Revolutionizing the Water World: Cyber-Aquatic Systems

Jun-Hong (June) Cui

UnderWater Sensor Network (UWSN) Lab

http://uwsn.engr.uconn.edu

School of Engineering, University of Connecticut

Potential Applications

Applications & Requirements

- A wide range of applications
 - Scientific: (biological, chemical, physical) oceanography, deep sea archaeology ...
 - Environmental: pollution detection, disaster recovery, climate change, ...
 - **Commercial:** oil/gas field monitoring, fishery, treasure discovery ...
 - **Defense/HS:** Navy, costal guard, harbor protection, port control ...
 - ...
- Desired properties
 - Unmanned underwater <u>exploration</u>
 - Localized and precise <u>data acquisition</u> for better knowledge
 - Wireless underwater networking for motion agility/flexibility
 - Scalable to 10's, 100's of nodes for bigger spatial coverage
 - Real-time & interactive user query and system response

The Ideal Technique:

Smart Ocean Technology (SOT) aka **Distributed Cyber Aquatic System (DiCAS)** aka Underwater Wireless Networked Sensing aka Underwater Sensor Networks (UWSNs)

System Architecture (2009)

System Architecture (2014)

Underwater Communication

- Acoustic is most practical and viable among optical, EM, etc.
- Unique characteristics of acoustic channels
 - Low available bandwidth
 - Long propagation delay
 - High error probability
 - High T/S dynamics
- Harsh networking environments
 - Passive or active node mobility
- New research at every level of the protocol suite is demanded !!!
 - Reliable, robust, energy efficient underwater comm. & networking

State-of-Art Underwater Acoustics

Range (km)

Courtesy: Kilfoyle & Baggeroer

Reported by	Modulation Method	Bandwidth	Bandwidth Carrier	Data Rate	Range
Kaya&Yauchi,Oceans'89	16QAM	125kHz	1000kHz	500kbps	60m
Jones et al.,Oceans'97	DPSK	10kHz	50kHz	20kbps	1km
Capellano et al.,Oceans'97	BPSK	0.2kHz	7kHz	0.2kbps	50km

OFDM Modem Development at UConn

Left: SIMO 1 × 8 or MIMO up to 8 × 8
Right: Modem prototype with housing

Networking with OFDM Modems

Connect protocols with OFDM modem prototypes

Ocean-TUNE: A Community Testbed

Supported by NSF CRI

- UConn (lead), UW, UCLA, TAMU
- \$2,635,000 for 3 years
- Sea Testbed with 4 sites
 - Long Island Sound, Hood Canal, Santa Monica Bay, Galveston Bay
- URL: http://oceantune.org/

Ocean-TUNE: A Community Testbed (2)

Site	Location	Surface Nodes	Bottom Nodes	Mobile Nodes	Reconf. Modems
UConn	Long Island Sound	3	5	2 Slocum Gliders	2
UW	Hood Canal	2	2	1 Seaglider	2
UCLA	Santa Monica Bay	1	2	1 Drogue	-
TAMU	Galveston Bay	2	1	-	2

12

NSF I/UCRC on Smart Ocean Technology

In 2013, collaborating with University of Washington, launched the **VERY FIRST** NSF I/UCRC (Industry/University Cooperative Research Center) for **Smart Ocean Technology**.

(http://smartoceantechnology.org).

NSF I/UCRC on Smart Ocean Technology

Thank You!