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Abstract— A classifier consists of a set of rules for classifying
packets based on header fields. Because core routers can have
fairly large (e.g., 2000 rule) database and must use limited SRAM
to meet OC-768 speeds, the best existing classification algorithms
(RFC, HiCuts, ABV) are precluded because of the large amount
of memory they need. Thus the general belief is that hardware
solutions like CAMs are needed, despite the amount of board area
and power they consume. In this paper, we provide an alternative
to CAMs via an Extended Grid-of-Tries with Path Compression
(EGT-PC) algorithm whose worst-case speed scales well with
database size while using a minimal amount of memory. Our
evaluation is based on real databases used by Tier 1 ISPs, and
synthetic databases. EGT-PC is based on a observation that we
found holds for all the Tier 1 databases we studied: regardless of
database size, any packet matches only a small number of distinct
source-destination prefix pairs. The code we wrote for EGT-PC,
RFC, HiCuts, and ABV is publicly available [1], providing the
first publicly available code to encourage experimentation with
classification algorithms.

I. INTRODUCTION

The rapid growth of the Internet has brought great chal-
lenges and complex issues in deploying high-speed networks.
The number of users, the volume of traffic and the type
of services to be provided are continually increasing. The
increasing traffic demand requires three key factors to keep
pace: high link speeds, high router data switching throughput
and high packet forwarding rates. Although there are already
solutions for the first two factors, packet forwarding continues
to be be a difficult task at wire speeds.

Packet forwarding based on a longest matching prefix
lookup of destination IP addresses is fairly well understood
with both algorithmic and CAM-based solutions in the market.
Using basic variants of tries and some pipelining, it is fairly
easy to perform one packet lookup every memory access time,
which can easily scale (beyond even today’s OC-768 speeds
of 40 Gbps) to 100 Gps using 1 nsec SRAMs.

However, the Internet is becoming a more complex place
to live in because of its use for mission critical functions
executed by organizations. Organizations desire that their
critical activities not be subverted either by high traffic sent
by other organizations (i.e., they require QoS guarantees) or
by malicious intruders (i.e., they require security guarantees).
Both QoS and security guarantees require a finer discrimina-
tion of packets based on fields other than the destination that
we call packet classification.
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Other fields a router may need to examine include source
addresses (to forbid or provide different service to some
source networks), port fields (to discriminate between traffic
types such as Napster and say Email), and even TCP flags
(to distinguish between say externally and internally initi-
ated connections). Besides security and QoS, other functions
that require classification include network address translation
(NAT), metering, traffic shaping, policing, and monitoring.

The industry standard for classifier formats has come from
Cisco ACLs, which consist of a number of rules. Each rule
specifies a destination address prefix, a source address prefix,
a protocol type or a wildcard, ranges for the destination and
source port fields, and some values of TCP flags. The rules
are arranged in order of priority and have an associated action
(such as drop, forward, place in queue X etc.). Conceptually,
a packet must be matched to the first (i.e., highest priority)
rule that matches the packet.

Classifiers historically evolved from firewalls that were
placed at the edges of networks to filter out unwanted packets.
Such databases are generally small, containing 10-500 rules,
and can be handled by ad hoc methods. However, with the
DiffServ movement, there is potential anticipation [2] of
classifiers that could support one hundred thousand rules for
DiffServ and policing applications at edge routers. Thus while
many classification algorithms [3], [4] work well for classifiers
up to say 1000 rules, there is a real scaling problem for larger
databases that is partially addressed by [5].

While large classifiers are anticipated for edge routers to
enforce QoS via DiffServ, it is perhaps surprising that even
within the core fairly large (e.g., 2000 rule) classifiers are
commonly used for security. Emerging core routers operate
at 40 Gbs speeds, thus requiring the use of limited SRAM
to store state for any algorithmic solution. Unfortunately, the
best existing classification schemes described in the literature
(RFC [4], HiCuts [3], ABV [5]) require large amounts of
memory for even medium size classifiers, precluding their use
in core routers.

While these core router classifiers are nowhere near the
anticipated size of edge router classifiers, there seems no
reason why they should not continue to grow beyond the sizes
reported in this paper. For example, many of the rules appear
to be denying traffic from a specified subnetwork outside
the ISP to a server (or subnetwork) within the ISP. Thus,
new offending sources could be discovered and new servers
could be added that need protection. In fact, we speculate that
one reason why core router classifiers are not even bigger is
because most core router implementations slow down (and do
not guarantee true wire speed forwarding) as classifier sizes
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increase.
Thus the general belief is that hardware solutions like

Ternary CAMs are needed for core routers, despite the large
amount of board space and power that CAMs consume [2],
[6]. For a large number of designers, Ternary CAMs, which
essentially compare a packet to every rule simultaneously, are
the only solution.

There are several reasons to consider algorithmic alterna-
tives to Ternary CAMs, however, some of which are stronger
than others:

• Density Scaling: One bit in a TCAM requires 10-12
transistors while an SRAM requires 4-6 transistors. Thus
TCAMs will also be less dense than SRAMs or take more
area. Board area is a critical issue for many routers.

• Power Scaling: TCAMs take more power because of the
parallel compare. CAM vendors are, however, chipping
away at this issue by finding ways to turn off parts of the
CAM to reduce power. Power is a key issue in large core
routers.

• Time Scaling: The match logic in a CAM requires all
matching rules to arbitrate so that the highest match
wins. Older generation CAMs took around 10 nsec for
an operation but currently announced products appear to
take 5 nsec, possibly by pipelining parts of the match
delay.

• Extra Chips: Given that many routers like the Cisco GSR
or the Juniper M160 already have a dedicated ASIC (or
network processor) doing packet forwarding it is tempting
to integrate the classification algorithm with the lookup
without adding CAM interfaces and CAM chips. Note
that CAMs typically require a bridge ASIC in addition
to the basic CAM chip, and sometimes require multiple
CAM chips.

