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Abstract — In wireless networks, it is often assumed that all
nodes cooperate to relay packets for each other. Although this is a
plausible model for military or mission based networks, it is unre-
alistic for commercial networks and future pervasive computing
environments. We address the issue of noncooperation between
nodes in the context of content distribution in mobile infostation
networks. We assume all nodes have common interest in all files
cached in the fixed infostations. In addition to downloading files
from the fixed infostations, nodes act as mobile infostations and
exchange files when they are in proximity. We stipulate a social
contract such that an exchange occurs only when each node
can obtain something it wants from the exchange. Our social
contract enables much higher system efficiency compared to
downloading from fixed infostations only while not requiring true
cooperation among nodes. We show by analysis and simulations
that network performance depends on the node density, mobility
and the number of files that are being disseminated. Our results
point to the existence of data diversity for mobile infostation
networks. The achievable throughput increases as the number of
files of interest to all users increases. We have also extended the
common interest model to the case where nodes have dissimilar
interests. Our simulation results show that as mobile nodes
change from having identical interests to mutually exclusive
interests, the network performance degrades dramatically. We
propose an alternative user strategy when nodes have partially
overlapping interests and show that the network capacity can be
significantly improved by exploiting multiuser diversity inherent
in mobile infostation networks. We conclude that data diversity
and multiuser diversity exist in noncooperative mobile infostation
networks and can be exploited.

I. INTRODUCTION

In generic mobile ad hoc networks, nodes communicate
with each other through multihop routing. However, the
achievable capacity in these networks is low as demonstrated
by simulation studies [1], [2]. Although rate adaptation [7]
or power control [11] techniques have shown demonstrative
improvement on network capacity, it is unlikely that these
measures will increase capacity further by several orders of
magnitude. Indeed, [6] showed that the asymptotic throughput
capacity of a wireless multihop network goes to zero as the
number of nodes tends to infinity, even under the assumption
of optimal scheduling and power control.

Recently, new mobile networking architectures have been
proposed that exploit node mobility to achieve large network
capacity. Instead of using multihop routing, networking is
brought about by node mobility. In [5], nodes are connected
intermittently when they are in proximity. It was shown in
[5] that with a two hop relay model, the steady-state per-
node throughput scales with the number of nodes. Whereas

[5] considered unicast communication, [10] considered content
distribution using single hop multicast. In order to expedite
data dissemination, a node also relays packets for other nodes
if it has not done so for some time. The above works assume
that nodes cooperate to relay packets for each other. Although
typical in the wireless networking literature, this assumption is
often unrealistic. When a node relays a packet for some other
nodes, it expends its own bandwidth and power resources. A
node therefore has no immediate incentive to forward packets
for others.

In this paper we address the issue of noncooperation in the
context of a mobile infostation network for movie download-
ing. All nodes are subscribers to a movie content distribution
network. A movie is divided into K files which are then
cached in a network of fixed infostations, access points pro-
viding pockets of high-speed short-range coverage [3]. When
a node comes close to an infostation, files can be downloaded.
In an entirely noncooperative network, this would be the only
mechanism for file dissemination. It only uses the high-speed
channel between an infostation and a node near it, while
wasting all the equally excellent channels between closely
located nodes. A more efficient system would have any two
nodes in proximity to act as mobile infostations to exchange
copies of their files. When there are many nodes, a node
obtains most of the files from node-to-node file exchanges.
Data dissemination is thus distributed to all nodes and all
locations in the network.

It is possible to allow file exchanges among mobile nodes
while keeping the network essentially noncooperative by stip-
ulating the following social contract for all nodes in the
network. When two nodes meet, they inspect the file contents
of each other. If each node identifies a file that it wants, a
bilateral file exchange takes place. Conversely, if either of the
nodes cannot find a file it wants, no file exchange takes place
since that node has no immediate incentive to transmit a file
to the other.

We have shown by analysis and simulations that the net-
working performance of this file exchange mechanism depends
on node mobility and density. More importantly, we find
that both fairness and throughput of the network improve as
the number of files in the network increases. We identify
this phenomenon as a new form of diversity. Traditional
communication diversity techniques exploit the variations of
signal strength over temporal, spatial and frequency domains.
Data diversity, on the other hand, arises due to the enlargement
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of individuals’ preferences of data, and is a consequence
of the assumption of noncooperation among the nodes. We
conjecture that data diversity has important ramifications in the
performance of other networking contexts such as multihop ad
hoc networks.

We have also extended the common interest model to the
case where each node has dissimilar interest. This is applicable
to the contexts in which multiple movies or TV shows are
cached in the infostations. When nodes have mutually exclu-
sive or partially overlapping interests, network performance
degrades drastically. We have identified two user strategies for
the dissimilar interest model. Our simulation results show that
network capacity can be significantly improved by exploiting
multiuser diversity inherent in mobile infostation networks.

The rest of the paper is organized as follows. In section
II, we describe the system model. Section III is devoted to
performance analysis, and the results are verified by simu-
lations in section IV. We describe a new form of diversity
- data diversity in section V. In section VI, we extend our
common interest model to the case where nodes have partially
overlapping interests. Simulation results of two user strategies
are discussed. The results are interpreted further as a form
of multiuser diversity in section VII. Finally, conclusions are
drawn in section VIII.

II. SYSTEM MODEL

This work is largely motivated by [5] which employed a
signal to interference ratio (SIR) based link quality model to
demonstrate the that N nodes in a region could maintain O(N)
simultaneous transmissions with acceptable SIR. However, in
this work, we look to employ a simpler communication model
in order to demonstrate the effect of the social contract on
content distribution. As shown in Figure 1, the geography
consists of L discrete locations in a square grid with an
infostation at the center of the grid. The infostation cache
holds the K files of a movie. We assume the geography wraps
around at each boundary, effectively creating a toroidal grid.
We refer to this L node wraparound grid with one infostation
and L−1 regular locations as a block. A block is intended to
mimic a typical multi-infostation network in which an infinite
grid of infostations populate an infinite plane. The number
of locations L relative to the single infostation serves to
characterize the density of fixed infostations over the terrain.

