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Abstract— Optical Burst Switching(OBS) is a promising
paradigm for the next-generation Internet. In OBS, a key
problem is to schedule bursts on wavelength channels whose
bandwidth may become fragmented with the so-called void (or
idle) intervals with both fast and bandwidth efficient algorithms
so as to reduce burst loss. To date, only two scheduling algo-
rithms, called Horizon and LAUC-VF, have been proposed, which
trade off bandwidth efficiency for fast running time and vice
versa, respectively.

In this paper, we propose several novel algorithms for schedul-
ing bursts in OBS networks with and without Fiber Delay
Lines (FDLs). In networks without FDLs, our proposed Min-
SV algorithm can schedule a burst successfully in O(logm) time,
where m is the total number of void intervals, as long as there
is a suitable void interval. Simulation results suggest that our
algorithm achieves a loss rate which is at least as low as the
best previously known algorithm LAUC-VF, but can run much
faster. In fact, its speed can be almost the same as Horizon
(which has a much higher loss rate). In networks with FDLs,
our proposed Batching FDL algorithm considers a batch of
FDLs simultaneously to find a suitable FDL to delay a burst
which would otherwise be discarded due to contention, instead
of considering the FDLs one by one. The average search time of
this algorithm is therefore significantly reduced from that of the
existing sequential search algorithms.

I. INTRODUCTION

To meet the increasing bandwidth demands and reduce
costs, several optical network paradigms have been under
intensive research. Of all these paradigms, optical circuit
switching (e.g., wavelength routing) is relatively easy to im-
plement but lacks efficiency to cope with the fluctuating traffic
and the changing link state; Optical Packet Switching(OPS) is
a natural choice, but the required optical technologies such
as optical buffer and optical logic are too immature for it to
happen anytime soon. A new approach called Optical Burst
Switching(OBS) that combines the best of optical circuit
switching and optical packet switching was proposed in [1]
[2], and has received an increasing amount of attention from
both academia and industry worldwide [3], [5], [6], [7].

In an OBS network, an ingress OBS node assembles data
(e.g., IP packets) into (data) bursts, and sends out a corre-
sponding control packet for each burst. This control packet is
delivered out-of-band and leads the burst by an offset time,
o. The control packet carries, among other information, the
offset time at the next hop, and the burst length l. At each
intermediate node along the way from the ingress node to the

egress node, the control packet reserves necessary resources
(e.g., bandwidth on a desired output channel) for the following
burst, which will be disassembled at the egress node.

A prevailing reservation protocol in OBS networks is called
Just-Enough-Time (JET) whereby a control packet reserves
an output wavelength channel for a period of time equal to
the burst length l, starting at the expected burst arrival time
r (which can be determined based on the offset time value
and the amount of processing time the control packet has
encountered at the node up to this point in time). If the
reservation is successful, the control packet adjusts the offset
time for the next hop, and is forwarded to the next hop.
Otherwise, the burst is blocked and will be discarded if there is
no Fiber Delay Lines (FDLs). If a FDL providing say d units
of delay is available for use by the burst, and the channel will
be available for at least l units of time starting at time r + d,
the control packet will reserve both the FDL and the channel
for the burst, which will not be dropped at this node.

Because bursts do not arrive one right after another, the
bandwidth on each channel may be fragmented with the so-
called “void” (or idle) intervals (see Figure 1). These void
intervals may be utilized by a scheduling algorithm to make
the reservation for some bursts whose corresponding control
packets arrive after the void intervals have been created (which
is possible when the JET protocol is used and the bursts
have a variable, non-zero offset time). However, to keep the
information on all existing void intervals and to search for a
suitable one upon receiving a control packet (or equivalently
a reservation request) could be a daunting task.

In OBS networks, a key problem is thus to design efficient
algorithms for scheduling bursts (or more precisely their
bandwidth reservation). An ideal scheduling algorithm should
be able to process a control packet fast enough before the
burst arrives, and yet be able to find a suitable void interval
(or a suitable combination of a FDL and an void interval)
for the burst as long as there exists one. Otherwise, a burst
may be unnecessarily discarded either because a reservation
cannot be completed before the burst arrives or simply because
the scheduling algorithm is not smart enough to make the
reservation.

Given the fact that OBS uses one-way reservation proto-
cols such as JET, and that a burst cannot be buffered at
any intermediate node due to the lack of optical RAM (a
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FDL, if available at all, can only provide a limited delay
and contention resolution capability), burst loss performance
is a major concern in OBS networks. Hence, an efficient
scheduling algorithm that can reduce burst loss by scheduling
bursts fast and in a bandwidth efficient way is of paramount
concern in OBS network design.

So far, two well known scheduling algorithms have been
proposed. Horizon [9] does not utilize any void intervals, and
thus is fast but not bandwidth efficient (see Figure 2). On the
other hand, LAUC-VF [3] can schedule a burst as long as it
is possible but has a slow running time (see Figure 3).

In this paper, we propose an efficient way to organize the
void intervals and as well as algorithms to schedule a burst
as long as it is possible. Our algorithms can schedule bursts
at least as efficiently as any existing scheduling algorithms
(including LAUC-VF), and can handle the case with FDLs
efficiently as well. In addition, our scheduling algorithms take
as little as O(logm) time, where m is the total number of
void intervals, which improves over the LAUC-VF algorithm
by k times where k is the number of wavelengths on each
link. (Note that since we can easily reduce the binary search
problem to this channel scheduling problem, the lower bound
of this problem is O(logm), meaning our algorithm is theoret-
ically optimal.) In fact, our simulations show that on average,
it can run as fast as Horizon (which has a much higher burst
loss rate). Also, in case there are up to B different delays
via FDLs available, our algorithm can batch process multiple
possibilities and achieve an average running time which is
much faster than that of existing approaches that sequentially
checks one FDL at a time.

The rest of this paper is organized as follows. Section II
provides a more detailed problem formulation and description
of the existing Horizon and LAUC-VF approaches. Section
III introduces the problem modeling and proposes several
new scheduling algorithms, such as Min-SV and Batching
FDL algorithm. We present simulation results and analysis in
Section IV. Section V concludes our work.