• Rule Multiplication for Ranges: CAMs need to repre-
sent port ranges by several prefixes thus causing extra
entries.

To see that this problem is not just of academic interest
consider the following recent announcement by Cypress (a
leading manufacturer of CAM chips) in EE Times [2]. Basi-
cally, Cypress is considering shipping a chip that implements
an algorithmic approach to classification to provide a lower
cost, lower area, and lower power alternative to their CAMs.
The article also mentions other companies such as Fast-Chip,
EZchip, and Integrated Silicon Solution that are claiming
algorithmic solutions.

II. PAPER CONTRIBUTIONS

Our paper has three main contributions: a new classifier
characteristic, a new algorithm, and the first standardized
comparison across a number of major algorithms.

• i, New Characteristic: Our paper studies the charac-
teristics of core router classifiers used by Tier 1 ISPS.
While previous studies have shown [4] that every packet
matches at most a few rules, we refine this earlier
observation to show that every packet matches at most
a few distinct source-destination prefix pairs present in
the rule set. In other words, if we project the rule set to

just the source and destination fields, no packet matches
more than a small number of rules in the new set of
projected rules. Note that this is emphatically not true
for single fields because of wildcards: a single packet
can match hundreds of rules when considering any one
field in isolation.

• ii, New Algorithm: Based on the observation above, our
paper introduces a new algorithm we call Extended Grid
of Trie with Path Compression(EGT-PC) for multidimen-
sional packet classification and evaluates it. While our
EGT algorithm is inspired by the earlier grid-of-tries al-
gorithm [7], it requires a significant extension. Briefly, the
standard grid-of-tries assumes that any source-destination
prefix pair (S1,D1) that is no more specific in both fields
than another pair (S2,D2) can be eliminated. While this
works for 2 field classification it does not work for more
than 2 fields, and requires new machinery (e.g., jump
pointers instead of switch pointers) for correctness. We
had to experiment with a number of extension variants
before finding one that did not result in storage replication
and yet had good performance.

• iii, New standardized comparison: Previous work
mostly compares the new algorithm presented in the
paper with one other algorithm. Thus for example, the
HiCuts paper [3] describes improvements over RFC [4];
similarly, the ABV paper [5] paper describes improve-
ments over the Lucent bit vector scheme [8]. The code for
each algorithm is also usually difficult to obtain. We have
written code for each of these algorithms 1 and compared
them using databases used by Tier 1 ISPs. We also do
comparisons based on synthetic databases that preserve
the structure of the smaller real databases that we have.2

Finally, our code is publically available on a web site
described in the references. By making multiple classification
algorithms publicly available we hope to encourage experi-
mentation and improvements that can then be incorporated
into revisions on the same web site.

III. PRIOR WORK AND SUMMARY OF RESULTS

The packet classification problem is inherently hard( [8],
[9], [3], [7], [4], [10]) from a theoretical standpoint. It has been
shown [8] that in its fullest generality, packet classification
requires either O(logk−1 N) time and linear space, or log N
time and O(Nk) space, where N is the number of rules, and
k is the number of header fields used in rules.

Most practical solutions either use linear time [8] to search
through all rules sequentially3, or use a linear amount of
parallelism (e.g., Ternary-CAMs as in [11], [12]). Ternary
CAMs are Content Addressable Memories that allow wildcard
bits. Solutions based on caching [13] do not appear to work
well in practice because of poor hit rates and small flow

1The RFC code is based on code graciously supplied to us by Pankaj Gupta
2Our databases are different from those in [5] because those databases were

largely edge databases as opposed to core databases. Our synthetic generation
methodology is also very different from [5] in that we provide a simpler and
more realistic model for generating large ISP classifiers.

3The scheme in [8] reduces classification to linear search on a N -bit vector
which can be sped up by using a wide memory word
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durations [14], and still need a fast classifier as a backup when
the cache fails.

Several algorithms have been developed for the case of rules
on two fields (e.g., source and destination IP address only). For
this special case, the lower bounds do not apply (they apply
only for k > 2); thus hardly surprisingly, there are algorithms
that take logarithmic time and linear storage. These include
the use of range trees and fractional cascading [8], grid-
of-tries [7], area-based quad-trees [15], and FIS-trees [16].
While these algorithms are useful for special cases (such as
measuring traffic between source and destination subnets),
they do not solve the general problem of k−dimensional
packet classification.

The papers by Gupta and McKeown [4], [3], [10] introduced
a major new direction into packet classification research. Since
the problem is unsolvable in the worst case, they look instead
for heuristics to exploit the structure of the databases. They
observed for the first time that a given packet matches only a
few rules even in large classifiers. Baboescu and Varghese [5]
also exploit this observation to reduce the search times for
the algorithm described in [8]. Qiu et al [17] exploit the
observation that any packet matches at most a few distinct
values in each field to suggest backtracking trie search as a
viable (though fairly slow) alternative.

Performance of Existing Schemes: In terms of the current
state of the art (see comparisons later), it appears that RFC
has the fastest search times (12 memory accesses using 16
bit chunks) but at the cost of a large amount of storage (for
example, on a database of 2800 rules, RFC requires 24 Mbits
of memory). HiCuts takes more memory accesses and requires
less memory (e.g., 3 Mbits for the same database using 82
memory accesses).

HiCuts mostly works well. However, with the space factor
of 4 used in the HiCuts paper, it is fast (82 memory accesses
for a 2800 rules database) but requires a large amount of
storage for databases (see DB3 below) in which there are
a large number of rules where the destination address is
wildcarded, and a large number of rules where the source
address is wildcarded. Using a lower space factor of 1, HiCuts
tends to sometimes do better in storage but still does worse in
time. In the case of DB4, HiCuts−4 uses more than 3 times
more memory than EGT − PC while the worst case search
time is only slightly better: 82 vs. 87 while HiCuts − 1 uses
about 16% less memory than EGT − PC but sacrifices the
worst case search time which is now twice as large as the one
for EGT − PC.

