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Abstract— The problem of efficient data structures for IP
lookups has been well studied in literature. Techniques such as
LC tries and Extensible Hashing are commonly used. In this
paper, we address the problem of generalizing LC tries and
Extensible Hashing, based on traces of past lookups, to provide
performance guarantees for memory sub-optimal structures. As
a specific example, if a memory-optimal (LC) trie takes 6MB and
the total memory at the router is 8MB, how should the trie be
modified to make best use of the 2 MB of excess memory? We
present a greedy algorithm for this problem and prove that, if
for the optimal data structure there are b fewer memory accesses
on average for each lookup compared with the original trie, the
solution produced by the greedy algorithm will have 9×b

22 fewer
memory accesses on average (compared to the original trie). An
efficient implementation of this algorithm presents significant
additional challenges. We describe an implementation with a time
complexity of O(ξ(d)n× log n) and a space complexity of O(n),
where n is the number of nodes of the trie and d its depth.
The depth of a trie is fixed for a given version of the Internet
protocol and is typically O(log n). In this case, ξ(d) = O(log2 n).
We demonstrate experimentally the performance and scalability
of the algorithm on actual routing data. We also show that our
algorithm significantly outperforms Extensible Hashing for the
same amount of memory.

I. INTRODUCTION AND MOTIVATION

The problem of developing efficient data structures for
IP lookups is an important and well studied one. Given
an address, the lookup table returns a unique output port
corresponding to the longest matching prefix of the address.
Specifically, given a string s and a set of prefixes S, find the
longest prefix s′ in S that is also a prefix of s. The most
frequently used data structure to represent a prefix set is a trie
because of its simplicity and dynamic nature. A variation that
has, in recent years gained in popularity is the combination
of tries with hash tables. The objective of these techniques
is to create local hash tables for the parts of the trie that
are most frequently accessed. The obvious obstacle to turning
the entire trie into a hash table is that such a table would
not fit into the router’s memory. The challenge is to identify
parts of the trie that can be expanded into hash tables without
exceeding available memory while yielding most benefit in
terms of memory accesses.

A scheme combining the benefits of hashing without
increasing associated memory requirement, called level-
compression, is described in [14]. This scheme is based on
the observation that parts of the trie that are full subtries
can be replaced by a hash table of the leaves of the subtrie
without increasing the memory needed to represent the trie

and without losing any of the information stored in it. This
simple, yet powerful idea reduces the expected number of
memory accesses for a lookup to log∗ n, where n is the
size of the original trie, under reasonable assumptions for the
probability distribution of the input. In [12], a generalization
of level-compression, usually referred as extensible hashing,
was presented. In extensible hashing, certain levels of the trie
are filled and subsequently level-compressed. These levels are
selected to be frequent prefix lengths with the expectation that
the trade-off between extra storage space and performance is
favorable. A natural extension of the scheme would be to turn
into hash tables those parts of a trie that are close to being
full and frequently accessed in a systematic fashion. We would
like this notion of “close” to vary with the trie, the access
characteristics, and the memory constraints.

As a specific example, we are given a set of prefixes with
their respective frequencies of access. We are also given a
constraint on the total router memory, say, 8MB. If the trie
for the prefixes requires only 6MB of memory, we would
like to build hash tables in the trie to best utilize the 2MB
of excess memory on the router. In general, the problem
of building the optimal data structure for a set of prefixes
has two parameters. The first is the access statistics of the
prefixes, which determines average case lookup time. The
second parameter is the memory restriction. Building hash
tables in a trie reduces the average lookup lookup time but
requires extra memory. The decision to build a hash table for
a certain subtrie should depend on the fraction of accesses
going through this subtrie and the memory requirement of this
modification.

We can formulate a generalization of the level-compression
and extensible hashing schemes as a variation of the knapsack
problem. The items to be included in the knapsack are subtries.
The gain of an item is the reduction in average lookup time
that results from level-compressing this subtrie and its cost is
a function of the number of missing leaves in the subtrie (i.e.,
the memory overhead of compressing the subtrie). The key
difference between this variation and a traditional knapsack is
that items are not static, rather, their attributes vary during the
process of filling the knapsack. The correspondence between
the parameters of this formulation and the parameters of the
table lookup problem is very natural and can be precisely
defined in a straightforward manner. An advantage of this for-
mulation is that there is no shortage of approximation schemes
for knapsack. In fact there is a hierarchy of approximation

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



algorithms, starting with the extremely fast greedy algorithm,
having an approximation ratio of two, to elaborate polynomial
time approximation schemes. For a comprehensive study of the
knapsack problem and its variations see [19].

We would like to note that, even though the motivation for
this work has been IP routing, it has applicability in a variety of
domains such as information retrieval and index structures in
databases, that require longest prefix matching. The proposed
abstraction of the routing table as a trie does not carry any
restrictions specific to the problem.