II. BACKGROUND

In this section, we first define the scheduling problem in
more detail and then review the prior work on scheduling
algorithms.

A. Problem Description

In an OBS network, it is possible that a control packet
may arrive o units of time (which is called the offset time)
before the corresponding burst b arrives. In such a case, the
reservation for the burst will not start at the current time
(t), but at r = o + t (i.e., when the burst actually arrives).
If the burst’s length is l, the reservation will be made until
f = r + l. Because bursts may not arrive one after another
without any interval in between, each channel is likely to be
fragmented with several reservation periods, separated by idle
(also called void) intervals. More specifically, each of the k
channels initially corresponds to a void interval from time 0
to positive infinite. Let each void interval Ij be modeled as
an ordered pair (sj , ej), where sj and ej are the starting and
ending time of the void interval Ij , respectively, with ej > sj .

We say a void interval Ij is feasible to a data burst b = (r, f),
if and only if sj ≤ r, and ej ≥ f . Once the reservation is made
using a feasible interval Ij , up to two new void intervals may
be created, which are (sj , r) and (f, ej), respectively.

time

void

burst arrival time r

f

new burst

channel 0

channel 1

channel 2

channel 3

channel 4

Fig. 1. Channels are fragmented into voids before scheduling a new burst.

An efficient scheduling algorithm should be able to fit a
new reservation period into an existing void interval whenever
possible to increase the bandwidth utilization and decrease the
data loss rate.

The availability of FDLs at each node further complicates
the design of scheduling algorithms. More specifically, assume
that there are B different delays (d1 < d2 < · · · < dB) that
a burst can obtain via FDLs at a node. Then, the possible
offset time values are o, o1, o2, · · · , oB , where oj = o + dj

for 1 ≤ j ≤ B. This in turns leads to B + 1 different starting
times, r, r1, r2, · · · , rB , and finishing times f , f1, f2, · · · , fB

of the reservation period for the burst. An efficient scheduling
algorithm thus needs to examine up to B + 1 possible ways
to satisfy a reservation request for each burst.

In addition to be efficient in terms of bandwidth utilization
and loss rate, a scheduling algorithm also needs to be fast as
mentioned earlier. Assume that the minimum burst length is
1 unit time (e.g. a millisecond). For an OBS switching fabric
having N input links, each multiplexed with k channels, the
maximal number of control packets (or reservation requests)
that may need to be processed is kN per unit time. For N =
64, k = 100 and a unit time of 1 millisecond, this translates to
a required processing speed of 6.4 million requests per second.

B. Prior solutions and their limits

Several algorithms have previously been studied for solving
the channel scheduling problem.

1) Turner designed the Horizon Scheduling algorithm [9].
In this algorithm, a scheduler only keeps track of the so-
called horizon for each channel, which is the time after
which no reservation has been made on that channel.
The scheduler assigns each arriving data burst to the
channel with the latest horizon as long as it is still
earlier than the arrival time of the data burst (this is to
minimize the void interval between the current horizon
and the starting time of the new reservation period; see
Figure 2 for an example). For a link with k channels, the
best implementation of the horizon scheduling algorithm
takes O(logk) time to schedule a burst. Accordingly,
the horizon algorithm is relatively simple and has a
reasonably good performance in terms of its execution
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time. However, the horizon scheduling algorithm results
in a low bandwidth utilization and a high loss rate. This
is due to the fact that the horizon algorithm simply
discards all the void intervals.

time

void

burst arrival time r

f

new burst channel 0

channel 1

channel 2

channel 3

channel 4

Fig. 2. Horizon schedules the new burst in Figure 1 to channel 0.

2) Xiong et al. [3] proposed a channel scheduling algo-
rithm, called LAUC-VF (Latest Available Unused Chan-
nel with Void Filling). LAUC-VF keeps track of all void
intervals (including the interval between the horizon and
positive infinity), and assigns a burst arriving at time r
a large enough void interval whose starting time si is
the latest but still earlier than r. This yields a better
bandwidth utilization and loss rate than the Horizon Al-
gorithm. However, even the best known implementation
of LAUC-VF has a much longer execution time than
the Horizon Scheduling algorithm, especially when the
number of voids m is significantly larger than k (which
in general is the case). For example, a straightforward
implementation of the LAUC-VF algorithm, described
in [3] takes O(m) time to schedule a burst. The time
complexity becomes O(Bm) when there are B different
delays a burst can obtain via the use of FDLs. Searching
for a suitable void interval in this way might take a
longer time than that is allowed by the offset time of a
burst, thus resulting in a failed reservation.

time

void

burst arrival time r

f

new burst

channel 0

channel 1

channel 2

channel 3

channel 4

Fig. 3. LAUC-VF schedules the new burst in Figure 1 to channel 2.

III. PROPOSED SCHEDULING ALGORITHMS

In this section, we present several efficient algorithms for
selecting channels for incoming data bursts using different
criteria. Our algorithms are based on interesting techniques
from computational geometry.

A. Modeling the Problem Geometrically

We view each void interval Ij as a point with coordinates
(sj , ej) on a two-dimensional plane whose x and y axes are

the starting and the ending time respectively (see Figure 4). In
addition, without considering the use of FDLs, the reservation
period for each data burst b is mapped to a fixed point (r, f).
When there is no ambiguity, we will also use Ij and b to
denote the points (sj , ej) and (r, f), respectively.

Notice that since in each void interval the ending time is
always larger than the starting time, all the void intervals are
mapped to points above the 45◦ line y = x (see Figure 4).
Also, the set Fb of void intervals feasible to b lies in the
unbounded region R which is to the left of the line x = r and
above the line y = f (see Figure 5) (since each channel can
have at most one void interval feasible to b, the total number
of points inside R is at most k).

starting time

ending
time

Fig. 4. Void intervals map to points.