Besides these better results for existing core router
databases, EGT −PC has three other characteristics that may
make it more attractive than HiCuts.

• Predictability: It appears to be difficult to predict the
performance of HiCuts on arbitrary database because
there is no model to predict its performance. EGT −
PC performance can be characterized in terms of the
maximum number of rules that match a projection of the
original rule set onto the source and destination fields.

• Scaling: EGT − PC appears to scale well to large
databases.

• Patent issues: EGT − PC is not subject to patent

restriction unlike HiCuts which is patented. While this
is not a fundamental issue, it does provide an important
reason for looking for alternatives to HiCuts in practice.

While RFC is very fast, its large amount of memory makes
it hard to implement using limited SRAM. Thus for existing
ISP databases none of the existing algorithms including HiCuts
scale as well in both memory and time. Further, the EGT-PC
scheme can easily be implemented using a small amount of
SRAM.

More importantly, when we attempted to scale the database
sizes to 100,000 while preserving their structure, EGT-PC
took only slightly more memory accesses (at most 118)
while preserving low storage4. Thus EGT-PC should scale
well assuming that larger databases keep the same source-
destination prefix characteristics of the Tier 1 ISP databases
we studied.

Assuming a chip capable of around 32 memory accesses per
minimum size packet (using say a 32 way pipeline), EGT-PC
should allow the handling of large classifiers in 2-3 minimum
size packet times in the worst-case. While this is not quite
wire speed forwarding, such performance for large classifiers
in some pathological cases seems adequate since most core
routers today can also fall below wire speed forwarding for
large classifiers.

A. Models and Metrics

Readers familiar with classification should skip the next
section to get to the new material presented in the paper. In
general, the job of a packet classifier is to categorize packets
based on a set of rules. Rules are also sometimes called filters.

The information relevant for classifying a packet is con-
tained in K distinct header fields in the packet. These header
fields are denoted H[1],H[2], ...,H[K].

For example, the fields typically used to classify IPv4
packets are the destination IP address, source IP address,
protocol field, destination port number, source port number,
and protocol flags. The number of protocol flags is limited, so
we can combine them into the protocol field itself.

Using these fields, a rule F=(128.252.*, *, TCP, 23, *), for
example, matches all traffic addressed to subnet 128.252 using
TCP destination port 23, which is used for incoming Telnet;
using a rule like this, a firewall may disallow Telnet into its
network.

A classifier (also known as rule database or filter database)
consists of N rules F1, F2, ..., FN . Each rule Fj is an array
of K values, where Fj [i] is a specification on the i-th header
field. The i-th header field is sometimes referred to as the i-th
dimension. The value Fj [i] specifies what the i-th header field
of a packet must contain in order for the packet to match rule j.
These specifications often have (but need not be restricted to)
the following forms: exact match, for example “source address
must equal 128.252.169.16”; prefix match, like “destination
address must match prefix 128.252.*”; or range match, e.g.
“destination port must be in the range 0 to 1023.”

4However, a linear increase in the memory space that it is used may be
obtained if the number of distinct prefixes in the database scale as well with
the the number of rules in the database.
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Each rule Fj has an associated directive dispi, which
specifies the action to perform for a packet that matches
this rule. This directive may indicate whether to block the
packet, send it out a particular interface, or perform some
other action. A packet P is said to match a rule F if each field
of P matches the corresponding field of F . For instance, let
F = (128.252.∗, ∗, TCP, 23, ∗) be a rule with disp = block.
Then, a packet with header (128.252.169.16, 128.111.41.101,
TCP, 23, 1025) matches F , and is therefore blocked. The
packet (128.252.169.16, 128.111.41.101, TCP, 79, 1025), on
the other hand, doesn’t match F .

Since a packet may match multiple rules in the database, we
associate a cost for each rule to resolve ambiguous matches.
The packet classification problem is to find the lowest cost
rule matching a given packet P .

B. Performance metrics for packet classification

The two main metrics for packet classification are speed in
memory accesses and memory. A secondary metric could be
the number of fields that can be handled; some applications
require more than 5 fields although we will only consider 5
field classifiers in this paper.

Speed: The goal of packet classification is to ideally classify
packets at wire speed, which means that for each packet a
decision is to be made in the time we have for handling a
minimum size packet. At OC-192 rates of 10 Gbps and using
40 byte packets, a decision must be made in 32 nsec.

In practice, this is tricky for several reasons. First, even the
definition of minimum packet size is debatable: there are a few
rare packets that arrive in with sizes of 30 bytes or less; while
most studies use 40 byte minimum size packets (since packets
with TCP, IP, and Data link headers are at least this size) some
vendors aim for a 64 byte packet sizes with a small queue to
handle bursts of smaller sizes. Second, some packet processing
events like handling encapsulated packets or multiple levels of
label stacking may require multiple lookups that cannot strictly
be handled at line speed for a minimum packet size. Thus some
relaxation of strict wire speed processing limits for say packet
processing may be acceptable (especially when using a large
classifier); indeed, this appears to be true for most core routers
today.

Speed is measured in terms of memory accesses. Often
a wider memory access can reduce the number of memory
accesses required. We will assume a 32 bit wide memory.
Many of the algorithms described here (especially the two
leading contenders HiCuts and EGT) can benefit from wider
words, but we normalize our results to 32 bit words.

Memory size: On-chip SRAM for semi-custom ASICS is
at most 32 Mbits today. Since on-chip SRAM provides the
fastest memory (around 1 nsec), one would ideally like the
memory of a classification algorithm to scale with the size of
an on-chip SRAM. For example, the RFC sizes of 24 Mbits
for a 2800 size table (see results later) tend to rule out RFC
for high speed implementations.

Update complexity is generally not an issue for core routers
as rules are rarely changed. On the other hand, edge routers
that do stateful filtering or intrusion detection systems that

dynamically identify certain flows to be tracked may indeed
require faster updates. We do not consider update complexity
in this paper.