The L location grid is populated with N nodes with inde-
pendent mobility processes. In our simulation experiments, we
assume that time is discretized such that at each unit of time,
each node randomly and independently moves in one of the
four directions with equal probability q = 0.25. When two or
more nodes are at the same location at the same time, we say
those nodes are neighbors.

In our communication model, each node either downloads
files from an infostation or exchanges files with a neighbor. At
the infostation, only file downloading is allowed. At any other
locations, file exchanges between mobile nodes are permitted.

Infostation
L discrete mobile locations

Fig. 1. Illustration of the network model.

Given a particular radio bandwidth, the size of a file is chosen
such that the time a node occupies a location allows for either a
bilateral file exchange between neighbors at a regular location
or for two files to be downloaded from the infostation.

There are two factors that impact data dissemination. First
there is a transmission concurrency constraint at each location.
If there is more than one node at the infostation, contention
is resolved by randomly picking one node for downloading.
Similarly, when there are more than two neighbors at a
location, two of the neighbors are randomly picked to perform
a file exchange. Second, the probability of exchange is dictated
by the user strategy which also consists of two parts. The
user strategy must determine first whether to exchange files
according to a social contract. Specifically, a node may want
to exchange for a file because it is genuinely interested in that
file. Alternatively, a node may want to exchange for a popular
file, which is then used to facilitate future file exchanges. Thus
even if a node cannot obtain a file of genuine interest, it may
exchange for a file that it does not have. The user strategy then
must specify which file should be picked from the other node.
In the first part of this paper, however, there is no distinction
between the above models. Since all nodes have common
interest in downloading the files of a popular movie, each node
is genuinely interested in every file it does not have. In section
VI, we extend the common interest model to the case where
nodes have dissimilar interests that are partially overlapping.
In that case, the network performance is dependent on the
choice of the above models.

After two neighbors agree to exchange files, each downloads
one file from the other. In an encounter in which there are
multiple files of interest, a node must decide which file to
download. Two strategies are examined in this paper. For the
random strategy, a node randomly selects a file it does not
have from the neighbor node. Similarly, a node randomly
selects two files that he does not have for downloading at
an infostation. For comparison, we also consider a greedy
strategy which assumes that each node has full knowledge
of the circulation of each file within the network. For an
infostation download or a neighbor exchange, a node picks the
file that is the least circulated among all files it does not have.
This strategy is greedy since it maximizes the probability of
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exchange PE between two arbitrary nodes in a static snapshot.

We note that the selection of two arbitrary nodes for file
exchange is suboptimal. Under the social contract the two
selected nodes may not perform file exchange. A practical
node selection protocol should avoid this by scheduling trans-
missions only to the node pair with an exchange agreement.
The random selection of nodes in this paper is used to facilitate
performance analysis and provide a lower performance bound
to an ideal node selection scheme. On the other hand, the social
contract implicitly assumes there are no misbehaved nodes.
Each node makes no false claim on the files it possesses and
ensures the integrity of all its disseminated files. The social
contract provides a framework for studying non-cooperation
between nodes. In a practical file exchange protocol, additional
security mechanisms must be added to ensure the integrity of
the files being exchanged.

The proposed content distribution network admits a number
of performance metrics to describe how quickly files are
disseminated. We define T1 as the time when 80% of the
nodes get all of the files. A network operator is interested
in this quantity, which is related to the networking efficiency
and the revenue generated from the network. We define T2
as the time when all nodes get 80% of the files. A network
subscriber, on the other hand, will be interested in T2, which
is related to fairness and perhaps will influence his willingness
to pay. We also define T3 as the time for all nodes to get all the
files. Finally T4 is defined as the time for an arbitrary node to
obtain all files. An analytical expression for E[T4] is obtained
in the next section.

We also evaluate the network performance in terms of
throughput Ci, which characterizes the average rate of file
downloading per node. This is defined in terms of the network-
ing time Ti and is given by Ci � K/E[Ti], for i = 1, 2, 3, 4.
The units of Ci are files per node per unit time. Note that we
can view the distribution to a particular node of movies over
time as a renewal process in which the renewal period equals
T4, the time required for the node to obtain one movie. Since
the node obtains a reward of K files in each renewal period,
renewal-reward theory assures that the expected rate at which
the node obtains files is precisely C4 [12].

III. PERFORMANCE ANALYSIS

When two or more mobile nodes are at the same location,
a two-step process determines whether a file exchange occurs.
First, the nodes at that location follow a radio access protocol
to determine which pair of nodes will attempt a file exchange.
We use the term access to refer to the event that a node gets to
be one of a pair of nodes that examines the files carried by the
other. Under some simplifying assumptions, we will see that at
a regular location the access probability is given by a constant
β, that depends on the number of nodes N and locations L in
the block. For a pair of nodes chosen in the access phase, the
exchange probability PE denotes the probability that the two
nodes can exchange files under the terms of the social contract.

The exchange probability will depend on the file contents in
each node, which in turn depends on the user strategy.

In this section we provide a simple approximate analysis
of β and PE . We then develop a simple Markov chain
model to obtain the expected networking time E[T4] and the
corresponding throughput C4 for each node. We make the
following key assumptions:

• Memoryless Uniform Mobility In each time unit, each
node is randomly and independently at any of the L
locations with probability p = 1/L.

• Independent Uniform Content Distribution Given that
node i has obtained li files, all combinations of li out of
K files are equiprobable, independent of the files held by
all other nodes.

It is not hard to see that these assumptions are inconsistent with
the system model of section II. In particular, when the number
of locations is small and mobility is limited, nodes are likely
to be neighbors frequently and have highly correlated content.
Nevertheless, our simulation results agrees closely with the
analytical results, indicating that these assumptions work well
in systems with moderately large number of files K = 500
and reasonable mobility q = 0.25.