I 1

I 2

c

d

starting time

ending
time

b

R

Fig. 5. Feasible region for data burst b.

If there is no point inside R, it means that no channel is
available to the burst b with its current offset time o. In this
case, if FDLs are available, one can consider using a FDL to
effectively increase the offset time by a fixed value, and map
the requested reservation period to a new point, say b1, in the
plane. In case there are B different delay times the burst can
obtain, the desirable reservation periods correspond to a set of
points, b, b1, b2, ..., and bB . All those points are on a straight
line y = x+ l (where l is the duration of burst b). The feasible
region for a data burst with the set of (B+1) offset times is
bounded by a staircase curve from below (see Figure 6).

b

b

b

b

1

2

3

starting time

ending
time

Fig. 6. Feasible region of a data burst b with multiple offset times.
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B. Representative Criteria for selecting a channel

We have proposed scheduling algorithms that can apply
several different criteria to select a channel for an arriving
burst b. The first criterion is that for a given offset time, to
find a void interval Ij which minimizes the difference between
r and sj among all feasible void intervals, i.e., r − sj =
minIi∈Fb

(r − si). We call the feasible interval meeting this
criterion as the minimum starting void or Min-SV fit, which
aims to achieve the same objective as LAUC-VF (see Figure
3). Figure 5 shows an example, where I1 is the Min-SV fit
for b. Similarly, we can define the minimum ending void or
Min-EV fit, which minimizes the difference between ej and
f (see Figure 5 for an example, where I2 is the Min-EV fit
for b; see also Figure 7 for another example), as well as their
opposites, Max-SV fit and Max-EV fit, respectively.

Another criterion is called the best fit which finds a void in-
terval Ij which minimizes the following (over all feasible void
intervals Ii) minIi∈Fb

{(r−si)+(ei −f)}. The weighted best
fit finds a void interval to minimize the following weighted
sum minIi∈Fb

{α(r − si) + (1 − α)(ei − f)} for 0 < α < 1.

time

void

burst arrival time r

f

new burst

channel 0

channel 1

channel 2

channel 3

channel 4

Fig. 7. Min-EV schedules the new burst in Figure 1 to channel 3.
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Fig. 8. Best-fit schedules the new burst in Figure 1 to channel 4.

C. Algorithm and Data Structure for the Min-SV fit

Below, we will describe the method to schedule a burst by
finding a Min-SV fit which is the point in the feasible region
R (in Figure 2) that is closest to the vertical line x = r. This
method can easily be modified to find a Min-EV fit, Max-
SV fit or Max-EV fit by rotating the coordinate system and/or
reversing the order of searching for points in the coordinate
system.

We first consider the case without any FDLs. We build
a data structure, DSMin−SV , to better organize all the void
intervals. Our data structure is constructed by augmenting a

balanced binary search tree (e.g., red-black tree [10]), which
is can be viewed as a dynamic version of the priority search
tree [11] supporting more restricted queries, and supports three
major operations: burst query, interval insertion, and interval
deletion.

The data burst query takes a burst b as input, and outputs
the Min-SV interval, if such an interval exists. The interval
insertion adds a new interval into the data structure, and
the interval deletion removes a interval away from the data
structure. To assign an available channel to a data burst b,
one needs to first perform a burst query operation to find the
Min-SV fit Ij , then a deletion operation to remove Ij from
the data structure, and finally up to two insertion operations
to insert up to two sub-intervals of Ij (called a starting void
and an ending void, respectively) resulting from the channel
assignment. Obviously, all three operations must be performed
quickly.

To build the data structure DSMin−SV , we first sort the
set I of all void intervals by their starting times (this is done
off-line first and incrementally thereafter), and then build a
balanced binary search tree Tstart based on the sorted starting
times. This is accomplished by finding the interval Im (called
median interval) whose starting time sm is the median of
all the starting times in the considered set I of intervals.
The median interval Im is then used to partition I into two
approximately equal-sized smaller sets, and each smaller set
is partitioned recursively. All intervals in I will be the leaves
of the search tree Tstart. A non-leaf (or internal) node v in
the tree corresponds to a vertical strip Sv in the coordinate
system. More specifically, the root of the tree corresponds to
the whole plane, and its two children correspond to the two
half planes induced by the separating line x = sm crossing the
median interval, and each half plane is recursively partitioned.
Without loss of generality, the median interval is assumed to
be in the left subtree.

Each internal node v is associated with the following
information, sv

m, pv
ymax, and pv

ymin, where sv
m is the median

starting time among all intervals in Sv, pv
ymax is a pointer to

the interval in Sv with the maximum ending time, and pv
ymin

is a pointer to the interval with the smallest ending time (the
last value is used for clean-up operation to be described later).

To perform a burst query on Tstart for a burst b = (r, f),
we can use the information stored in the internal nodes of
Tstart and perform the following procedure to search for the
Min-SV fit.
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Fig. 9. Allocation nodes and search for Min-SV fit.

We first search the tree Tstart to find all points to the left
of the vertical line x = r (some of which may be below
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the feasible region). To do this, we start at the root of the
tree and compare r with the median starting time associated
with the root. If r is larger, we mark the left child and
proceed to the right. Otherwise, we simply proceed to the left
(without marking the right child). The search then continues
in a recursive fashion until a leaf node is reached. If the leaf
node reached is a right child, as node a1 in Figure 4, then its
left sibling (also a leaf node) has to be marked. Otherwise,
only the leaf itself (a left child) is marked.

We call the set A of marked nodes allocation nodes which
correspond to vertical regions that contain intervals, or the
intervals themselves whose starting times are no greater than
r. The path P from the root of Tstart to a1 is called the
allocation path – see Figure 9 for an example, where P is the
dark curve, and A is the set of solid nodes. Note that, all the
intervals whose starting time that is less than or equal to r
are to the left of the leaf node reached in the end (i.e., a1 in
Figure 4). Thus to find the Min-SV fit for b, it is sufficient to
check the marked leaf node and if needed, then search in the
vertical strips corresponding to the marked non-leaf nodes.