IV. BRIEF REVIEW OF RFC AND HICUTS

In this section we briefly describe two of the previous
algorithms that we compare against our new EGT scheme.
We describe HiCuts in some detail as it is the strongest
contender for the core router databases we examined. We
describe our new algorithm in the next Section. In order to
provide examples, let’s consider the small firewall database in
the Figure 1. The example contains twelve rules on five fields.

A. Recursive Flow Classification(RFC)

The first algorithm we consider is RFC [4]. Gupta and
McKeown [4] have invented a scheme called Recursive Flow
Classification (RFC). RFC is really an improved form of cross-
producting that significantly compresses the cross-product
table at a slight extra expense in search time. The scheme
works by building larger cross-products from smaller cross-
products; the main idea is to place the smaller cross-products
into equivalence classes before combining them to form larger
cross-products. This equivalencing of partial cross-products
considerably reduces memory requirements, because several
original cross-product terms map into the same equivalence
class.

In Figure 2 we apply the equivalence cross-producting to
the first two columns in the example in Figure 1. A two
dimensional table is built based on the unique prefixes in each
of the first two fields. In this case the result is 7 distinct values
which is close to the number of unique prefixes in the second
field.

Prefix matching on a large field can be performed by
splitting it up and treating it as several smaller fields. This
is useful for fields exceeding 16 bits in length, since a field
W bits in size requires a table of size 2W to map values to
equivalence classes. We use the field value of 16 bits suggested
in the RFC paper.

B. Hierarchical Intelligent Cuts (HiCuts)

HiCuts was introduced by Gupta and McKeown in [3]. The
scheme is based on a precomputed decision tree which is
traversed for each packet that need to be classified in order to
identify the matching rule which is always located in a leaf
node. Each leaf node stores a small number of rules which are
linearly searched in the last step. It is a remarkably effective
algorithm and so is worth describing in more detail.

In HiCuts each node can be regarded as a k−dimensional
region cut up into a set of nc smaller regions using heuristics
which try to take into account the structure of the classifiers.
The size of a region is given by the range covered by the
region. For example the root node for a 5−tuple (IP Source
and Destination, Port Source and Destination, Protocol) may
be seen as the region [0, 232 − 1]X[0, 232 − 1]X[0, 216 −
1]X[0, 216 − 1]X[0, 28 − 1]. The set of rules which intersect
with the range of the region are associated with it.
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Rule F ield1 Field2 Field3 Field4 Field5 ACTION
F0 000∗ 111∗ 10 ∗ UDP act0
F1 000∗ 111∗ 01 10 UDP act0
F2 000∗ 10∗ ∗ 10 TCP act1
F3 000∗ 10∗ ∗ 01 TCP act2
F4 000∗ 10∗ 10 11 TCP act1
F5 0∗ 111∗ 10 01 UDP act0
F6 0∗ 111∗ 10 10 UDP act0
F7 0∗ 1∗ ∗ ∗ TCP act2
F8 ∗ 01∗ ∗ ∗ TCP act2
F9 ∗ 0∗ ∗ 01 UDP act0
F10 ∗ ∗ ∗ ∗ UDP act3
F11 ∗ ∗ ∗ ∗ TCP act4

Fig. 1. A simple example with 12 rules on five fields.

Field1/F ield2 000∗ 0∗ ∗
111∗ 110001110011 = C0 000001110011 = C1 000000000011 = C2

10∗ 001110010011 = C3 000000010011 = C4 C2

1∗ C4 C4 C2

01∗ 000000001111 = C5 C5 C5

0∗ 000000000111 = C6 C6 C6

∗ C2 C2 C2

Fig. 2. Forming the partial cross-products of the first two fields in Figure 1 and assigning them into the same equivalence class if they have the
same set of matching rules.

A similar ideea with bit tests replacing range tests, was
described by T. Woo in [10]. Much more [10] introduces
one more degree of freedom in building the decision tree: it
allows to arbitrarily interleave the bit tests from all fields. Thus
the root of the trie could test for (say) Bit 10 of the source
field; if the bit is 0, this could lead to a node that tests for say
Bit 22 of the port number field. The schemes in [10] and [3]
build the final decision tree using local optimization decisions
at each node to choose the next bit to test.

In what follows, we describe HiCuts in more detail using
an example.

Picking the number of regions nc a node is split into may be
done based on several heuristics which try to make a tradeoff
between the depth of the decision tree and implicitly the
search time versus the memory space occupied by the decision
structure. The dimension on which a cut may be executed
may be chosen either to:(1) minimize the maximum number
of rules into any partition, or (2) maximize the different
number of specifications in one dimension, etc. Picking the
right number of partitions (nc) to be made affects the overall
memory space. The algorithm tunes nc as a function of a space
measure. In order to do this it uses to parameters: (1) binth
and (2) spfac.

Figure 3 shows a decision tree for the Example in
Figure 1. Let’s assume that a packet with the header
(0010, 1101, 00, 01, TCP ) needs to be classified. The path
followed by this packet is shown in red in Figure 3. In the first
node, marked A, based on the value in its first field, the packet
is directed to the node marked B. Node B uses information
in the second field to direct to a leaf node containing a small

list of rules which may be a possible match. In this case F7
is the lowest cost rule matching the packet.

F9
F10
F11

F8
F9
F10

F7
F10
F11

F7
F10
F11

F7
F10
F11

(0010, 1101, 00, 01, TCP)
A

B

Field 2, 4

F11

Field 4, 4 Field 3, 4

Field5, 2F3
F7
F10
F11

F2
F7
F10
F11

F4
F7
F10
F11

F1
F7
F10
F11

F7
F11

F0
F5
F6
F10

Fig. 3. A decision tree is built for the database of Figure 1. The
dimension on which a cut is made is associated with the field which
has the largest number of unique values. For example the first node is
cut along the first field.