II. OVERVIEW OF THE ALGORITHM AND RELATED

RESEARCH
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with a capacity of three trie nodes.
(a) The original trie. On the right, the empty knapsack,

(c) The remaining items are too large for the knapsack
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(b) Level−compressing the top two levels
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fills two thirds of the knapsack
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Fig. 1. A simple example of the greedy algorithm

We describe a greedy algorithm for level-compressing dif-
ferent parts of a trie according to their access rates and
storage requirements. The algorithm resembles the known
greedy approximation algorithm for knapsack. A subtrie is
selected on the basis of the ratio between the decrease in the
average lookup time resulting from its level-compression and
the required memory of the corresponding hash table. The
process continues until no other item can be added to the
knapsack (Figure 1). Although greedy algorithms are generally
known for their simplicity, in this case there is a peculiarity:
the attributes of the items are not static but vary over the
execution of the algorithm. Selecting a subtrie for level-
compression has a cascading effect on items on the path to the
root and the leaves. This complicates the algorithm, proof of

bound, and implementation very significantly. We show that
the greedy algorithm can approximate the optimal solution
within a factor of 9

22 . The approximation is with respect to the
original, non-level-compressed trie. In other words, if for the
optimal data structure, there are b fewer memory accesses on
average for each lookup compared with the unprocessed trie,
the solution produced by the greedy algorithm will have 9×b

22
fewer memory accesses on average. We note that the problem
is known to be NP-complete ([18]).

We also describe data structures needed for an efficient
implementation of the algorithm. Since a router needs to
invoke the algorithm often, even a quadratic dependence on the
size of the trie would severely restrict the scheme’s usefulness.
We describe an implementation with a time complexity of
O(ξ(d)n × log n) and a space complexity of O(n), where n
is the number of nodes of the trie and d its depth. The depth
of a trie is fixed for a given version of the Internet protocol
and is typically O(log n). In this case, ξ(d) = O(log2 n).

Finally, we give experimental evidence that the proposed
algorithm consistently yields better data structures (in terms of
average-case lookup cost) than extensible hashing. Evidence
relating to scalability issues are presented as well.

A. Related Research

The literature on efficient implementation of IP routing
is impressively varied. The classical implementation of IP
routing for the BSD kernel is described in [1]. True to the
spirit of UNIX, simplicity is not sacrificed for performance. In
[2], [3], [4], hardware and cache-based solutions are proposed.
Hardware solutions tend to become expensive and outdated,
while cache-based solutions do not avoid the central issue
of prefix matching. A similar argument can be made in the
case of [10], where lookups are accelerated using memory
placement and pipelining. Some protocol-based solutions have
emerged ([5], [6], [4], [7], [8], [9]), but all of these demand
modifications to the current Internet Protocol and raise the
complexity of routing without completely avoiding the prefix
matching problem.

Recent research has focused on algorithmic solutions ([13],
[12], [11], [15], [16]). The advantage of these is their trans-
parency to protocol and to advances in hardware platforms.
In [14], the original level-compression scheme was described.
The only effort we are aware of on formulating a general-
ization of level-compression to include memory constraints
and providing a solution was presented by Cheung and Mc-
Canne [17]. They formalize memory constraints in the form
of an arbitrary memory hierarchy. Cheung et al. [18], also
show that the problem is NP-complete even for one-level
memory and present a simple, dynamic-programming, pseudo-
polynomial time algorithm. An approximation using Lagrange
multipliers is also described, although no constant bound on
the error is derived for this approximation scheme.

III. THE ALGORITHM

We formulate the generalized level-compression problem
as a variation of the knapsack problem. The main difference
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between this formulation and the classical Knapsack problem
is the dynamic nature of the items. In knapsack, selecting an
item does not alter the attributes of the other items. This is
not true in our case because subtries necessarily overlap and
contain each other. Selecting an item, or in other words, level-
compressing a subtrie, will level-compress some other subtries,
making them irrelevant for the rest of the execution, while it
will modify the gain and cost of those items corresponding to
overlapping subtries.

These dependencies are not arbitrary. They follow from
the hierarchical nature of the trie structure. We can use
this property to achieve a constant approximation bound and
reduce the run-time and space complexities. We first formulate
the problem by defining what an item is and how we calculate
its initial attributes. We then describe how selecting an item
affects the attributes of other items. Finally, we describe a
simple greedy algorithm, which works along these lines and
derive an efficient implementation.

In the following we assume that for each leaf of the trie
we have access statistics available to us. This information
corresponds to weights for the different access paths. We also
consider that the root of a trie is at level 0, its children at
level 1 and so on. Finally, the depth of a node k is denoted
by depth(k) and is the length of the path from k to the root
of the trie.

A. Definitions

We want the trie structure to reflect the expected number of
accesses going through a node. We formalize the notion of a
trie with access statistics for the addresses. An internal node
must be accessed at least as many times as its two children
combined.