To efficiently search for the Min-SV fit, we order all the
nodes in A based on their height in Tstart, and obtain a
sequence A = {a1, a2, · · · , ah}, where h = O(logm) and m
is the total number of intervals (or leaves) in the tree. In other
words, we search for the Min-SV fit in a bottom-up order. It is
easy to see that if a1’s ending time is no less than f , then a1 is
the Min-SV fit, so the algorithm can stop. Otherwise, we can
check to see if a2 is the Min-SV fit. Suppose we have searched
all the nodes a1, a2, · · · , aj−1, and have not found the Min-SV
fit yet. To determine whether the strip Saj

corresponding to
node aj contains the Min-SV fit, we can first compare f (i.e.,
the finishing time of b) with the maximum ending time aj

ymax

(obtained by following the pointer paj

ymax stored at node aj)
in the strip Saj

. If f > aj
ymax, this means that none of the

intervals in Saj

is feasible to b, and hence the search in Saj

can be terminated, and the next allocation node aj+1 should
be checked. Otherwise, we know that the Min-SV fit will be
definitely contained in Saj

and therefore, no other allocation
nodes need to be searched.

Thus our task now is to locate the Min-SV fit in the subtree
of Tstart rooted at aj . For this purpose we first search the
right child aj

r of aj , and check whether its associated strip
Saj

r contains the Min-SV fit (this can be done in constant
time by comparing f with the maximum ending time in that
region). If it does, our search can proceed recursively down
the right subtree starting at aj

r. Otherwise, the Min-SV fit must
be in the left subtree, and the search will be done recursively
there.

Note that a slightly faster implementation is to check the
maximum ending time associated with an allocation node v
before marking the allocation node for possible consideration
later in the search for an Min-SV fit. The allocation node is
marked if and only if the maximum ending time is larger than
f (there can be at most k such marked nodes). In this way,
the allocation node marked last (i.e., at the lowest level of the
tree) is either the Min-SV fit itself (if it is a leaf) or the only
one whose corresponding region needs to be searched for the

Min-SV fit.
The running time of the searching procedure is O(logm).

This is because the height of the tree is O(logm), and finding
a1 takes O(logm) time. There are at most O(logm) nodes
in A, and checking the feasibility of each node aj in A takes
O(1) time. Once a feasible node aj of A is determined, we
can recursively find the Min-SV fit in O(logm) time, since on
each level of the subtree rooted at aj , the search only spends
O(1) time. Thus the total time is O(logm). The total space
occupied by this data structure is O(m) as there are about 2m
nodes in total (internal nodes or leaves) and each node needs
O(1) space.

For the interval insertion and deletion operations, it is clear
that they can be done in O(logm) time, since inserting or
deleting a node from a balanced binary search tree, like a red-
black tree, takes O(logm) time, and the information stored in
the internal nodes can be dynamically maintained in the same
amount of time.

As discussed previously, to assign a void interval to an
incoming data burst, one only needs to perform an interval
query, and a constant number of interval insertions and dele-
tions. Thus, using the above data structure, our scheduling
algorithm can schedule an available channel for each incoming
data burst in O(logm) time, and a sequence of n data bursts
in O(logm(m + 1) · · · (m + n)) time, which is at most
n log(n + m) time, providing a significant improvement over
the best previously known results.

Our data structure also supports a clean-up operation for
removing those expired intervals (we call an interval expired
if its ending time is smaller than the current time). Removing
expired interval can reduce the size of the data structure and
consequently improves the running time of any future query,
deletion and insertion operations. The clean-up operation is
implemented by using the pointer, pv

ymin, stored in each
internal node v. To clean up the data structure, we start at the
root of Tstart, and check whether there is any expired interval
in the region associated it by comparing the current time with
the minimum ending time in the region. If any expired interval
is detected, we remove the interval pointed to by the pointer
maintained at the root with a deletion operation. Clearly this
can be done in O(logm) time for an expired interval.

To find a Max-SV fit, we can use the same data structure,
but conceptually search the allocation nodes in a top-down
fashion (i.e., from ah to a1). In practice, this can be done
approximately 3 times faster than finding a Min-SV as only
the region corresponding to the first marked allocation node
needs to searched.

Similarly, to find a Min-EV fit, we construct a Tend tree,
which is the same as Tstart tree except the leaves are sorted
according to their ending times in a descending order, and
each internal node v contains the median ending time, and a
pointer to the leave with the smallest starting time. The search
algorithm first finds an allocation path using f as a key such
that the leaves to the left all have their ending time larger
than f . Once the allocation nodes are determined, search for
an Min-EV fit starts at the bottom as in the search for an
Min-SV fit described earlier. An Max-EV fit can be found by
searching the allocation nodes in a top-down fashion.
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Finally, one can find a random-fit by searching the region
corresponding to a randomly selected marked node (and then
if necessary, the regions corresponding to other marked nodes
in a random order).

D. Scheduling Algorithm for the Case with FDLs

Scheduling a data burst with only one fixed offset time (i.e.,
without FDLs) may fail when there is no feasible void interval.
One way to alleviate this problem is to use FDLs to effectively
increase the offset time (and in turn, ”shift” the reservation
period).

Several approaches could be used to handle the case where
there are B different delays that a burst may obtain via FDLs
at a given node :

1) Run the Min-SV fit algorithm (or its variation) to sched-
ule the data burst, starting with the minimum possible
delay, until either the reservation succeeds or fails even
with the maximum possible delay. This approach takes
O(B logm) for scheduling a data burst in the worst case.

2) Select a set of p (1 < p ≤ B) different delays, and
schedule the burst with any one of these delays in
the associated feasible regions corresponding to the p
possible reservation periods. This approach, as to be
discussed next, essentially processes p possible delays
in one batch, and has a shorter worst-case (and average
case ) running time than any previous approach with an
appropriate value of p.

The main idea of the second approach, which we call the
Batching FDL algorithm, is as follows.