V. CHARACTERISTICS OF REAL LIFE CLASSIFIERS

Each designer of packet classification heuristics faces the
same problem; he or she must know the characteristics of
large rule databases. In this section we analyze 4 real life
classifiers which are used by several large Tier 1 ISPs. While
real databases were also used in [5] and [3], [4], the databases
in [5] are small and only reflect firewall applications which are
not a good characterization of core router databases. Similarly,
it is unclear whether the databases in [3], [4] were mostly from
edge routers.

The number of rules in the classifiers varies from 85 to 2800
as is shown in Figure 9. All the classifiers are five dimensional
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with the IP source and destination field represented as prefixes
while the port fields are represented as ranges. The prefix
length distribution for both IP source and destination fields
is given in Figures 4 and 5.

With the exception of one database which appears to have
rules connecting subnetworks (prefix lengths with values of
16 − 24) all the other databases have the similar maximums
at length of 0, 16, 24 and 32. The distribution is very
different from the prefix distribution in publicly available
routing tables( [18]) which is described in [5].

The performance of many classifier algorithms are strictly
dependent on the largest number of valid prefixes that may
be seen on a path from the root to a leaf in a trie that is
generated using all the prefixes. The values for this number
are between 3 and 7 for source and destination address tries.
However if we consider the source tries associated with any
particular destination trie, then the number is even smaller:
between 2 and 4.

The number of rules matching all five fields is somewhere
between 3 and 5. This result is consistent with the result given
by Gupta and McKeown in [4], [3]. A value of 3 is easily
achieved by a classifier which contains a default rule to be
executed on all packets, a second rule to be executed on all
the packets carrying a TCP message, and a third rule to be
executed on all packets for an established TCP connection.

Analyzing the number of IP source and destination pairs
only in the rule set we notice that the most common ones in
order of their occurrence are:

• i. 32−bit IP source to 32−bit IP destination. This form of
rule appears to be protecting particular ISP servers/routers
from particular hosts. Of course, these rules are qualified
by port fields that specify the traffic type.

• ii.Anything (wildcarded) to 32−bit IP destination. This
form of rule appears to be protecting servers from being
reached from the external world.

• iii.16 or 24 bit network source address to 32−bit IP
destination. This form of rule is similar to the first type
of pattern except generalized to protecting servers from
particular subnets.

• iv. 24−bit network source address to anything. This form
of rule simply forbids certain subnetworks for certain
specified traffic types.

To test scaling later, we use a much simpler synthetic
database generation algorithm than [5]. Since each database
we studied is quite different in patterns and distribution of
length tuples, we used each database as a model to synthesize
larger databases by simply replacing each IP address or prefix
in a rule by other addresses while keeping other fields the
same. This seems to be a reasonable model of an ISP growing
in servers to be protected and subnetworks to be protected
against.

A. IP Source-Destination matching characteristic

The key observation that forms the basis of our new
algorithm is as follows.

Source-Destination Matching: For all our databases, we
computed the BV bitmap on all possible source and destination
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Source Prefix Length Distribution
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Fig. 4. Prefix Distribution in the IP source field.Prefix length is repre-
sented on the horizontal axis while the percentage of entries with a given
prefix length is given on the vertical axis. The graphs have a maximum
on the lengths of 0, 16, 24 and 32.
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Fig. 5. Prefix Distribution in the IP destination field.Prefix length is
represented on the horizontal axis while the percentage of entries with
a given prefix length is given on the vertical axis. The graphs have a
maximum on the lengths of 0, 16, 24 and 32

prefix values. Then for each possible source-destination prefix
pair (crossproduct) we computed the intersection of these
bitmaps and counted the number of rules that matched a given
packet when considering only the first two fields. We found
that for 99.9% of the source-destination crossproducts, the
number of matching rules was 5 or less. Even in a worst case
sense, no crossproduct (and hence packet) for any database
matches more than 20 rules when considering only source
destination field matches.

Notice that this observation implies that the number of
distinct source-destination prefix pairs matching a packet is
even less than 20 because there can be several rules that share
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the same source-destination prefix pair. This observation is true
for the smallest to the largest database of around 2800 rules.
We expect it to remain approximately true even as databases
scale because the number of overlapping prefixes (e.g., of
lengths 0, 24, 32) are so limited in each of the source and
destination fields.

Note that the small number of matches is not true when one
considers only the source or destination fields because of the
large numbers of wildcards in each field.

VI. EXTENDING 2D SCHEMES

A number of algorithms simply use linear search to search
through all possible rules. This scales well in storage but
poorly in time. The source-destination matching observation
leads to a very simple idea shown in Figure 6 to use source-
destination address matching to reduce the linear searching to
all rules corresponding to source-destination prefix pairs in the
database that match the given packet header. Since mostly 5
and at most 20 rules will match any packet when considering
only the source and destination fields, this will reduce the
number of rules to be searched to be between 5 and 20. Thus
we have linear searching among a pruned space of around 20
rules compared to linear searching the entire database (e.g.,
2800 rules in our large databases).
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Any 2D
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for finding all 
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Fig. 6. Extending two dimensional schemes

The main idea is depicted in Figure 6. The idea is to use
any efficient two dimensional matching scheme to find all the
distinct source-destination prefix pairs (S1,D1) . . . (St,Dt)
that match a header. For each distinct pair (Si,Di) there is a
linear array or list with all rules that contain (Si,Di) in the
source and destination fields. Thus in the figure, we have to
traverse the list at (S1,D1) searching through all the rules (in
reality only the other fields such as port numbers) for R5, R6,
R2 and R4. Then we move on consider the lists at (S2,D2),
etc.

Notice that this structure has two important advantages:

• Each rule is only represented once without replica-
tion.However, one may wish to replicate rules to reduce
the number of source-destination pairs considered to
reduce search times.

• The port range specifications stay as ranges in the in-
dividual lists without the blowup associated with range
translation in say CAMs, BV, and ABV.

