Publishing, 1996, pp. 482–520.

[18] L. Lovász, “Random walks on graphs: a survey,” Combinatorics, Paul
Erdős is Eighty (vol. 2), pp. 353–398, 1996.

[19] F. M. Gomes and D. C. Sorensen, “ARPACK++: A C++ implementation
of ARPACK eigenvalue package.” CRPC, Rice University, Houston, TX,
Tech. Rep. TR97729, 1997.

[20] U. Feige, “A fast randomized LOGSPACE algorithm for graph connec-
tivity,” Theoretical Computer Science, vol. 169, no. 2, pp. 147–160, Dec.
1996.

[21] D. Gillman, “A Chernoff bound for random walks on expander graphs,”
SIAM Journal on Computing, vol. 27, no. 4, pp. 1203–1220, Aug. 1998.
[Online]. Available: http://epubs.siam.org/sam-bin/dbq/article/26876

[22] D. Aldous, “On the Markov chain simulation method for uniform
combinatorial distributions and simulated annealing,” Probability in the
Engineering and Informational Sciences, vol. 1, pp. 33–46, 1987.

[23] A. Frieze and C. McDiarmid, “Algorithmic theory of random graphs,”
Random Structures & Algorithms, vol. 10, pp. 5–42, 1997.

[24] B. McKay and N. C. Wormald, “Uniform generation of random graphs
of moderate degree,” Journal of Algorithms, vol. 11, pp. 52–67, 1990.

[25] A. Steger and N. C. Wormald, “Generating random regular graphs
quickly,” Combinatorics, Probability and Computing, vol. 8, pp. 377–
396, 1999.

[26] G. Katona and A. Seress, “Greedy construction of nearly regular graphs,”
European Journal of Combinatorics, vol. 14, 1993.

[27] Farago, Chlamtac, and Basagni, “Virtual path network topology op-
timization using random graphs,” in Proceedings of the 1999 IEEE
Computer and Communications Societies Conference on Computer
Communications, 1999.

[28] A. Srinivasan, K. G. Ramakrishnan, K. Kumaran, M. Aravamudan, and
S. Naqvi, “Optimal design of signaling networks for Internet telephony,”
in Proceedings of the 2000 IEEE Computer and Communications
Societies Conference on Computer Communications, Mar. 2000, pp.
688–716.

[29] A.-M. Kermarrec, L. Massoulié, and A. Ganesh, “Reliable probabilis-
tic communication in large-scale information dissemination systems,”
Microsoft Research Cambridge, Tech. Rep. 2000-105, Oct. 2000.

[30] P. Eugster, S. Handurukande, R. Guerraoui, A.-M. Kermarrec, and
P. Kouznetsov, “Lightweight probabilistic broadcast,” in Proceedings of
The International Conference on Dependable Systems and Networks,
July 2001.

[31] G. Pandurangan, P. Raghavan, and E. Upfal, “Building low-diameter
P2P networks,” in Proceedings of the 42nd Annual IEEE Symposium on
the Foundations of Computer Science, Oct. 2001.

[32] N. C. Wormald, “The asymptotic connectivity of labelled regular
graphs,” Journal of Combinatorial Theory (B), vol. 31, pp. 156–167,
1981.

[33] S. E. Nikoletseas, K. V. Palem, P. G. Spirakis, and M. Yung, “Connectiv-
ity properties in random regular graphs with edge faults,” International
Journal of Foundations of Computer Science, vol. 11, 2000.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

	INFOCOM 2003
	Return to Main Menu