To find a void interval for an incoming data burst b, the
batching approach first uses either the Min-SV fit or the Min-
EV algorithm to schedule a channel for b based on the original
offset time (i.e., the offset time without the use of any FDLs).
If such an interval exists, then it stops. Otherwise, a set D =
{d1, d2, · · · , dp} of p delays are selected, and a feasible void
interval inside the union RD of all the feasible regions for
the corresponding reservation periods is sought. To speed up
the search, the scheduling algorithm no longer looks for the
Min-SV fit or the Min-EV fit. Instead, it reports the first fit
I1 found inside RD by the search algorithm. This first fit may
not require a minimum delay (i.e., the burst may be scheduled
with a smaller delay than that is required by using this first
fit). Note that as long as the delay is within an upper bound
for a burst, introducing a non-minimum delay to the burst may
not be bad as far as overall performance is concerned since
other bursts may use the smaller delays that are still available
to them.

Now the remaining difficulty is how to find a feasible
void interval inside RD. Our main idea is to try to find a
”likely-feasible” void interval inside an enlarged region R′

D

with simplified boundary, and trim the enlarged region down
only when it is necessary. Such an idea comes from the
observation that the time for searching an interval inside a
region is proportional to the complexity (i.e., the number of
vertices and edges) of the region. By enlarging and simplifying
the feasible region, the algorithm can significantly reduce the
average running time (to the point that it can be almost the

same as that needed without FDLs), and improve the worst-
case running time.

b

P

P

P2

3

4

I1

R’ D

R D

b
3 4

b
1

b

b2

P1

Fig. 10. Example of searching a batch of offset times.
More specifically, to locate a feasible interval in RD, the

scheduling algorithm first consider the enlarged region R′
D

(see Figure 10 for an example), which is bounded by the
vertical line x = rp from the right and by the horizontal line
y = f1 from the bottom, where rp is the starting time of the
data burst (after going through dp units of delay), and f1 is the
ending time of the data burst (after going through d1 units of
delay). Clearly, R′

D is a superset of RD, thus all the feasible
intervals inside RD are contained in R′

D.
To find a feasible interval in RD, the algorithm first de-

composes (searches) R′
D by finding its O(logm) allocation

nodes(please refer to the definition in section III-C) in tree
Tend (sorted according to the ending time), using y = f1

as the search key (this results in an allocation path from
the root all the way to the leave whose ending time is just
slightly larger than f1). Figure 10 shows an example where
R′

D is decomposed into 4 subregions, P1, P2, P3 and P4, each
associated with an allocation node along the allocate path from
top to bottom).

Then, an interval with the smallest starting time within
the topmost subregion (e.g., P1 in Figure 10) is found (by
following the pointer stored at the allocation node correspond-
ing to the subregion), and if necessary, other subregions are
then searched in a top-down approach. The intuition here is
that the topmost subregion occupies a large portion of the
space of R′

D with the smallest probability that it contains any
steps (which is a part of the staircase corresponding to the
shifted reservation periods). Also because the height of the
corresponding allocation node in Tend is the highest, it is more
likely that a feasible interval can be found in this region.

In general, if any interval Ij is detected in some subregion,
say Pj , then the algorithm first checks whether Ij is inside
RD. This can be done by first determining the two finishing
times fq and fq+1, where 1 ≤ q < p, such that they bound
the ending time of Ij from below and above, respectively, if
any. If the two values are found, and if the starting time of
Ij is larger than rq, Ij is outside RD. Otherwise, it is inside
RD.

If Ij is inside RD, the algorithm stops and reports the found
interval, and uses the smallest delay possible, i.e., the smallest
q such that rq is larger than or equal to the starting time of
Ij (note that q ≥ 1 as it is assumed that the previous attempt
to do without FDLs has failed already).

Otherwise, it means that Pj is not entirely contained in RD
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(e.g., P2 in Figure 10), or in other words, there are some
steps in Pj , and thus Pj needs to be further decomposed into
subsubregions. This can be done by finding the allocation path
in the subtree corresponding to Pj , using fq+1 as the search
key. A better way is to use fq′+1 ≥ fq+1 as the search key,
where q′ ≥ q is the smallest value such that rq′+1 is larger
than the starting time of Ij . Intuitively, this limits searching the
subsubregion (a horizontal strip) above line y = fq′+1 (and
below the region Pj−1). This is to avoid unnecessary search
for intervals outside RD as there is no feasible void interval to
the left of Ij in the subregion Pj (as well as any subregions
above) given Ij has the smallest starting time in subregion
Pj . The algorithm is then recursively (or iteratively) applied
to the subsubregion until either a feasible interval is found or
it searches the entire subsubregion but still fails. In the latter
case, the algorithm backtracks and searches subregion Pj+1,
until either a feasible interval is found or it searches the entire
region RD but still fails.

Note that a subregion such as Pj needs to be decomposed
only if it contains at least a step of the staircase (and an
interval with the smallest starting time is found underneath
the staircase), and the maximum number of times it needs
to be recursively decomposed is equal to the total number of
steps within the subregion. Also, it takes O(log(m/2lj )) or
O(logm − lj) time each time to decompose subregion Pj ,
since the decomposition can be done in the subtree of Tend

rooted at Pj , where lj is the level of Pj in Tend. If it needs to
be decomposed into subsubregions z times, the time to search
the subregion Pj becomes O(z logm − zlj).

Since at most p decompositions are needed to search the
entire region RD, the worst case time complexity of the
Batching FDL algorithm for finding a feasible interval is less
than O(p logm), since the level l1 of P1 is ≥ 1.

Once a feasible interval is found, deletion and insertion
operations to schedule a burst can be done in O(logm) time.
The clean-up operation can also be done in O(logm) time.

The average running time to find an feasible interval is
much smaller. Part of the reason is that the algorithm stops
whenever a feasible interval is encountered, and thus many
regions containing those steps are not decomposed.

Once a feasible interval I1 of b is located, assigning I1
to b, which involves a constant number of interval insertions
and deletions, can be done in O(logm) time. The additional
storage requirement of this algorithm is O(p + logm).