Since the Grid-of-Tries implementation by Srinivasan et
al [7] is one of the most efficient two dimensional schemes
described, we now instantiate this general schema by using
grid-of-tries as the 2D algorithm in Figure 6

A. Extended Grid-of-Tries(EGT)

In a naive generalization of a k-dimensional trie we either
pay a large price in memory or we may be forced to do
backtracking and we pay a large price in time [17]. However,
we may eliminate part of the waste of backtracking by using
precomputation. This basic technique was introduced in the
two dimensional trie implementation using grid of tries [7].

However one can immediately see that the approach in grid
of tries cannot be generalized in k, k > 2 dimensions. This is
because the grid of tries algorithm assumes that a rule may
have at most two fields. If two rules are a match for a packet,
then the most specific rule is picked. This observation allows
the replacement of the backtracking mechanism with switch
pointers. By using a switch pointer in any failure point in the
source trie, it allows the search to jump to the next possible
second dimension trie which may contain a matching rule.

Our goal is that for each packet header H = (H1,H2, . . .)
to be able to identify the set of rules F such that F =
{F [i]|F1[i] ≤ H1 ∩ F2[i] ≤ H2}.

In our extended grid of trie structure, a first trie is associated
with the first dimension in the rule database. For every valid
prefix node in this trie a special node is created. Each of
these nodes contains a link to a trie which contains values
from the second dimension field. For example, if the node
in the first dimension trie is associated with a prefix P1 then
the second dimension trie nodes is generated using all the
second dimension field prefixes P2[i] from the rules Fi =
(P1[i], P2[i], . . .), i = 1 . . . N in the database.

A node X in the second dimension trie which is associated
with a valid prefix P2 is appended with a list of rules which
correspond to rules that match P1 and P2 in the first two
dimensions. A node also contains a list of pointers to all the
valid prefixes nodes which are a prefix of P2. Thus node X
knows the list of all the rules F [i] = (P1[i], P2[i], . . .) for
which P1[i] = P1 and P2[i] � P2

5. However, a rule occurs
in exactly one position.

A different approach is to keep in each node associated with
a valid prefix P2 the list of rules F [i]which have P1 in the first
field and in the second field a prefix P2[i] which is either an
exact match or a prefix of P2. We discuss these two approaches
when we analyze the scheme behavior on real classifiers.

At this point, for each packet with a header H =
(H1,H2, . . .) we can identify the set of rules F =
{F [i]|F [i] =(P1, P2[i], . . .)} where P1 is the longest matching
prefix of H1 for which at least a rule Fi = (P1, . . .) exists and
P2[i] if exists is P2[i] � H2. In order to get all the rules F
such that F = {F [i]|F1[i]� H1 ∩F2[i] � H2} is necessary to

5P � R means that P is either an exact match or a prefix of R.
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traverse all the tries associated with prefixes in the first field
that are prefixes of the field H1 of the packet header. However
this requires backtracking in which case we pay a large price
in time.

In order to avoid the backtracking we follow an approach
inspired by but different from [7]: we introduce at each failure
point in the second dimension trie a jump pointer to directly
allow the search to jump to the next possible second dimension
trie that may contain a matching rule. If the node in which we
inserted a jump pointer is associated with a prefix P2 in the
second dimension trie, the jump is either to a node associated
with a valid prefix P that is either shorter or equal with P , if
such a node exist, or to a regular node which is the longest
matching prefix of P2, otherwise.

Figure 7 shows the extended grid of tries for the database in
Figure 1. Let’s consider the search for rules that match a packet
header (0000, 1100, . . .). The search in the first dimension trie
gives P1 = 000 as the best match. So we start the search for
finding the matching prefix associated with the second value
in the header 1111. We do not find a match in this trie. The
search fails in the node 11. However a jump pointer allows
the search to continue further into the trie associated with the
prefix 0∗ in the first dimension. The search in this trie provides
1∗ as the longest matching prefix and one rule F7 as being a
matching rule. Once the search fails again in this dimension a
jump pointer brings us to the last node corresponding to ∗, ∗.
This last node adds two more rules to the list making the final
matching list to be: F7, F10, F11.

The worst search time for the scheme can be proved to be:
W + (H + 1) ∗ W = (H + 2) ∗ W where W is the time to
find the best prefix in a trie and H is the maximum length of
the trie, H = 32 for IP addresses. However, we expect that
the worst case scenario does not occur in practice. Instead we
expect the worst case search time to be on the order L ∗ W
with L being a small value.

We can also reduce W by using compressed multibit
tries [19] instead of using 1-bit tries. If we use k−bit expan-
sion, the depth of the trie reduces to W/k and so the lookup
time goes down correspondingly without a corresponding 2k

increase in storage that would be incurred by uncompressed
tries.

The bottom line is that using multibit tries, the time to
search for the best matching rule in an arbitrarily large
multidimensional database could effectively reduce to k times
the time to do IP lookups using multibit tries, with k assumed
to be a small constant, plus the time to search through a small
list of rules.

B. Extended Grid of Trie with Path Compression

We further improve the Extended Grid of Trie algorithm by
using Path Compression [20]. This is a standard compression
scheme for tries in which single branching paths are removed.
Figure 8 shows how the path compression is applied to the
tries in the Figure 7.By doing so a trie with N leaf nodes
can be compressed into a trie with at most 2N − 1 nodes.
Further improvement may be gained by applying both path
compression as well as the compression techniques introduced
in [19].
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Fig. 7. Improving the search cost with the use of jump pointers in the
extended grid of tries. The tries are generated using the database in
Figure 1.
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Fig. 8. Reducing the time of the trie traversal by applying path
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VII. METHODOLOGY

In this section we describe how the EGT algorithm can be
implemented, and how it performs on both real life databases
and synthetically created databases. Note that we need synthet-
ically created databases to test the scalability of our scheme.