Definition 3.1: A weighted trie is a pair T,w where T is a
trie and w a function that maps the nodes of T to the set of
positive reals with the property that w(v) = w(v1) + w(v2),
if v has two children v1, v2, and w(v) ≥ w(v1), if v has one
child v1.

Informally, adding an item i to the knapsack corresponds
to a decision to level-compress the subtrie corresponding to i.
We can identify a subtrie by its root and depth.

Definition 3.2: An item is a pair (v, k) where v is a node
of the trie and k a positive integer. We say that k is the depth
of the item and v the root. If i = (v, k), root(i) = v and
depth(i) = k.

Selecting an item (v, k) for level-compression creates a hash
table from the subtrie rooted at v and having depth k. This
requires a certain amount of extra memory, expressed as the
number of trie nodes we need to fill. This quantity is not
fixed but depends on the sequence of items that have been
previously selected. We denote a sequence of j items already
selected for level-compression by pj . We will use the function
capacity(v, k, pj) to denote the reduction in the knapsack
capacity resulting from selecting (v, k) as the (j + 1)-st item
in the sequence pj+1. For simplicity, we use j instead of pj

whenever the sequence is either known or unimportant. We

of (v,3) the same.

(b) Selecting the right subtrie makes the capacity
of (v,3) zero.
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(a) Selecting the left subtree leaves the capacity
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Fig. 2. Item (v, 3) has different capacities in (a) and (b)

show a simple case of the capacity of an item varying due to
different items having been selected before in Figure 2.

We first define capacity(v, k, 0), for the initial items. The
values of capacity when items have been added to the
knapsack are defined implicitly by the update rules.

Definition 3.3: For every i = (v, k), we define
capacity(v, k, 0) as the number of missing nodes from the
level of depth k of the subtrie rooted at v.

We assign to each item i a benefit corresponding to the
reduction in the number of accesses due to level-compressing
the subtrie corresponding to i. Similar to the capacity attribute,
benefit depends on pj . We define the initial capacities first and
the rest of the values through the update rules.

Definition 3.4: For every i = (v, k), we define
benefit(v, k, 0) =

∑k
l=2

∑
u∈C(v,l) w(u), where C(v, l) is

the set of the descendants of v that are at depth (depth(v)+l).
We want to order items in such a way that the next item to

be added to the knapsack is the maximum element according
to this order. Intuitively, density(v, k, i) corresponds to the
ratio of benefit(v, k, i) and capacity(v, k, i). However, in
the initial phase of the algorithm, there will be items for
which capacity is zero. These correspond to full subtries,
which can be level-compressed without reducing the capacity
of the knapsack. In this case, the ratio cannot be defined.
Also, a rule must be provided to resolve the ties of items
with equal densities. For these reasons, we formally define
density as any mapping from the set of items to a set of
cardinality (n × d)2. Here, n is the number of nodes of the
trie and d its depth. The density function must satisfy the
following: density(v1, k1, i1) < density(v2, k2, i2), where
(v1, k1) �= (v2, k2), if and only if one of the following holds:

1) benefit(v1, k1, i1) × capacity(v2, k2, i2) <
benefit(v2, k2, i2) × capacity(v1, k1, i1)

2) benefit(v1, k1, i1) × capacity(v2, k2, i2) =
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benefit(v2, k2, i2) × capacity(v1, k1, i1) and
capacity(v1, k1, i1) > capacity(v2, k2, i2).

3) capacity(v1, k1, i1) = capacity(v2, k2, i2),
benefit(v1, k1, i1) × capacity(v2, k2, i2) =
benefit(v2, k2, i2) × capacity(v1, k1, i1) and
depth(v1) > depth(v2).

4) capacity(v1, k1, i1) = capacity(v2, k2, i2),
benefit(v1, k1, i1) = benefit(v2, k2, i2),
depth(v1) = depth(v2) and v1 < v2.

We assume there is a linear ordering of the nodes (for
example, a depth-first ordering, although any ordering suf-
fices). We note that densities are ordered according to the
ratio whenever possible. If there is a tie, the item with the
lowest capacity takes precedence. If there is still a tie, an
item is arbitrarily selected. Note that we have not provided
an ordering for densities of the same item during different
rounds because such a comparison never takes place.

In the rest of the paper, for the sake of simplicity, we
will denote the attributes of an item i = (v, k) at round j
as benefit(i, j), capacity(i, j) and density(i, j), instead of
using the explicit notation.

B. The Update Rules

We describe the rules by which capacity(v, k, i) and
benefit(v, k, i) are obtained from capacity(v, k, i − 1) and
benefit(v, k, i−1) respectively, for all i > 0. We assume that
the i-th item added to the knapsack is (v′, k′). We first define
formally the situation in which two items affect each other.

Definition 3.5: We say that item (v1, k1) overlaps with item
(v2, k2), if v2 is a descendant of v1 and depth(v1)+k1 −1 ≥
depth(v2) or v1 is a descendant of v2 and depth(v2)+k2−1 ≥
depth(v1). Furthermore, if depth(v1)+ k1 ≥ depth(v2)+ k2,
we say that (v1, k1) contains (v2, k2) and we write (v2, k2) ∈
(v1, k1).