Due to the transmission concurrency constraint, the max-
imum number of simultaneous transmissions in the block
equals L, the number of locations. For a given number of loca-
tions, it should be apparent that there is an optimum number
of nodes N such that the access probability is maximized.
If the number of nodes in the network is small, the spatial
transmission concurrency is not fully utilized. Similarly, if
there are too many nodes in the block, only a fraction of nodes
could schedule transmissions in the L possible locations.

Given a particular node at a given location, memoryless
mobility implies that the number of other neighbors at that
location is a random variable J with the binomial distribution

P [J = j] =
(
N − 1
j

)
pj(1 − p)N−1−j j = 0, . . . , N − 1

(1)
When a given mobile is at the infostation with J = j
neighbors, the probability β′ that the given node is chosen
for the infostation download is 1/(j + 1). Averaged over all
J , the probability the given node is chosen for the download
is

β′ =
N−1∑

j=0

1
j + 1

P [J = j] =
1 − (1 − p)N

Np
(2)

Similarly, when a node is at a regular location with J = j ≥ 1
other neighbors present, 2 out of j + 1 nodes are randomly
chosen. The conditional access probability that a given node
is one of the two chosen nodes is 2/(j + 1). Thus,

β =
N−1∑

j=1

2
j + 1

P [J = j] (3)

=
2[1 − (1 − p)N −Np(1 − p)N−1]

Np
(4)
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Based on (4), the optimal N is around 2L. Below, in equa-
tion (12), a more careful optimization of β(N) in the limit
of large N,L with fixed density ρ � N/L, reveals that
ρopt � 1.8. One can use this result to determine the optimal
spatial density of fixed infostations based on the anticipated
spatial density of mobile subscribers.

When nodes i and j have the opportunity to exchange files,
the probability of exchange PE depends on the files each node
is holding. Suppose nodes i and j have li and lj files in their
caches. An exchange between the nodes will occur unless one
node has a collection of files that is subset of the other’s
collection. Assuming, without loss of generality, that li ≤ lj ,
an exchange failure occurs if node i chooses its subset of li
files out of the lj files of node j. Since there are

(
K
li

)
total

ways for node i to choose its files, the probability of exchange
is

PE(li, lj) = 1 −

(
lj
li

)

(
K

li

) 0 ≤ li ≤ lj ≤ K (5)

From (5), we can derive a tight upper bound for the prob-
ability PEc � 1 − PE of no file exchange between neighbor
nodes with li and lj files such that aK ≤ li ≤ lj ≤ (1 − a)K
and 0 < a < 1/2. When K is large such that aK, (1 − a)K,
and (1−2a)K are all much greater than 1, an asymptotic upper
bound P̃Ec for PEc coincides with the Stirling’s approximation
for PEc and is given by

ln P̃Ec =
[
2 (1 − a) ln(1 − a) − (1 − 2a) ln(1 − 2a)

]
K (6)

As the multiplier of K is negative for 0 < a < 1/2, we deduce
that when 0 < a < 1/2,

lim
K→∞

PE(li, lj) = 1, aK ≤ li ≤ lj ≤ (1 − a)K (7)

That is, if each node has a non-vanishing fraction of all K files,
a file exchange almost certainly will occur when the number
of files in the system is large.

To find an upper bound for PEc that is valid for most values
of li and lj , we observe that the small x approximation ln(1+
x) � x implies

ln P̃Ec � −2a2K, (8)

implying that PEc can be made arbitrarily close to zero by
choosing a > O

(
1/

√
K

)
. When the number of files in the

system is large, file exchange almost always happens among
neighbors during most of the file dissemination process. In
practice, we can regard PE = 1 when K ≥ 1000. We will
come back to this point when we discuss our simulation results
in Figure 3.

In the following, we derive the expected networking time
E[T4] for a node to obtain all files and the associated through-
put C4. We assume that K is large such that (7) holds and
we model the dynamics of movie downloading by the discrete
time Markov chain illustrated in Figure 2. Denote the state as

λ+µ

K K−2 K−3 1 02

λ λ λ λµ

µ µ µ

...........

µ

K−4

Fig. 2. Illustration of the Markov chain model. The shown values denote
the state transition rates. Note that the depiction of self transitions is omitted.

the number of files remaining to be downloaded to a node.
Initially a node is at state K. Since the first two files must
be obtained from an infostation, the next state is K − 2.
Subsequently, in states k ∈ {1, . . . ,K − 2}, each unit of time
allows the following possibilities:

• With probability p, the node encounters the infostation
and then with probability β′ downloads two files. The
state goes from k to k − 2 with probability µ = pβ′.

• With probability 1 − p, the node is at a regular location
and then with probability β participates in a file exchange.
The state goes from k to k − 1 with probability λ =
(1 − p)β.

• With probability 1−λ−µ, no new files are obtained and
the state stays the same.

Denote the expected first passage time from state i to state
0 as gi, where (2 ≤ i ≤ K − 2). Conditioning on the next
state transition and rearranging yields the difference equation,

gi =
1

λ+ µ
+

λ

λ+ µ
gi−1 +

µ

λ+ µ
gi−2 (9)

where the boundary conditions are given by g0 = 0 and g1 =
1/(λ+ µ). Using z-transforms, we solve (9) to obtain

gi =
i(λ+ 2µ) +

(
1 −

(
−µ
λ+µ

)i)
µ

(λ+ 2µ)2
(10)

It is obvious that E[T4] = 1/µ + gK−2, where 1/µ is the
expected time until a node first encounters the infostation and
obtains the first two files.