E. Algorithm and data structure for finding the best fit

The objective of finding a best fit (or weighted best fit) is to
minimize the total length (or weighted length) of the two void
intervals (called starting void and ending void, and denoted by
SV and EV , respectively) so as to further improve bandwidth
utility and reservation success ratio.

Unlike the Min-SV fit in which the search criterion mini-
mizes a distance in one dimension of the coordinate system
(e.g., the starting time), the best fit criterion considers the L1
distance (or Manhattan distance) which is the sum of a distance
in the x dimension and a distance in the y dimension. See
Figure 11, where b = (r, f) is the data burst, and I = (s, e)

is a void interval in the feasible region R of b. The distance
to be minimized is the sum of the lengths of two segments
sv = b → Iy and ev = b → Ix, where Ix is the horizontal
projection of I on the vertical line x = r, and Iy is the vertical
projection of I on the horizontal line y = f . The L1 distance
sv+ev complicates the problem dramatically. Fortunately, the
following observation can help us to simplify the problem.
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Fig. 11. Converting the bent distance to one dimension.

Observation 1: The L1 distance is equal to the distance of
(|I → I ′|−|b → b′|) times

√
2, i.e., sv+ev =

√
2×(|I → I ′|−

|b → b′|), where I ′ and b′ are the orthogonal projections of I
and b to the line y = x, respectively.

From this observation, and the fact that once a data burst is
given, its projection distance |b → b′|) is fixed, we know that
to find the best fit of b, it is equivalent to find a void interval in
the feasible region R such that its projection distance |I → I ′|
is minimized.

Below, we show that we can solve the best fit query in
O(log2 m) time. Since the weighted best fit can be solved
similarly by scaling up the y dimension by a factor of (1 −
α)/α, we will only focus on the best fit.

Our data structure DSB for computing the best fit for a data
burst b makes use of the dynamic version of range tree [12]
data structure. The basic idea is to construct a randomized
balanced binary search tree [13] Tend based on the ending
time of the void intervals, and for each internal node v of this
tree, build another balanced binary search tree T v

start based
on the starting time for the intervals in the strip Sv associated
with v only (i.e., not all the intervals). Notice that one can
also use the starting time as the primary dimension.

Note that, different from the normal range-tree, our data
structure does not apply the fractional cascading technique.
This is because in OBS networks, the intervals are frequently
inserted and deleted from the data structure, and the dynamic
fractional cascading technique [14], although theoretically has
a factor of O( log m

log log m ) improvement, is much more compli-
cated and practically less efficient than our relatively simpler
data structure.

To facilitate the search of the best fit in this data structure,
in each node v of the tree Tend, we store the median interval
Iv
ym (based on the ending time) and the minimum starting (and

an optional minimum ending time) of the intervals in the strp
Sv, and in each node u of T v

start, we store the median interval
Iu
xm (based on the starting time) and a pointer pu

pmin to the
interval whose projection distance is the minimum among all
intervals in this subtree of T v

start rooted at u.
To locate the best fit of b in this data structure, we first

search on the tree Tend. Similar to the Min-SV fit case, we
compute the set Aend of allocation nodes of b in Tend. We
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then search the best fit in the subtree rooted at each allocation
node a ∈ Aend, and thus the actual best fit is the best among
the O(logm) best fits we found from these allocation nodes.

Thus our focus now is on finding the best fit in an allocation
node a. Instead of searching each subtree root at a in Tend,
which is the case for computing the Min-SV fit, we search
on the tree T a

start. Note that the strip Sa associated with a in
Tend is a horizontal strip whose y coordinate is ≥ the finishing
time f of b. To find the best fit in Sa, we need to first find the
feasible region in Sa (i.e., find the region whose x coordinate
is ≤ the starting time r of b. This can be done by computing
the set of allocation nodes Aa

start in the tree T a
start. Each node

u ∈ Aa
start is thus associated with a rectangle Su in the x− y

plane which is entirely contained in the feasible region R of
b.

The remaining task is to find the best fit in the strip Su.
Recall that we have maintained a pointer pu

pmin to the interval
with the minimum projection distance in the subtree of T a

start

rooted at u. Hence, we can immediately obtain this interval
by following the pointer.

Clearly the search for the best fit in each allocation node
a ∈ Aend can be done by searching O(logm) that many
allocation nodes u’s ∈ Aa

start in the tree T a
start. Each such

allocation node u takes only O(1) time for finding the local
best fit. Hence, for each allocation node a, we need to spend
O(logm) time, and since there are O(logm) allocation node
a′s in Aend, the total time for searching the best fit is therefore
O(log2 m) time.

P 1
1

P1
 2

P 1
2P 1

3

P 2
2

P 3
2 P 3

1
P 3

3

P 2
3

b

I

Fig. 12. Snake-search for the best fit.

An improved implementation of the above algorithm is to
use the following snake-search procedure. Consider Figure
12, where the feasible region R is decomposed into three
horizontal strips associated with three allocation nodes in Tend,
and each strip is further partitioned into a set of rectangles
which are entirely contained inside r, named as P 1

1 , P 2
1 ,

P 3
1 ,· · ·, P 1

2 , P 2
2 , P 3

2 , · · ·, P 1
3 , P 2

3 , P 3
3 , · · ·. Since our goal is

to find an interval in R with the smallest projection distance,
we can search these rectangles in an increased order of the
projection distance (e.g., P 1

1 ⇒ P 1
2 ⇒ P 2

1 ⇒ P 3
1 ⇒ P 2

2 ⇒
P 1

3 · · ·). We call such a search fashion snake-search. When a
local best fit I = (s, e) is found by the snake-search in some
rectangle (e.g., P 2

2 ), to ensure the optimality of I , we only need
to further search those rectangles which intersect the halfspace
HSI bounded by the line y = x + e − s from the above (see
Figure 12). In this way, it is possible to avoid search many
of the O(log2 m) rectangles, and thus reduce the total running

time. More specifically, after finding the allocation nodes Aend

of b in Tend, we search these nodes in a bottom-up fashion.
An allocation node a ∈ Aend with higher height in Tend is
searched (i.e., computing its allocation nodes Aa

start and then
searching the associated regions) only when its corresponding
region intersects the halfspace of some already found local
optimum or no feasible iterval has been detected yet. The
snake-search simultaneously seeks for the best fit in a set of
secondary trees (i.e., T a

start trees), all from bottom to top, and
jumps from one to another in a snake fashion, until either the
best fit is found or all of the O(log2 m) rectangles have been
searched.