The overlaps relation is symmetric. If two items overlap,
adding one of them to the knapsack alters the attributes of the
other. After adding an item we need to update the benefit and
capacity of all items overlapping with it. For the following
list of update rules, assume that (v, k) overlaps with (v′, k′).
If they do not, benefit(v, k, i) = benefit(v, k, i − 1) and
capacity(v, k, i) = capacity(v, k, i− 1).

v

v’

k’

k

k’

v’

k

v

(a) (b)

Fig. 3. Updating overlaps: (a) Before updating (v, k); (b) After updating.

• depth(v) > depth(v′) (Figure 3)
If (v, k) ∈ (v′, k′), capacity(v, k, i) =
benefit(v, k, i) = 0. This is because level-compressing
a subtrie level-compresses all the subtries included in it.
Otherwise, let l = depth(v′) + k′ − depth(v). We want
(v, k), after selecting (v′, k′), to be the sum of all items
contained in (v, k) and not overlapping with (v′, k′).
Due to the top-down nature of level-compression, this is
exactly the effect (v, k) would have on the solution if
added as the (i+ 1)-st item of the knapsack. Therefore,
benefit(v, k, i) =

∑
u∈C(v,l) benefit(u, k − l, i). We

note that all items whose root is in C(v, l) do not overlap
with (v′, k′) and the sum is well defined. Similarly,
capacity(v, k, i) =

∑
u∈C(v,l) capacity(u, k − l, i).

• depth(v) = depth(v′)
If k < k′, (v, k) ∈ (v′, k′) and capacity(v, k, i) =
benefit(v, k, i) = 0. Otherwise, (v′, k′) ∈ (v, k)
and capacity(v, k, i) = capacity(v, k, i − 1) −
capacity(v′, k′, i − 1) and benefit(v, k, i) =
benefit(v, k, i− 1) − benefit(v′, k′, i− 1).

v

k

k’

(a)

v’

k’

k

v

v’

(b)

Fig. 4. Updating overlaps: (a) Before updating (v, k); (b). After updating.

• depth(v) < depth(v′) (Figure 4)
This case is the dual of the first one. Let l = depth(v)+
k − depth(v′). We have:

benefit(v, k, i) = benefit(v, l, i− 1)+
∑

u∈C(v,l)−{v′}

benefit(u, k − l, i− 1)

and
capacity(v, k, i) =

∑

u∈C(v′,l)−v′

capacity(u, k − l, i).

It appears that the capacity of an item could become
negative in this case. We will see that this is impossible
if we pick items in a greedy fashion.

IV. A GREEDY ALGORITHM

The above rules imply a greedy algorithm, which we will
call A. In each step, the item with the highest density is added
to the knapsack. Other items are updated according to the
update rules. The process continues until the next item to be
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(b)

(a)

Fig. 5. Incorrect view of the item set. In (a), the shaded item is selected. In
(b), once the shaded item at the top is selected, algorithm A cannot see the
bottom left item.

added exceeds the available knapsack capacity. Algorithm A
would produce the optimal solution whenever the knapsack
is filled to capacity, if it were not for a flaw in the way
it reflects the level-compression process. An illustration of
this flaw is given in Figure 5. This problem is a result of
how the selection of an item binds all the contained items to
either expand all together or not expand at all. A subsequent
overlap may allow such items to expand independently but A
has already committed to the mistaken view of the item set.
For the following theorem we will assume that such errors
do not affect the solution produced by A. We formalize this
assumption in the following.

Assumption 1: If item i is selected in round j, there is no
item i1 such that i1 ∈ i and there exists item i2 not overlapping
with i that is not selected in the knapsack when A terminates
after k rounds and such that capacity(i2, k) ≤ capacity(i1, j)
and benefit(i2, k) > benefit(i1, j).

Theorem 1: If algorithm A fills knapsackK to capacity and
Assumption 1 holds, the solution induced is optimal.

Remark: We prove subsequently that if the above as-
sumption does not hold, the solution produced by A has at
worst half the benefit of the optimal one.

Proof: We will prove that during the execution of A,
three properties hold.

1) Let item (v, k) be picked at step i of A. Then, for every
item (v′, k′) which has not been picked yet, we have
density(v, k, i) > density(v′, k′, i+1). In other words,
the densities of the items inserted in the knapsack are
monotonically decreasing.
If (v, k) and (v′, k′) do not overlap, it is obvious that the
property holds. Otherwise, we distinguish the following
cases:

a) depth(v′) > depth(v) and capacity(v′, d, 0) = 0,
where d = k − depth(v′) + depth(v) − 1.
In this case capacity(v′, k′, i) =
capacity(v′, k′, i + 1) and benefit(v′, k′, i) ≥
benefit(v′, k′, i+1). Therefore, density(v′, k′, i+
1) ≤ density(v′, k′, i) < density(v, k, i).

b) depth(v′) > depth(v) and capacity(v′, d, 0) > 0.

