

Real-Time Wireless Control Networks for Cyber-Physical Systems

Chenyang Lu

Cyber-Physical Systems Laboratory

Department of Computer Science and Engineering

Wireless Control Networks

Real-time

Reliability

Control performance

Need drastically different network design from best-effort sensor networks!

Wireless for Process Automation

World-wide adoption of wireless in process industries

1.5+ billion hours operating experience

100,000s of smart wireless field devices

10,000s of wireless field networks

Courtesy: Emerson Process Management

WirelessHART

- Industrial-grade reliability
 - Multi-channel TDMA MAC
 - Redundant routes
 - Over IEEE 802.15.4 PHY
- Centralized network manager
 - collects topology information
 - generates routes and transmission schedule
 - changes when devices/links break

Industrial wireless standard for process monitoring and control

Real-Time Scheduling for Wireless

Goals

- Real-time transmission scheduling -> meet end-to-end deadlines
- Fast delay analysis -> online admission control and adaptation

Approach

- Leverage real-time scheduling theory for multiprocessors
- Incorporate wireless characteristics: transmission conflicts

Results

- Dynamic priority scheduling [RTSS'10][IWQos'14]
- Fixed priority scheduling [RTAS'11][ECRTS'11]
- Wireless control network testbed

Wireless-Control Co-Design [ICCPS'13]

- Wireless Cyber-Physical Simulator (WCPS)
 - Capture dynamics of both physical plants and wireless networks
 - TOSSIM + Simulink/MATLAB
 - □ Open source: http://wcps.cse.wustl.edu
- Wireless structural control experiments
 - Wireless traces collected from Jindo bridge
 - Structural models of bridge over Mississippi
 - Excited by CA earthquake traces

- Wireless-control co-design
 - End-to-end scheduling + optimal control

6

Challenge: Scalability

- Centralized network architecture does not scale
 - WirelessHART: a gateway can support up to 80 devices
- Approach
 - Local adaptation to wireless dynamics
 - Hierarchical network management
 - SNOW: sensor network over White Spaces
 - Key: Scale up without losing predictability!

Challenge: Control over Wireless

- Wireless resource is scarce and dynamic
- Cannot afford separating scheduling and control
- Wireless-control co-design
 - Optimize control, not to meet deadlines
 - Rate selection for wireless control [RTAS'12]
 - Civil structural control [ICCPS'13]
 - Wireless and control co-design for resilient control

Summary

- Real-time wireless is a reality today
 - Industrial standards: WirelessHART, ISA100
 - Real deployments in the field
- Real-time scheduling theory for wireless
- Challenges and opportunities ahead
 - □ Scale to 10,000+ nodes
 - Wireless-control co-design