To insert or delete an interval from this data structure,
one need to first update the tree Tend, and then, for each
node v whose subtree has been changed, update the tree
Tu

start. Since the depth of Tend is O(log n), there are O(log n)
secondary trees need to be updated, and each secondary tree
takes amortized O(logm) time. The total updating time is
amortized O(log2 m). It is worth pointing out that all the
information we stored in the nodes of tree Tend and the tree
Tu

start can be dynamically maintained in the same amount of
time for deletion and insertion.

To assign the best fit to an incoming data burst, one only
needs to perform a query operation and a constant number of
insertion and deletion operations. Thus the scheduling time for
a burst is amortized O(log2 m).

The clean-up operation in this data structure is similar to
a deletion operation, and hence can be done in amortized
O(log2 m) time.

The storage (space complexity) required is O(m logm)
because each leaf node in tree Tend can appear in at most
O(logm) trees Tstart.

Note that although experimental results on this algorithm
are not available yet at the time when we submit this paper
(experimental results will be included in the full version), we
believe that the idea of minimizing the (weighted) sum of the
lengths of the two void intervals will help us to simultaneously
achieve better loss rate and a provably good scheduling time.

IV. EXPERIMENTAL RESULTS

This section presents our experimental results on three of
our algorithms, Min-SV, Min-EV, and Batching FDL, and their
comparisons with existing algorithms, LAUC-VF and Horizon.
Our experiments focus on examining the scheduling time and
loss rate of these algorithms.

Our experiments are conducted on a Dell Precision 330
PC with a Pentium 4 CPU (1.3 GHz) and use Yacsim as the
simulation tool. Our simulation observes the performance of
one particular node in a network with two traffic sources. We
assume that both burst length and control packet interarrival
time follow a Pareto distribution, and the offset time of
incoming bursts follows a uniform distribution in a certain
range. The average burst duration is 1ms.

In our simulations, we also consider several other param-
eters, such as the number of channels in a link (denoted by
ChanNum), the offered link load (denoted by LinkLoad),
the range of the offset time (denoted by Range), the number
of FDLs (denoted by FDLNum), and the number of FDLs
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in a batch (called batch size, and denoted by p value). In our
simulation, the scheduling time is obtained by measuring the
time needed to schedule a large set of bursts and then taking
the average.

A. Min-SV vs. LAUC-VF and Horizon

To compare our Min-SV algorithm with existing LAUC-VF
and Horizon, we conduct two simulations, one investigates the
relationship of scheduling time and the offered link load, and
the other studies how the range of offset time affects the loss
rate of the three algorithms,

The settings for the first simulation are: ChanNum = 10,
and Range = [0.3, 3]ms. Simulation results in Figure 13
suggest that the change of link load nearly has no effect on the
scheduling times of Min-SV and Horizon, which are always
very small (close to 0). As to LAUC-VF, the simulation seems
to suggest that the scheduling time is closely related to the link
load. When the link load increases, the scheduling time grows
almost linearly. Our simulation also demonstrates that the
scheduling time of the three algorithms very much observes
their time bounds predicted by the theoretical analysis, that is
under any link load, Min-SV and Horizon take a much shorter
time than LAUC-VF to schedule a burst.

For the case that the channel number is only 10, Min-
SV has a slightly worse performance on the scheduling time
than Horizon. We attribute this difference to the fact that
Min-SV stores the whole set of the void intervals, whose
cardinality could be much larger than the number of channels,
while Horizon only needs to maintain in total 10 intervals.
Furthermore, on each searching step, Min-SV needs to perform
more operations (for maintaining the more complicated data
structure) than Horizon.
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Fig. 13. Scheduling time vs. Link load.

It is also worth pointing out that the scheduling time of
Min-SV remains a very small number even if the number of
channels increases to hundreds. The scheduling time of LAUC-
VF, however, can easily become unreasonably large when the
channel number increases, thus preventing the simulation tool
from yielding data for comparison.

The settings for the second simulation are: ChanNum =
60, LinkLoad = 80%, and Range = [ a

10 , a]ms at each
comparison point. The simulation results, shown in Figure 14,
indicate that the loss rate of Horizon algorithm is a fast
growing function of the range of offset time, while that of

the Min-SV and LAUC-VF almost remains the same when
increasing the range. Our explanation on this phenomenon
is the following. Horizon algorithm keeps only the last void
interval for each channel and discards all other void intervals.
With an enlarged range of offset time, the chance of generating
void intervals in the time window between the current time
and the starting time of the last interval on each channel
increases, and therefore more bandwidth will be wasted, which
consequently increases the loss rate. As for our Min-SV and
LAUC-VF (actually the two algorithm have exactly the same
loss rate), since the algorithms always keep all void intervals,
and search the whole set of void intervals for each incoming
burst, the loss rates are thus unlikely be affected by the
increased range of offset time.
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Fig. 14. Loss rate vs. Offset time range.

B. Min-SV vs. Min-EV

For Min-SV and Min-EV, we also conduct two simulations
for studying their performance on loss rate and scheduling
time under different link load.

Figure 15 shows the loss rate comparison between Min-
EV and Min-SV under the following settings: Range =
[0.3, 3]ms, and ChanNum = 60. The simulation results
indicate that the loss rate of Min-EV is about 20% larger than
that of Min-SV. This seems to suggest that one should try to
minimize the starting void, instead of the ending void, as far
as the loss rate is concerned with, because the left residual
interval is more likely to be expired than the right one.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

lo
ss

 r
at

e

offered link load

Min-EV
Min-SV

Fig. 15. Loss rate vs. Link load.