In this case, capacity(v′, k′, i+1) can be less than
capacity(v′, k′, i). However, if
density(v′, k′, i+1) > density(v, k, i), there must
exist some (v∗, k∗) ∈ (v′, k′) such that (v∗, k∗)
does not overlap with (v, k) and density(v, k, i) <
density(v′, k′, i + 1) ≤ density(v∗, k∗, i + 1) =
density(v∗, k∗, i) < density(v, k, i), a contradic-
tion.

c) depth(v′) < depth(v) and capacity(v, d, 0) = 0,
where d = k − depth(v) + depth(v′) − 1.
As in the first case, capacity(v′, k′, i + 1) =
capacity(v, k, i), while benefit(v′, k′, i + 1) ≤
benefit(v′, k′, i), therefore, density(v′, k′, i +
1) ≤ density(v′, k′, i) < density(v, k, i).

d) depth(v′) < depth(v) and capacity(v′, d, 0) > 0.

Fig. 6. An item with two breaks. The shaded items are already in the
knapsack and represent level-compressed subtries

We say that item (u, l) has a break at level i,
i ≤ l, if there is a node u1, which has depth
depth(u) + i and u is one of its ancestors and for
which there is no (u2, l

′) already in the knapsack
with depth(u1) > depth(u2) and u2 is an ancestor
of u1 and l′ + depth(u2) > depth(u1). The
importance of a break is that the benefit of an item
is the sum of the benefits of eliminating all of its
breaks when level-compressing. We will prove by
induction that if an item is picked, it has exactly
one break or has a zero capacity. If it has no breaks,
it has no benefit and there is no way it can be
picked if it has a non-zero capacity.
The base case is the first pick. This will always be
an (u, 1) and it has one break. Assume that until
the i-th round only items with at most one break
have been picked. The only way the pick at round
i can lead to a pick that has more than two breaks
in round i+1 is by altering the density of an item
(u, l) with more than one break so that it becomes
more dense than an item (u, l′) with one break.
We observe that the modes of overlapping of the
three previous cases do not create such a situation.
It remains to prove that this mode doesn’t either.
The item picked in the current round is (v, k) and
the item overlapping is (v′, k′). Suppose (v′, k′)
has at least two breaks. Without loss of generality,
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we can consider the last break of any item is at its
last level. It can be the case that an item doesn’t
have a break there. Then, there is a less deep item
with at least the same density and at most the
same capacity, implying its density is larger and
any proof that applies to the latter applies to the
former. Let k∗ = depth(v) − depth(v′). We will
prove that density(v′, k′, i+1) > density(v, k, i)
implies that density(v′, k∗, i) > density(v, k, i),
a contradiction.
Let b1 = benefit(v′, k∗, i) and
b2 = benefit(v, k, i). Since (v, k)
has only one break, b1 ≥ b2. Also,
density(v, k, i) > density(v′, k∗, i), implies
c1 = capacity(v′, k∗, i) > c2 = capacity(v, k, i).
Let h = k′ − k∗. Then, c3 = capacity(v′, k′, i) >
2h × c1, but b3 = benefit(v′, k′, i) ≤
h × b1. Suppose that after picking (v, k),
density(v′, k′, i + 1) > density(v, k, i). Let
c3

′ = capacity(v′, k′, i + 1) = c3 − c2 + c.
Then, benefit(v′,k′,i+1)

c3′ ≤ b3
c3′ ≤ b1

c1
and

density(v′, k∗, i) = density(v′, k∗, i + 1) >
density(v, k, i).
Since density(v′, l, i + 1) > density(v, k∗, i +
1) and density(v′, l, i + 1) = density(v′, l, i),
l < k∗, only items with one break will be
picked. It remains to be shown that if (v′, k′) has
only one break at round i, the mode of overlap
of this case does not make density(v′, k′, i +
1) > density(v, k, i). As above, we con-
sider only the case where the break is at the
last level. Let b1 = benefit(v′, k′, i), c1 =
capacity(v′, k′, i), b2 = benefit(v, k, i) and
c2 = capacity(v, k, i). Since b1 ≥ b2 and
density(v, k, i) > density(v′, k′, i), c1 > c2.
After picking (v, k), c3 = capacity(v′, k′, i+1) =
c1 − c2 and b3 = benefit(v′, k′, i+ 1) = b1 − b2,
which means b3

c3
≤ b1

c1
and density(v′, k′, i+1) <

density(v, k, i).