For a network with a single infostation supporting N nodes
over L locations, we consider the large-system and many-files
regime in which N,L,K 	 1 while the spatial density of
nodes ρ � N/L is held constant. In this regime, (2) and
(4) imply that the infostation download probability and the
conditional access probability converge to

β′(ρ) ∼ 1 − e−ρ

ρ
(11)

β(ρ) ∼ 2
ρ

(
1 − (ρ+ 1)e−ρ

)
(12)

Furthermore, λ ∼ β (ρ) and µ ∼ β′ (ρ) /L and the asymptote
of the expected time for an arbitrary node to collect all K files
is

E[T4] ∼ K

β(ρ)
+

L

β′(ρ)
(13)

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



Here, the second term is equal to 1/µ to account for the time
for a node to fetch the first two files in an infostation encounter.
The first term is an approximation to gK−2 by assuming all
remaining files are obtained from node to node file exchanges
when infostation density is low, i.e. L 	 1. If we further allow
K to grow large relative to both N and L, the corresponding
throughput C4 of a node is

C4 =
K

E[T4]
∼ β(ρ),

K

N
,
K

L
→ ∞ (14)

We observe that the node density ρ that maximizes β also
minimizes the expected networking time E[T4] and maximizes
the throughput C4.

To appreciate the extent to which social contract improves
the rate of file dissemination of a completely noncooperative
network, in which the only mechanism for file distribution
is direct downloading from fixed infostations, we consider
the Markov chain model for the latter. The corresponding
difference equation for the first passage time from state i to
0 is gi = 1/µ+ gi−2 for i ≤ K − 2, yielding E[T4] = gK =
KL/2β′ and

C4 =
2β′(ρ)
L

(15)

Hence, the social contract provides an O(L), or equivalently
O(N) since L and N are of the same order, improvement
to the individual file collection rate. The key ingredient in
this improvement is the increase from O(1) file deliveries
per unit time made by an infostation to O(N) peer-to-peer
file exchanges per unit time. With more complex models for
radio communication and user mobility, in particular those
employed in [5], the ability to support O(N) communication
links in a population of N mobile nodes should yield similar
improvements.

The social contract also leads to a similar improvement to
the dissemination rate considered in our simulations, defined
as the rate at which files are collected by nodes through either
downloading from fixed infostations or file exchanges. Since
the individual file collection rate C4 is β, file dissemination
rate with social contract is Nβ during most of the dissemi-
nation process. On the other hand, the file downloading rate
at an infostation is 2 if a node is present there, thus file
dissemination rate without social contract is slightly less than
2. Therefore, the improvement offered by the social contract
is of the order N .

IV. SIMULATION RESULTS

In this section, we examine the impact of the number of
nodes N and number of files K in the system on the network
performance, evaluated in terms of the expected networking
time E[Ti] and throughput Ci. In our simulations, the network
size is kept constant at L = 25 nodes. A node moves to one
of the neighbor locations w.p. q = 0.25 at each unit time. The
performance metrics are obtained from ensemble averaging
over 100 simulations.
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Fig. 3. Average number of files obtained at each unit time over 100
simulations. (a) K=50, (b) K=100, (c) K=200, (d) K=500.

For performance evaluation, we define the dissemination
rate as the total number of files obtained, either by download
from the infostation or by file exchange, per unit time over
all mobile nodes. Figure 3 shows the dissemination rate
averaged over 100 simulations runs. The number of nodes is
held constant at N = 50 and the number of files is varied
(K = 50, 200, 500, 1000). In all cases, the differences between
the random and the greedy strategies were found to be very
small. Thus, the random strategy is a good alternative to the
greedy strategy for practical implementation.

From Figure 3, the y-intercept is slightly less than 2. Since
the node density is high, it is probable to find at least a node
at an infostation location and download 2 files at t = 0. The
file dissemination process has three distinct phases. In the first
phase, the infostation seeds the mobile nodes with files and
the dissemination rate increases rapidly as nodes obtain the
ability to exchange files. Once most nodes have visited the
infostation, PE � 1 and the dissemination rate remains steady
at a peak rate that is a function of the access probability β(ρ).
In particular, each node will exchange one file with probability
PEβ(ρ) � β(ρ). Over all N nodes, the dissemination rate
is Nβ(ρ). Once a node has acquired all K files, the social
contract dictates that the node refrain from file exchanges. As
the number of nodes with all K files becomes significant,
we enter the third phase in which the dissemination rate
declines to zero as time evolves. The remaining nodes must
download their files directly from an infostation, prolonging
the time to download the entire movie. For all values of K,
our simulations exhibit a significant tail associated with this
final phase of dissemination.

As mentioned in the last section, in the absence of node
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to node file exchanges, the rate of file downloading shown in
Figure 3 would have been constantly the y-intercept value of
about 2, as opposed to Nβ(ρ) most of the time. The simulation
results are consistent with the analysis in the last section.
As PE � 1 for large K, in each unit of time, each node
will obtain one file with probability β(ρ). With N nodes in
total, the average dissemination rate in the middle phase is
Nβ(ρ). In Figure 3, N = 50, L = 25, yields ρ = N/L = 2
and the middle phase dissemination rate is very close to
Nβ(2) � 30 files per unit time. The ratio of this rate to
that of the completely noncooperative network is about 15—a
dramatic improvement. Incidentally, we can interpret Figure 3
as a scaled version of PE as a function of t. When t → 0,
most nodes have nothing in their caches, thus PE(t) � 0.
Similarly, PE(t) � 0 when t is large since most of the nodes
have finished downloading everything.

Lastly, for a finite population of nodes, we can mark the
boundaries of the middle phase by the times about which all
nodes have O(

√
K) and O(K −

√
K) files, based on the

discussion of the upper bound of PEc after (8). We hence
observe that the first and third phases require O(L

√
K) time,

roughly on the order of the time required for each node to
acquire

√
K file solely by visiting the infostation. On the other

hand, in the middle phase, the system must deliver O(NK)
files in total at a dissemination rate of Nβ(ρ) files per unit
time, and this requires O(K) time. As K increases (with
N,L fixed although not small), this middle phase comes to
dominate the total dissemination time. Hence, for large K, the
average dissemination rate is effectively the same as the peak
dissemination rate of the middle phase. In short, as K → ∞,
the curve of Figure 3 converges to a rectangle with a constant
file dissemination rate of Nβ(ρ) files per unit time for a
duration of K/β(ρ) time units. This conclusion is consistent
with the observation that the peak dissemination rate Nβ(ρ)
is simply N times the average per node capacity C4. We note
that as K → ∞, the transmission of each channel is only
limited by contention, indicating the noncooperation strategy
achieves almost optimum resource utilization.