Figure 16 plots the scheduling time comparison of the two
algorithms with ChanNum = 60 and Range = [0.3, 3]ms.
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A surprising phenomenon discovered in this simulation is that
Min-EV runs several times faster than Min-SV. Conceptually,
Min-SV and Min-EV are symmetric to each other, seemingly
suggesting that their scheduling time should be roughly the
same. We attribute the significant difference to the fact that
bursts are scheduled in a roughly increasing order of their
ending times. When scheduling a burst b = (r, f), the number
of void intervals whose ending time is larger than f will be
very small (i.e., no more than the number of channels plus the
number of bursts who are scheduled before b, but have a larger
ending time than f ), and the feasible region R will therefore
live in a very small subtree of Tend near the bottom of the
Tend. Thus the total number of allocation nodes, as well as
the search space can be dramatically reduced. Consequently,
the scheduling time will be decreased.
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Fig. 16. Scheduling time vs. Link load.

The comparison between Min-SV and Min-EV demon-
strates that minimizing different void could result in different
performance on the scheduling time and loss rate. This sug-
gests that a desired trade-off between scheduling time and loss
rate might be achieved by choosing an appropriate α in the
weighted best fit.

C. Batching FDL algorithm

To study the experimental performance of our batching FDL
algorithm, we compare it with a sequential searching algorithm
and study how the scheduling time and loss rate of the two
algorithms change under different settings, such as different
number of FDLs, and different batch size (i.e., the value of
p). The sequential searching algorithm considers the available
FDLs in an iterative manner, with each iteration using only
one FDL to search for the feasible void interval, while the
batching FDL algorithm considers a batch of FDLs as a whole
and performs only one search on the set of void intervals.

In the comparison, both algorithms use Min-EV based
algorithms to search for feasible void interval, and Horizon
based algorithms for available FDLs. Since the time used
for searching for the availabel FDLs could be significant
comparing to the time used for searching for feasible void
intervals, we use the following procedure to build an efficient
data structure to facilitate the search for available FDLs.

• For each FDL, using Horizon algorithm to maintain the
starting time (called horizon) of the last void interval.

• Partitioning the FDLs into groups such that FDLs in each
group have the same delay.

• Using red-black tree to organize all the horizons in each
group. For each node in the red-black tree, maintain a
pointer to the minimum horizon in the subtree rooted at
that node.

• Organizing all roots in another red-black tree.

The above procedure will result in a two-level red-black-
tree structure which ensures that p FDLs can be found in
O(logN + p) time, where N is the total number of FDLs
with different delays.

Our first simulation is to study how the FDL number affects
the scheduling time. The settings for this simulation are:
ChanNum = 60, Range = [0.3, 3]ms, p = FDLNum, and
LinkLoad = 90%. Simulation results in Figure 17 show that
the scheduling time of the sequential searching algorithm is
significantly larger than that of the batching FDL algorithm,
and their difference grows fast when the number of FDLs
increases.
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Fig. 17. Scheduling time vs. FDL number.

The second simulation compares the loss rate of the two
algorithms using the same settings as in the first one. Figure 18
indicates that the loss rate of the batching FDL algorithm is
higher than that of the sequential searching algorithm (but their
difference increases only slowly with the number of FDLs).
This is primarily because the batching FDL algorithm always
picks the leftmost interval inside a region without optimizing
the length of the starting or ending void, and thus it is likely
to generate longer residual voids which are eventually wasted.
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Fig. 18. Loss rate vs. FDL number.
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Finally, simulations shown in Figure 19 and 20 exhibit
how the batch size (i.e., the value of p) affects the schedul-
ing time and loss rate. Both simulations have the following
settings: FDLNum = 30, each FDL supports 30 channels,
ChanNum = 60, LinkLoad = 90%, Maximum delay time
= 3ms. From the two simulations, we can expect that in
general a better scheduling time and a lower lost rate of
the batching FDL can be achieved by increasing the value
of p. The reduced loss rate with larger p (and consequently
larger delay) seems to suggest that it is better to distribute the
bursts further apart in order to reduce the possibility of future
contention on downstream links.
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Fig. 19. Scheduling time vs. Batch size.
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V. CONCLUSION

In this paper, we have presented several novel channel
scheduling algorithms (including Min-SV, Min-EV, Max-SV,
Max-EV, Batching FDL, and Best Fit) in OBS networks using
different channel selection criteria. Unlike existing channel
scheduling algorithms, such as LAUC-VF and Horizon, which
primarily aim at optimizing either the running time or loss rate,
but not both, our algorithms take both performance metrics
into consideration, and can perform well in networks with
or without FDL. Most of our algorithms have a very shorter
scheduling time for each incoming burst (e.g., worst case
O(logm) time), and maintain a low loss rate.

We have implemented three of our algorithms, Min-SV,
Min-EV, and Batching FDL, and conducted a comprehensive
experimental study on them under different network settings

(e.g., different channel number, different offered link load,
and different offset time range). Particularly, we compared
the running time and loss rate of our Min-SV algorithm
with those of LAUC-VF and Horizon based on a large set
(up to several millions) of randomly generated data bursts.
Experiments have shown that our Min-SV runs much faster
than LAUC-VF, and matches the running time of Horizon.
As to the loss rate, our Min-SV algorithm has a much lower
loss rate than Horizon, and the same loss rate as the LAUC-
VF algorithm. We have also compared our Batching FDL
algorithm with a sequential searching algorithm and found
that our Batching FDL algorithm significantly improves the
running time of the sequential searching algorithm, and suffers
only a minor increase (< 1.6%) in the loss rate in a heavily
loaded network. Finally, we note that although the algorithms
have been presented in the context of OBS networks, they
are equally effective in many practical systems with limited
resources, where advance reservations, each for a fixed period
of time, need to be made.
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