2) We need to prove that switching an item i in a full
knapsack for an item i′ outside the knapsack so that
the capacity of the knapsack is not exceeded cannot
produce a better solution. Observe that the order in
which we insert the items in the knapsack does not affect
the benefit and the capacity of the overall solution. It
affects the values of the attributes of the items at the
round in which they have been added to the knapsack.
However, the additive nature of the update procedure
dictates that if item j is added in round k, then all
of benefit(j, 0) and capacity(j, 0) have been included
in the solution, if not by the insertion of j itself, then
by the insertion of overlapping with j items during the
k − 1 previous rounds. Therefore, i′ can be inserted
as the last item after removing i from the solution.
Since density(i) > density(i′) and capacity(i) ≥

capacity(i′), benefit(i) ≥ benefit(i′) and the solution
cannot improve by such a switch.

(a) (b) (c)

j

i

j

i

j

i’’

base

Fig. 7. (a) Items i and j; (b) Removing i creates an illegal item; (c) Removing
the base of i.

However, there is a problem – items in the knapsack
after removing i may not form a proper solution.
Consider an item j in the knapsack, overlapping with
i, depth(root(i)) > depth(root(j)), and i has been
inserted before j. In such a case, the tip of i must be left
in the knapsack for a proper solution. The part switched
must be the non-overlapping base of i. If the density of
the base is less than that of i′, the above argument does
not apply. This situation, though, is not possible, due to
the monotonicity of the density of items with the same
root. Because, i was inserted before j, any item i′′ with
the same root as i but smaller depth and overlapping
with j must have been inserted before i. The result is
that i consists only of a non-overlapping base which is
guaranteed to have a larger density than i′. The above
cases are illustrated in Figure 7.

3) It remains to prove that no combination of items outside
the knapsack can replace a combination of items in
the knapsack to create a more profitable solution. This
follows from the observation that a combination of items
has density at most as large as that of the item with the
highest density and at least that of the item with the
lowest density.

A. Approximation ratio

In this section we consider only tries whose nodes have
either two or no children. This is the case for tries representing
routing tables, since any linear subtrie can be compressed into
a single node. This technique of path compression is routinely
used to decrease the size of a trie. We will first prove that for
such tries, if the solution produced is not affected by the flaw
in the representation of the level-compression process by A,
the benefit of this solution cannot be less than 9

11 of that of
the optimal solution.

Theorem 2: Let b be the benefit of the solution produced by
A for a trie T corresponding to a routing table with capacity C
and b∗ the benefit of the optimal solution for T with capacity
C. Then, b

b∗ >
9
11 .

Proof: Let I be the set of items included in the solu-
tion produced by A. Let i = (v, k) be the item with the
largest density among those outside I . Then, benefit(I) ≤
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benefit(I∪{i}). Theorem 1 implies that I∪{i} is the optimal
solution for T with capacity C + capacity(i). We have that
b∗ < benefit(I ∪ {i}). It suffices to prove that b

b+b′ >
9
11 ,

where b′ = benefit(i).
The trie T can be split in four parts, with regard to i. The

first is the subtrie rooted at v and having depth k. This must be
at least three levels deep, otherwise capacity(v, k, j) will be
at most 2, for every j. Furthermore, the larger k is, the larger
the contribution of this part of T to b. If (v, k) is the first item
that would get in the solution if the capacity was increased,
(v, k− 1) must already be in, because density(v, k− 1, j) >
density(v, k, j), for every j. To minimize the ratio b

b+b′ , k
must be 3. Then, for capacity(v, 3, j) > 1, where j is the last
round of A, capacity(v, 3, 0) ≥ capacity(v, 2, 0) + 2.

The second part of T is the one consisting of all the subtries
rooted at a descendant of v. The effect of this part of T to the
solution returned by A is the combination of the effect of all
the items rooted at a node which is a descendant of v. This set
of items can be further split in those overlapping with (v, k)
and those that do not. If there are any overlapping items in the
solution, the effect of b′ on the ratio is reduced. To minimize
the ratio, there must be no such items in the solution.

The third part of T is the one above the level of v. To allow
for (v, 3) to be i, there must be no overlap between (v, 3) and
items in the knapsack rooted at some node of depth less than
depth(v). To have no such overlap, v must be at depth at least
3. If it is at depth 0, it will be the root and it will be the first
item to be picked. If it is at depth 1 or 2, (root, 3) will be
picked and since it overlaps with (v, 3), the latter cannot be i.
On the other hand, the larger this part of the trie, the weaker
the effect of b′ to the ratio.

The fourth part of the T consists of all the items whose root
is not an ancestor of v and do not overlap with i. To minimize
the ratio, the contribution of these items to the solution must
be minimized. However, it cannot be 0 because this would
imply the solution as it is is optimal. Therefore, there should
be only one item from this set in the knapsack, it should have
non-zero capacity and its depth should be two. This implies
its capacity is two. Also, since it has density larger than (v, 3),
its benefit must be at least half of that of (v, 3).

y
w

z

x

Fig. 8. The trie of theorem 2. The grey node is the root of item i. The letters
denote the sum of the weights of the leaves in the corresponding brace.