First, we consider the complexity of the preprocessing stage
and the storage requirements of the algorithm. Then, we
consider search performance and we relate it to the perfor-
mance of other algorithms: RFC, HiCuts, BV and ABV. The
speed measure we use is the worst case number of memory
accesses to be executed across all possible packet headers.
Fortunately, computing this number does not entail generating
all possible packet headers. This is because packet headers fall
into equivalence classes based on distinct cross-products [7];
a distinct cross-product is a unique combination of distinct
prefix values for each header field.

Since each packet that has the same cross-product is
matched to the same node Ni (in trie Ti) for each field i, each
packet that has the same cross-product will behave identically.
Thus it suffices to compute worst case search times for all
possible cross-products.

One can easily see that our algorithm has a worst case
behavior when it may need to traverse a very large number
of tries that are associated with the second dimension field.
However pathological cases for which the heuristics experi-
ence the worst behavior may be found for all the algorithms
we presented. Therefore in this paper we focus on the worst
case search time for a series of realistic test databases.
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A. Experimental Platform

We used two different types of databases. First we used
a set of four core router databases that we obtained from
several large Tier 1 ISPs. For privacy reasons we are not
allowed to disclose the name of the ISP or the actual databases.
Each entry in the database contains a 6 − tuple (source
IP prefix, destination IP prefix, source port number(range),
destination port number(range), protocol and action). We call
these databases DB1 . . . DB4. The database characteristics are
discussed in Section V.

The second type of databases is generated using the real life
databases as a starting point. We extend each of the original
databases by randomly generating prefixes for the first two
fields with the same length distribution as in the original one.
We also maintain the distribution for the last three fields.

B. Performance Evaluation on Real Life Core Router
Databases

We experimentally evaluate all the algorithms on a number
of four real life core router databases DB1, . . . , DB4. The
rules in the databases are converted into prefix format using
the technique described in [7] for the evaluation of the BV
and ABV algorithms. The memory space that is used by each
of them can be estimated based on the number of nodes in the
tries, and the number of nodes associated with valid prefixes
in the case of BV and ABV.

In the case of EGT we also need to take into account the
sizes for the list as well as the jump pointers. We use words of
size 32 bits and aggregate size of 32 for ABV . In the case of
RFC at each level if the number of unique elements is N we
use log2Nbits for an index into that level. Therefore for each
table X ∗ Y the total memory size in bits is X ∗ Y ∗ log2N .
Our results are summarized in Figure 9.

Both the search time and memory space in HiCuts [3] are
dependent on two parameters which may be tuned: (1)space
factor (spfac)- which determines the amount of total memory
space that will be allocated on the decision tree and a (2)
threshold(binth)(a node with fewer than binth rules is not
partitioned further). [3] makes the observation that the tree
depth is inversely proportional to binth and spfac while the
total memory space is proportional with spfac and inverse
proportional to binth. The results in Figure 11 and Figure 9
are for HiCuts − 4:(binth = 10, spfac = 4) and HiCuts −
1:(binth = 10, spfac = 1).

In the case of three databases the memory space occupied
by HiCuts−4 (the value used in the original HiCuts paper) is
an order of magnitude larger than the memory space occupied
by the EGT − PC. However, by tuning the space factor
parameter(spfac) to a value of 1 corresponding to optimizing
HiCuts for memory space, the overall space occupied by
HiCuts is comparable in size with EGT for three databases
while in the case of DB3 it is still about 7 times higher than
EGT −PC. DB3 shows a database type which may hurt the
performance of the HiCuts heuristics. In this case the height
of the decision tree that is generated by HiCuts stays the
same when spfac is changed from 1 to 4. This is because of

a set of rules which gets replicated in a majority of the leaf
nodes.

In the case of both BV and ABV notice the increase in
the (aggregated) bit vector size with the number of rules in
the database contributes to a higher increase in the overall
memory size, being multiplied with the total number of valid
prefix nodes in all the tries. However, not keeping the bits in
the original bit vector which are associated with an aggregate
bit with the value 0 may reduce the memory usage of ABV .
While this optimization can reduce the memory size of ABV ,
we have not shown its effect here. The results for RFC
confirm the assumption in [4] that despite of a worst case
scenario in which an implementation may take O(Nk−1)
memory space, in reality the memory space occupied by the
algorithm’s search structure is smaller.

Overall, as expected, RFC occupies by far the largest
memory space. On the other side in terms of lowest memory
space EGT − PC and HiCuts are the main competitors.
EGT − PC in general is the one with the best use of space.
However, when HiCuts is optimized for memory space it
comes close to EGT − PC but is slower with an worst case
search time that is 2 − 3 times slower than EGT − PC.

We also evaluate the performance of the five algorithms in
terms of worst case lookup time on the core router databases.
The results are shown in Figure 11.

As anticipated RFC has the best search time with a number
of 12 memory accesses. The results in Figure 11 shows that
classifying packets with ABV has benefits when the number
of memory entries in the database is large. In this case the
search time for ABV is more than four times faster than in
BV even without rule rearrangement. However, if the number
of rules is small, on the order of hundreds, the phenomenon
of false matching described in [5] may limit the performance
of ABV .

The search time in EGT − PC is mostly due to the
several traversals of the tries. The worst case search time using
EGT − PC is on the same order of magnitude as HiCuts
when HiCuts is optimized for speed. However the memory
space occupied by EGT − PC is on an order of magnitude
smaller than any other analyzed heuristic with the exception of
HiCuts optimized for a space factor of 1. In this case HiCuts
and EGT − PC occupy similar memory space sizes.

C. Performance evaluation on synthetic generated databases

In this section we want to investigate the scalability of
EGT − PC. In order to do so we generated databases with a
large number of rules between 5, 000 and 100, 000. The first
two types of databases, SDB1 and SDB2 are generated using
as a generator the two longest real core router databases. The
last type of database,SDB3 are generated using a combination
of all four real core router databases as a generator. Figure 13
shows the size of the memory occupied by EGT −PC while
the number of rules in the classifier increases from 5, 000 to
100, 000.