In Figure 4, the networking time Ti, i = 1, 2, 3 are plotted
against the number of nodes N . The number of files is kept
constant at K = 200. From (2), it is easily verified that β(ρ) is
maximized at β = 1.7933 users/location, or Nopt = 45 users
over L = 25 locations. This agrees with our observation in
Figure 4(a), confirming that N � 45 also minimizes E[T1].
When N increases past Nopt, E[T1] increases due to the
increased contention at each location; however, the increase
is partially offset by the increased opportunity for exchanges;
hence, E[T1] is fairly insensitive to N when N ≥ Nopt. When
N < Nopt, E[T1] increases quickly for decreasing N . When
N is small and node density is low, the system performance
is hampered by the limited availability of file exchanges. In
this case, E[T1] is very sensitive to N since a small increase
in N significantly increases the rate of file exchange.

In Figure 4(b),(c), the optimum number of nodes that
minimizes the networking time T2 and T3 are respectively
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Fig. 4. Average networking time vs. the number of nodes N . (a) E[T1]
when 80% of all nodes obtain all files, (b) E[T2] when all nodes obtain 80%
of all files, (c) E[T3] when all nodes obtain all files.

Nopt = 20 and Nopt = 10 nodes, rather than N = 45 nodes.
This disparity arises from the observation in Figure 3(a),(b)
that when K is not large, the total download time depends
strongly on the duration of phase three which has a long tail.
The tail length depends largely on the rate at which mobile
nodes can download from the infostation. The tail decreases
as N decreases because fewer nodes results in each node
having better access to the infostation. On the other hand,
T1 is unaffected by the long tail. A plausible reason is that
networking is unfair; 80% of the nodes finish downloading all
files well before hitting the long tail regime.

With reference to Figure 5, the networking time is plotted
against the number of files K cached in an infostation. It is
obvious that the networking time Ti, i = 1, 2, 3 could be fitted
to an asymptote as K → ∞. The variance for E[T1] is small,
indicating that the networking effect due to node mobility is
deterministic. The slope of the asymptote is found to be around
1.63, which is equal to 1/β(N). E[T2] and E[T3], on the other
hand, exhibit larger variances. The slope of the asymptotes
for E[T2] and E[T3] are 1.1 and 1.6. When K ≤ 500, we
observe that E[T2] is larger than E[T1]. Beyond K = 500,
E[T2] is smaller than E[T1]. This demonstrates that as K
increases, the networking between the nodes is more fair. That
is, all nodes have approximately the same file downloading
time. A plausible reason is that PE → 1 as K increases. The
downloading rate is no longer influenced by individual file
content, but depends primarily on mobility and contention.
For large K ≥ 500, the downloading time is long compared
with the time scale of mobility ergodicity. Each node therefore
has a downloading time that is almost the same, such that
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Fig. 5. Average networking time vs. the number of cached files K. (a) E[T1]
when 80% of all nodes obtain all files, (b) E[T2] when all nodes obtain 80%
of all files, (c) E[T3] when all nodes obtain all files. The dashed lines denote
the 1 standard deviation upper and lower bounds from the mean value.

E[T1] > E[T2].

V. DATA DIVERSITY

In Figure 5, we showed that the networking time E[Ti], i =
1, 2, 3 can be fitted nicely to an asymptote as K increases. The
corresponding throughputs are plotted in Figure 6 versus K.
We observe that the throughput is an increasing function of
K. It is instructive to find the asymptotic value of throughput
C∞

i as K → ∞. To do this, we use the intuition captured in
(13) and approximate the asymptote of Ti by

T∞
i = miK + ci (16)

where mi is the slope and ci is the vertical intercept. Since
the asymptote T∞

i approaches E[Ti] arbitrarily close when
K → ∞, we compute the asymptotic capacity as

C∞
i = lim

k→∞

K

Ti
= lim

k→∞

K

T∞
i

=
1
mi

(17)

Recall that m3 = 1.63 as read from Figure 5(c). Thus C3 =
0.613 files per node per unit time, or 30.65 files per unit time
in our network where N = 50. This agrees with our result in
Figure 3(d). When PE � 1, the rate for data dissemination is
around 30 files per unit time. Incidentally, we observe that

lim
K→∞

C3 = lim
K→∞

C4 (18)

When K → ∞, networking is fair and each node has the
same throughput asymptotically. Thus, our simulation results
are consistent with our simplified analysis.
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Fig. 6. Throughput capacity vs. the number of cached files K. (a) C1 when
80% of all nodes obtain all files, (b) C2 when all nodes obtain 80% of all
files, (c) C3 when all nodes obtain all files. The dashed lines denote the 1
standard deviation upper and lower bounds from the mean value.

The apparent increase in throughput can be understood
using the concept of data diversity. In wireless communi-
cations diversity refers to the exploitation of variations in
signal strength due to multipath fading. Since multipath fading
exhibits signal variations over spatial, time and frequency
domains, diversity techniques can be applied to select the
strongest signal component over the respective domains. Di-
versity can also be exploited in a more general sense. In mul-
tiuser diversity, for instance, a receiver exploits the variability
of received signal strength over different mobile nodes, and
selects the node with the best channel for transmission.