All the above are summarized in Figure 8. Consider that the
capacity of the knapsack is four. If the capacity is less than

four, the solution produced by the greedy algorithm is optimal
and if it is twelve or more the greedy algorithm will produce
an optimal solution, as well. For any capacity between six
and eleven, i will end up in the knapsack. For capacity four,
b = 2 × (w + x + y + z) + x + y + z and b′ = b + x. To
minimize the ratio, x must be as large as possible. We know
that x ≤ 2 × z, therefore, x = 2 × z. Finally, the upper bound
for b

b+b′ is 9×z+q
11×z+q , where q is independent of z. This ratio is

at least 9
11 .

We can prove that if A is indeed affected by the flaw for
a certain instance of the problem, the benefit of the produced
solution is at least 9

22 of that of the optimal solution. It suffices
to prove that whenever A fills the knapsack to capacity, the
induced solution has at least half the benefit of the optimal
one.

Theorem 3: If algorithm A fills knapsack K to capacity,
the benefit of the solution induced is at least half of that of
the optimal solution.

Proof: Consider an item i to which A has committed
incorrectly and has been included in the knapsack at step j.
Without loss of generality, let i consist of two simple items
i1 and i2, such that density(i1, j) > density(i2, j). Let
i′ be an item such that density(i, j) > density(i′, j) but
density(i2, j) < density(i′, j). Also, let capacity(i′, j) ≤
capacity(i2, j) and benefit(i′, j) > benefit(i2, j). Obvi-
ously, A will produce a suboptimal solution, because adding
i1 and i′ to the knapsack would produce a larger combined
benefit, without exceeding the capacity of i. It follows that
benefit(i1, j) + benefit(i′, j) ≤ 2 × benefit(i, j) and there
is no solution having benefit more than two times that of the
solution returned by A.

Corollary 1: The approximation ratio of A is 9
22 .

V. COMPLEXITY

A naive implementation of the above algorithm would yield
a runtime of O(n2×d2) and would use O(n×d) space, where
n is the number of nodes in the trie and d the depth of the trie.
For each node O(d) items must be created. At each step, the
maximum item is selected scanning all the items in O(n× d)
time. Each update operation would take O(n) time and it can
be proved there are O(d) such amortized operations in each
step. There are O(n × d) steps, hence the running time. A
more efficient implementation uses only linear space and has
a running time of O(n× d2 log n).

For each node, we create only the item of depth two rooted
at that node. The intuition is that since the density of (v, k)
is always larger than that of (v, k + 1), choosing the latter
will always follow picking the former. Each time we choose
(v, k), we remove it from the item space and replace it with
(v, k + 1). This way we only use linear space. We build a
search tree on the initial item set. This can be accomplished
in O(n) time. Picking the maximum element, and deleting and
inserting items in this tree takes time O(log n).

At each step we need to do the following: find the maximum
element (v, k), delete it from the search tree, update all items
overlapping with it and insert (v, k + 1), if it exists. Finding,
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deleting the maximum element and inserting its successor
takes time O(log n), as mentioned. Updating the overlapping
items might take O(n2 × d2) time, if not done carefully.

There are O(d) items overlapping with (v, k) whose root has
depth less than that of v. Only items rooted at the path from m
to the root of the trie fall in this category. We split the update
operations in two categories. The first is the one involving the
items mentioned above. The second involves items having m
as an ancestor of their root. The first category produces O(d)
updates at each step. There are O(n× d) steps, for a total of
O(n × d2) updates. For the second, a node can be involved
in such an update O(d2) times. It has O(d) ancestors. Each
ancestor can involve the node in as many update operations
as the number of items rooted at it that can be picked during
the execution of the algorithm. Therefore, over the execution
of the algorithm, O(n × d2) updates of the second category
can be executed. In all, there are O(n× d2) updates.

Each update can be completed in O(log n) time. Sup-
pose that the overlapping items are (v, k) and (v′, k′), with
(v, k) the item picked in the current round, and depth(v) <
depth(v′). To update (v′, k′) we need to spend constant time
on each node in the set S = C(v, k)∩C(v′, k−depth(v′)+1).
Because items expand one level at a time, we need to remove
the benefit and capacity resulting from expanding (v, k−1) to
(v, k). A detailed description of this process is tedious, since
it mainly consists of dealing with special cases. It suffices
to say that for each node in S we must subtract its weight
from (v′, k′). Also, for each node missing from S, but which
would be in S had the trie been complete, we need to subtract
as much capacity from (v′, k′) as the hole created in (v′, k′).
The size of S is O(n) and accessing each node in S gives
a running time of O(n) for each update. The case where
depth(v) ≥ depth(v′) can be treated similarly.