The results prove that the memory space occupied by
EGT − PC scales linearly in number of rules. Of
course, this should be taken with a grain of salt because the
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Database No. of Rules RFC HiCuts − 4 HiCuts − 1 BV ABV EGT EGT − PC
DB1 85 55, 202 11, 608 1, 346 1, 496 1, 572 3, 174 1, 168
DB2 125 114, 080 10, 704 1, 986 1, 530 1, 606 3.935 1, 472
DB3 351 100, 991 64, 541 19, 001 4, 452 4, 651 3, 845 2, 261
DB4 2799 747, 271 117, 801 25, 543 276, 604 285, 099 75, 376 30, 753

Fig. 9. The total memory space occupied by the search structure in all 6 heuristics RFC, HiCuts(spfac = 1, 4), BV, ABV, EGT and EGT-PC for the
four core router databases. The size is in memory words, one memory word is 32 bits.

Database EGT EGT − PC
Trie List Total Mem. Trie List Total Mem.

DB1 3, 019 155 3, 174 1, 013 155 1, 168
DB2 3, 713 222 3, 935 1, 250 222 1, 472
DB3 3, 339 506 3, 845 1, 755 506 2, 261
DB4 70, 710 4, 666 75, 376 26, 087 4, 666 30, 753

Fig. 10. The total memory occupied by both EGT and EGT-PC used with real life databases. The size is in memory words. One memory word is
32 bits.

Database No. of Rules RFC HiCuts − 4 HiCuts − 1 BV ABV EGT EGT − PC
DB1 85 12 82 64 106 111 107 32
DB2 125 12 46 106 101 106 110 54
DB3 351 12 118 172 136 126 114 47
DB4 2, 799 12 82 172 846 196 154 87

Fig. 11. The total number of memory accesses for a worst case search in all 5 heuristics RFC, HiCuts(spfac = 1, 4), BV, ABV, EGT and EGT-PC
for the four core router databases. One memory access is one word. One word is 32 bits.

large database generation methodology preserves the source-
destination structure of the original databases. If this assump-
tion does not hold as databases scale up, EGT −PC will not
scale. However, we have not seen any experimental evidence
that this is not the case.

The worst case scenario for a search using EGT − PC is
shown in Figure 12. In the case of SDB3 with 100, 000 rules
it takes about 118 memory accesses. This corresponds to about
5 trie traversals plus the selection of roughly 30 rules that are
a match. In the case of SDB2 with 100, 000 in the worst
case it takes 98 memory accesses due to four one dimensional
lookups and the selection of about 17 rules.

VIII. CONCLUSION

Packet filter classification has received tremendous atten-
tion( [8], [5], [7], [4], [3], [17], [15], [16], [10]). Unfortunately,
despite the vast amount of previous work, there does not
appear to be a good algorithmic solution when rules contain
more than 2 fields. At the same time, classification is an
extremely important problem with several vendors, including
Juniper, allowing the use of filter-based actions for purposes
such as accounting and security. While Ternary CAMs [11]
offer a good solution in hardware for small classifiers, they
may use too much power and board area for large classifiers.
Thus it is worth looking for alternatives [2] to CAMs.

Because real-life classifiers have considerable structure,
[4] observed that such structure could be exploited to yield
heuristics that beat the worst-case bounds on real databases.
The primary observation till this paper was [4] that each
packet only matches a few rules. Our paper starts with a fresh

observation driven by data we observed: each packet does
indeed match only a few rules, but it also matches only a
few rules when the rules are projected to only the source and
destination fields. Thus even for large classifiers, if one can
find all the source-destination prefix pairs that match a packet,
one need only linearly search through a set of 20 possible
rules.

This suggests that any efficient two-field classification
scheme can be extended with a small amount of linear search
to general classifiers. The only catch is that the two-field
scheme has to find matches, and not eliminate less specific
matches. Thus, while this suggested starting with the grid-of-
tries, we had to modify it using jump pointers to compute all
matches, losing worst case guarantees on even the search time
for 2-field search.

Despite this, EGT − PC works very well compared to all
other algorithms. Its worst case search times are on the same
order as for the HiCuts optimized for speed while its memory
storage requirements are on the same order as for HiCuts
optimized for space. Therefore we consider that EGT − PC
provides a reasonably fast algorithm with minimal storage
requirements that can fit into on-chip SRAM. Much more,
EGT − PC has the advantage of being more predictable, of
not having any patent restrictions, and potentially allowing
simple further improvements using compressed multibit tries
as in [19]. We are working on the use of multibit tries,
compressed versions of the lists, and the use of wide words to
further reduce the space and time of EGT-PC. Our paper leaves
open the issue of modifying other 2 field algorithms such as
[16], [15], [8], [5] to achieve better performance. The lack of
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Database Type/No. of rules 5, 000 10, 000 15, 000 20, 000 100, 000
SDB1 62 96 114 155 N/A
SDB2 87 92 93 93 98
SDB3 106 101 100 109 118

Fig. 12. The total number of memory accesses for a worst case search for EGT-PC for synthetic databases. The number of entries is changed
between 5000 and 100, 000. One memory access is one word and one word is 32 bits.

Database Type/No.of rules 5, 000 10, 000 15, 000 20, 000 100, 000
SDB1 65, 695 114, 644 158, 191 191, 694 N/A
SDB2 55, 320 109, 771 166, 657 220, 042 1, 097, 848
SDB3 71, 254 106, 812 178, 035 249, 261 1, 102, 091

Fig. 13. The total memory occupied by EGT-PC used with synthetic databases. The number of entries is changed between 5000 and 100, 000.
One memory word is 32 bits.

standardized comparisons has led us to place all the code we
implemented on a public repository [1]. As others tinker with
these algorithms, we believe that even better algorithms will
be found and the state of the art will improve further. The
use of packet classification is not confined to routers: from
personal firewalls to web load balancing using URLs, better
and open source code for classification can help improve a
number of applications in software and hardware.
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