Whereas the above techniques belong to the category of
communication diversity, we argue that a new form of di-
versity, coined data diversity, is exhibited in noncooperative
content distribution. When nodes are not cooperating, each
node effectively has a preference list of files that evolves
with time. If the number of disseminated files is large, there
are more selections from a node’s perspective. (5) and (7)
dictate that file dissemination under the social contract is more
efficient when there are more selections available for each
node. There are, however, some differences between receiver
diversity and data diversity. We note that receiver diversity
is the result of a passive environment and we can exert no
influence to the outcome. Data diversity, on the other hand, is
the consequence of our social contract, over which we have
complete control. Nevertheless, the social contract provides
a general framework to study non-cooperation content distri-
bution in mobile infostation networks. We have shown that
data diversity is relevant to noncooperative data dissemination,
which is gaining more attention in the networking community.
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Data diversity may also have implications to other peer to
peer networks other than mobile infostation networks such as
content distribution on the wired Internet.

Consider the possibility that several content providers use
the mobile infostation infrastructure to disseminate their con-
tent (that are not highly overlapping) to a common group of
subscribers. If a subscriber has files from content provider
A and he encounters another subscriber with files from con-
tent provider B, these files generally would not be inter-
exchangeable since they originated from different content
providers. However, our results point out that content distri-
bution for each provider would be more efficient, in terms
of both throughput and fairness, if there were mutual agree-
ments between content providers such that all files are inter-
exchangeable, effectively increasing the content size K.

On the other hand, even if the content providers do not
collude in data dissemination, data diversity can still be useful,
say, in the dissemination of a single movie of a movie
distribution network. Consider the scenario when a DVD
quality movie is disseminated in a highway infostation network
populated with fast vehicular subscribers. A typical drive-
through infostation has a coverage radius of 20m [4]. A vehicle
at a speed 20m/s therefore has a connection time of 2 seconds
when it is in the coverage area of an infostation. Similarly,
for two vehicles moving in opposite direction, the connection
time is only 1 second. Suppose the infostation radios operate
at a modest data rate of 160Mbit/s (which still substantially
outperform the state of the art 54Mbit/s 802.11a access points
available today). In order to facilitate the file exchange of two
data files in the worst case of a head-on mobile to mobile
encounter, the file size should be no more than 10MByte. On
the other hand, the typical size of a DVD quality movie is
roughly 5GByte. Thus, a movie should be split into K = 500
files and cached in fixed infostations for dissemination. Our
simulation results in Figure 6(c) have shown that with a modest
content size of K = 500 files, the achievable per node capacity
C3 is 80% of the theoretical per node capacity limK→∞ C4
for asymptotically large K. Thus, without even relying on
the collusion between the content providers, we can enjoy
the benefits of data diversity in the dissemination of a single
movie.

VI. DISSIMILAR INTERESTS

In our basic model, we assume all nodes have a common
interest in K files. In this section, we extend the common
interest model to the case where each node has interest in only
a subset of the K files cached in the infostation. Depending
on the type of content, the interests of the nodes can be
mutually exclusive or partially overlapping. For instance,
suppose multiple movies, say 1/α movies are cached in the
infostations, where 0 < α ≤ 1. Each movie has the same
length and is divided into αK files. If each node is interested
in one movie only, then any two nodes will have interests
that are either exactly the same or mutually exclusive. More
generally, the interests of all nodes are partially overlapping.

Consider the case where multiple TV shows are cached in the
infostations. Without loss of generality we assume each TV
show is stored as one file. Each node is interested in αK TV
shows or files that is randomly selected from all K cached
files.

Recall in section II that a user strategy consists of two
parts. Suppose two nodes seize the local channel successfully.
First the two nodes must determine whether to exchange files.
Second, upon an agreement of performing a file exchange,
each node determines what to exchange as specified by the
random or greedy strategy. In the common interest model,
each node is interested in every file cached in the infostations.
A node therefore is genuinely interested in every file that it
does not have. In the dissimilar interest model, however, the
above assumption is no longer valid. We can differentiate two
user strategies in which neighbor nodes determine whether to
exchange files. In user strategy I, neighbor nodes A and B
perform a file exchange only if both nodes discover a file of
genuine interest on inspection of each other’s caches. In user
strategy II, nodes A and B are obliged to exchange files if
each node has a file that the other node does not have, whether
or not those files are of genuine interest.

Once the nodes agree on a file exchange, either the random
or greedy downloading strategy can be used in both user strate-
gies. Nevertheless, we have demonstrated through analysis and
simulations in earlier sections that the random and greedy
downloading algorithms have almost identical performance.
Hereafter, we consider only the random downloading strategy
when we compare the performance of user strategy I and II
in the simulation studies.

We have performed simulations to study the network per-
formance for the multiple movies model, where node interests
are either exactly the same or mutually exclusive. The results
for the TV show model are reported in the journal version of
this paper. The network performance is evaluated in terms of
α, which characterizes the extent of overlapping interest with
other nodes. When α is very small, each node is interested in
a small fraction of all files. The interests of any two nodes are
likely to be mutually exclusive. As α increases, more nodes
are interested in the same files. It is therefore more probable
for a node to run into another node that has the same interest.
When α = 1, all nodes are interested in all K files and our
model reduces to the common interest model.

In our simulations, we assume the number of nodes in each
infostation block is N = 40 and the total number of files
is K = 1000. We consider the multiple movies model in
which 1/α = 1, 2, 4, 5, 10, 20, 40 movies are distributed at
the infostations. Each movie is split into αK files, and the
corresponding values of α are 1, 0.5, 0.25, 0.2, 0.1, 0.05, 0.025.
In the case of 40 movies, each node is interested in different
movies and have mutually exclusive interest. The number of
nodes having the same interest increases with α. When α = 1,
all nodes have a common interest for the same movie. Denote
E[Tα,j

i ], i = 1, 2, 3 as the expected networking time of user
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Fig. 7. Average networking time vs. the fraction of interested files α. (a)
E[T1] when 80% of all nodes obtain all files, (b) E[T2] when all nodes obtain
80% of all files, (c) E[T3] when all nodes obtain all files. The dashed lines
denote the 1 standard deviation upper and lower bounds from the mean value.

strategy j, where j = 1, 2. We are interested in finding the
expected networking time for both user strategies.

Referring to Figure 7, the networking time of both user
strategies is plotted versus α. We observe that even when
α is very small, the downloading time of user strategy I
is quite large. In particular, when α = 0.025, the number
of files wanted by each node is only αK = 25. The
corresponding expected networking time E[Tα

i ], i = 1, 2, 3
for both user strategies is approximately 700, 750, and 850
units. At α = 0.025, each file is desired by one node. This
is easily seen since by symmetry, each file is desired by
αN = (0.025)(40) = 1 node. Suppose all nodes observe user
strategy I. It is obvious there is no file exchange between
nodes since each node keeps only files that is wanted by that
particular node only. On the other hand, when user strategy II
is used, file exchanges between nodes are allowed. Never-
theless, a node never fetches a file and benefits from a file
exchange since all nodes have mutually exclusive interest. For
both user strategies, each node has to download every desired
file directly from an infostation. The absence of concurrent file
exchanges in conjunction to infostation downloading explains
the long and identical networking time.

Referring to Figure 7 again, it is obvious that E[Tα,1
i ] and

E[Tα,2
i ] are increasing with α for i = 1, 3. This is plausible

since in general, more time is needed for a fraction of nodes to
finish file downloading as the number of desired files increases.
An interesting (although not statistically significant) exception
is observed for E[Tα,1

2 ], and might be explained by the
following. When the number of files αK to be downloaded is

small, a node usually runs into other nodes that have mutually
exclusive interests. The node therefore has to download most
of the files directly from the infostations, unable to enjoy the
benefit of spatially concurrent file exchanges. As a result,
these nodes have a large networking time. As α increases
further, most, if not all, of the nodes participate in beneficial
file exchanges due to the presence of nodes with the same
interests. Since E[Tα,1

2 ] is dominated by the nodes without file
exchanges when α is small, this explains the peak at α = 0.2.

In order to explain the increasing trend of networking time
with α, and to characterize the performance difference for
both user strategies, we examine the mechanism of the data
dissemination in the following. As α increases from α =
0.025, there is more nodes with the same interests. Each file
is desired by αN users on average. Consider user strategy I.
Approximately αN nodes are willing to act as the networking
agents for each file and possibly carry the file in their cache
as these nodes roams around the network. When α gets larger,
the number of networking agents for each file increases.
Since the circulation of a particular file is constrained by
the number of networking agents for that file, increasing α
effectively promotes the circulation of each file. This impacts
the number of node-to-node file exchanges favorably, allowing
more simultaneous file exchanges to take place. Consequently,
the networking time E[Tα,1

1 ] and E[Tα,1
3 ] flatten quickly as

α is increased.

For user strategy II, the networking time is consistently
smaller than that of user strategy I as α increases from 0.025.
Although nodes have little overlap of common interests when
α is small, user strategy II dictates that a file exchange ensues
whenever each node can retrieve a file that it does not have
on inspection of the cache of the other node. Thus, all N
nodes are willing to act as the networking agents for all files.
The circulation of each file is not constrained by the particular
interests of each node. Since nodes are more admissable and
willing to carry files in user strategy II, the networking time
is consistently smaller.

In the case α = 1, our dissimilar interest model reduces
back to the common interest model. Both user strategies I
and II have identical networking time E[Tα

i ], i = 1, 2, 3, that
agrees to the corresponding values E[Ti], i = 1, 2, 3 for the
common interest network model. When K is reasonably large
(in our case K = 1000), data diversity dictates that PE →
1 and the networking time is then only constrained by the
contention probability β given by (13).

VII. MULTIUSER DIVERSITY

In Figure 7, we showed that the networking time E[Tα
i ], i =

1, 2, 3 for user strategy II is always less than that of user
strategy I. The corresponding network capacity is plotted
versus α in Figure 8. Again, x-axis denotes the fraction α
of files that each node is interested in, where α takes the
values of 0.025, 0.05, 0.1, 0.2, 0.25, 0.5,1. We observe that
for both user strategies, the network capacity Cα

i , i = 1, 2, 3 is
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Fig. 8. Throughput capacity vs. the fraction of interested files α. (a) C1
when 80% of all nodes obtain all files, (b) C2 when all nodes obtain 80% of
all files, (c) C3 when all nodes obtain all files. The dashed lines denote the
1 standard deviation upper and lower bounds from the mean value.

strictly increasing with α. The capacity of user strategy II is
consistently larger than that of user strategy I when nodes
have dissimilar interests ( 1

N < α < 1). The capacity of
both strategies coincide when α ≤ 1

N and α = 1. When
α ≤ 1

N , all nodes have mutually exclusive interests. Even
though user strategy II allows node-to-node file exchanges,
there is no corresponding gain in network capacity. Similarly,
when α = 1, our model reduces back to the common interest
model. Thus both user strategies I and II have almost identical
capacities.

The increasing trend of network capacity with α can be
understood using the concept of multiuser diversity inherent to
mobile infostation networks. The efficiency of dissemination
of this file is dependent on the willingness of the mobile
nodes to carry it across the network. If a node is willing to
carry a particular file, then the node is effectively acting as a
networking agent for that file. For user strategy I, each file is
wanted by approximately αN nodes, who are willing to act as
the networking agents for the file. For strategy II, each node
is obliged to carry every file even if the file is not wanted by
the node. The number of networking agents is then equal to
the number of nodes N irrespective of α. We argue that the
performance improvement of user strategy II is an exploitation
of multiuser diversity, where the number of nodes willing to
act as networking agents for each file is increased. Since the
circulation of a particular file is equal or less than the number
of networking agents for that file, the actual circulation of each
file improves as the number of networking agents increases.
As a consequence of improved file circulation, the efficiency
of file exchanges improves as stipulated by data diversity,

allowing multiple spatially concurrent file exchanges to take
place.

From the above argument, we expect the two user strategies
have the greatest performance disparity when α is small.
Figure 8, however, shows that the percentage performance
disparity is maximum when α is about 0.5. We note that the
increase of the number of networking agents indeed leads to
a proportional increase in the number of files in circulation.
However, when α is small, each file is of genuine interest to
only a few nodes and most file exchanges involve files that are
of no interest to either node. Thus even if the circulation of
all files is increased significantly, the corresponding increase
in the number of file exchanges is not beneficial.

There are two opposing factors that impact the performance
of user strategy II. For small α, the number of networking
agents for user strategy II is increased dramatically by a factor
of 1/α. However, most of the file exchanges are not beneficial
since node interests are largely non-overlapping. For large α,
there is only a nominal increase in the number of networking
agents. However, since most nodes have very similar interests,
each node gets many desired files and benefits from file
exchanges. Our simulation results show that for α = 0.5, we
achieve an attractive, and perhaps optimum, tradeoff in terms
of capacity gain. The corresponding capacity Cα,2

i , i = 1, 2, 3
improvement of user strategy II over user strategy I is above
66% for all three cases.

Consider a movie distribution network in which 20 movies
are cached in the infostations, making a total of K = 1000
cached files. Suppose each node is interested in only one
movie of 50 files. This is equivalent to our multiple movies
model with α = 0.05. If all nodes observe user strategy I,
the networking time E[Tα,1

i ] is respectively 1100, 1200 and
1300 units. On the other hand, if all nodes observe user
strategy II, the networking time E[Tα,2

i ] is 825, 825 and 1000
units, roughly 70% of the original time. In content distribution,
usually each node wants to minimize the networking time for
files of genuine interest. Our simulation results point out that if
a node acts as a networking agent for files he is not interested
in, it actually expedites the file downloading process, reducing
the networking time while enjoying a network capacity gain
as warranted by multiuser diversity. This is an interesting
result because it implies each node has an incentive to act as
a networking agent and assist in data dissemination without
having an explicit node cooperation model.

Although the exploitation of multiuser diversity in user
strategy II yields better network capacity, it comes at a cost
of increased energy consumption due to more frequent file
exchanges. Thus there is a tradeoff between energy con-
sumption and network capacity. If the network nodes have
plentiful energy reserves, say infostations on vehicles, they
should adopt user strategy II to tradeoff energy consumption
for better throughput capacity. On the other hand, for nodes
having scanty energy supply, they can cut down the energy
consumption by sacrificing some throughput. Moreover, nodes
do not need to adopt the same user strategy in a network. Each
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node can independently decide what user strategy to adopt
based on its current level of residual energy.

We note that in user strategy II, there is implicit cooperation
between nodes. Each node is obliged to act as the networking
agent for files that it is not interested in, That is, each node
caches and disseminates personally uninteresting files for other
nodes as it roams the network. The performance gain of user
strategy II over strategy I agrees with the intuition that more
cooperation usually leads to better system performance. Al-
though user strategy II requires implicit cooperation between
nodes, there is no corresponding control overhead due to
user cooperation. We do not assume the exchange of files of
genuine interest to neighbor nodes takes priority over other
types of file exchanges. In our implementation, when there
are multiple neighbor nodes at the same location, the first
two nodes that broadcast control messages to request a file
exchange seize the channel. This rule is equivalent to randomly
picking two nodes from all neighbor nodes with no signaling
overhead and is completely determined by contention. Note
that giving priority to exchanges of files of genuine interest
may improve overall system performance if one can develop
an efficient protocol between multiple neighbor nodes to
determine the optimal node pair to exchange files.

VIII. CONCLUSION AND FURTHER WORK

We have addressed the issue of noncooperation among
nodes in the context of content distribution in mobile info-
station networks. In the first part, we assume all nodes have
a common interest of K files cached in the infostations. We
have shown that it is possible to drastically increase the rate
of file dissemination of a completely noncooperative network
by requiring the absolute minimal cooperation among users
in the form of a social contract. A random and a greedy
file downloading algorithms are examined and shown to have
similar performance. We show that there exists some optimal
node density in these networks such that the access probability
of a node is maximized and the networking time is minimized.
More importantly, we show that the total number of files
cached in the infostations impacts the networking fairness and
throughput. We identify this phenomenon as data diversity that
is distinct from conventional communication diversity. When
nodes are noncooperative and have individual preference on
data, the network exhibits data diversity and the throughput of
each node increases with increasing content variety. In the
second part, we extend the common interest model to the
case where nodes have partially overlapping but dissimilar
interests. Two user strategies are considered for this model.
We show in our simulations that a file exchange strategy
that takes advantage of the multiuser diversity inherent in
mobile infostations results in enhanced network performance.
We conclude that both data diversity and multiuser diversity
can be exploited in the mobile infostation architecture even if
nodes are noncooperative.

In the present work, simple mobility and interference mod-
els are used to facilitate analysis. This approach has been fruit-

ful, leading to the observations of two diversity phenomena in
noncooperative content distribution. Nevertheless, a thorough
examination of the implications of mobility and interference to
the network performance of mobile infostations is called for.
As a first step, the issue of interference modeling is addressed
in a recent paper [14]. The effect of transmit range on network
capacity is examined. We found out a stipulated transmit range
improves the capacity of a mobile infostation network further.
An optimal number of neighbors exists for mobile infostation
networks that is distinct from the well known 6-8 magic
number [9], [13], [8] for multihop ad hoc networks. Moreover,
the network capacity is linearly increasing with node density.
Thus mobile infostation is an attractive alternative to multi-
hop networking in future pervasive computing environments,
where high node density dooms the throughput of multihop
networks. On the other hand, the effect of mobility on mobile
infostations is currently being studied. The connection time
in each node to node encounter obviously depends on node
mobility and needs to be quantified. To this end we have
proposed a sophisticated mobility model for highway mobile
infostation networks that allows for performance analyses
based on renewal and queuing theories. We conjecture that
the performance of mobile infostation networks are robust to
mobility.
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