It is possible to reduce the time for an update to O(log n) by
keeping some extra information on each node of the trie. For
each node v we keep a pointer to its left and right neighbor on
the level of the trie v is located at. At each node we keep the
sum of the weights of all the nodes that are to its left at that
level, including itself. We also keep the number of missing
nodes to its left at that level. This information can be built
from the original trie by a breadth-first traversal. We need to
spend O(1) time for building this information on each node
and it takes constant space for each node. We also build two
binary search trees on each level of the trie. Both have the
property that their leaves are the nodes of the trie belonging
to the corresponding level, ordered from left to right. The first
has to do with weights and the second with the number of
missing nodes. Let w be an internal node of the first tree and
x, y the leftmost and rightmost leaves, respectively, of the
subtree rooted at w. In w, we store the sum of the weights of
leaves between x, y, inclusive. It is easy to see that the total
space needed for trees of this kind is O(n) and it takes O(n)
time to build them. The second tree has similar properties for
the number of missing nodes. The information kept in the trie
nodes and the auxiliary trees built on each level of the trie
do not change over the execution of the algorithm. Therefore,

the total space needed for the algorithm is O(n) and the total
time asymptotically remains the same. We note that each tree
has depth O(log n).

We can use the auxiliary structures to do an update in
O(log n) time. Let w and x be the leftmost and rightmost
nodes of S. We can get the information we need for all the
nodes in S by traversing the auxiliary trees. For the weights
we can first traverse the path from the root to w and then the
path from the root to x. Spending O(1) time on each node on
these paths we can derive the information in O(log n) time.
A similar process can derive the information for the number
of missing nodes from the second tree.

In this manner, the total time is O(n× d2 × log n) and the
total space needed is O(n).

VI. EXPERIMENTAL RESULTS

In addition to the theoretical analysis of the algorithm we
have run a series of experiments to measure its performance
and scalability on actual routing data. For this purpose we use
a Mae-West routing table. The size of the resulting trie was
a little over 5 × 105 nodes. Besides the improvement of the
expected lookup time, we measure the running time relative
to the routing table size and relative to the parameter of extra
space. Finally, we apply extensible hashing on levels 16 and
24 of the trie and compare its performance to that of our
algorithm. All experiments were run on 2GHz P4 with 512MB
RAM.

M
em

or
y 

ac
ce

ss
es

 s
av

ed

Excess memory (in number of nodes)

580000

560000

540000

520000

500000

480000

460000

440000

420000
100000800006000040000200000

Fig. 9. Performance of the algorithm in terms of memory accesses saved
over a level compressed trie.

Table I contains values of the performance enhancement as
a percentage of that of simple level-compression for varying
amounts of excess memory. In Figure 9 these values are
illustrated graphically. We note that extra memory is measured
as the number of nodes that can be filled. As expected from our
theoretical analysis, we observe the benefit of using extra space
declines for increasing values of the latter. It is remarkable that
for an increase of 10% in total memory, we achieve an increase
of 25% in performance.

Table II presents the runtime of the algorithm for different
sizes of the routing table, with no extra space allowed. The
depth of the resulting trie has been kept constant in all cases.
This measurement is necessary since a large part of the runtime
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Extra Space Performance Enhancement
1 × 103 2.21%
5 × 103 11.8%
10 × 103 13.9%
50 × 103 25.52%
70 × 103 29.01%
100 × 103 34.27%

TABLE I

EXPERIMENTAL MEASUREMENTS OF IMPROVEMENT IN NUMBER OF

LOOKUPS (AS A PERCENTAGE OF THOSE OF A LEVEL COMPRESSED TRIE)

WITH INCREASING AMOUNTS OF EXTRA MEMORY.

is consistently spent on precomputation and converting the
original trie into a level-compressed one. We note that the
runtime for a table of size 50% of the original one differs
only slightly compared to that for the full table. The issue of
scalability of the initial computations is, as we have mentioned,
an important one because of its domination of the entire
runtime. The algorithm is clearly well-behaved in this respect.

Routing Table Size Running Time
100 53.5
90 53.4
80 53.35
70 53.37
60 53.31
50 53.28

TABLE II

EXPERIMENTAL MEASUREMENTS (IN SECS) OF THE RUNTIME FOR

ROUTING TABLES OF DIFFERENT SIZES. THE FIRST COLUMN INDICATES

THE SIZE OF THE TABLE AS A PERCENTAGE OF THE SIZE OF THE FULL

ROUTING TABLE.

Table III presents the dependence of the runtime on the
amount of extra space available. We can see that the runtime
increases more sharply with extra space, compared to the trie
size. Again, the extra space is measured in terms of number
of nodes.

Extra Space Running Time
1 × 103 57.22
5 × 103 57.98
10 × 103 59.71
50 × 103 71.33
70 × 103 81.02
100 × 103 97.05

TABLE III

EXPERIMENTAL MEASUREMENTS (IN SECS) OF THE RUNTIME FOR

DIFFERENT AMOUNTS OF EXTRA SPACE ALLOWED. THE FIRST COLUMN

INDICATES THE NUMBER OF NODES FILLED.

Finally, we compare our method to extensible hashing. We
allow level-compression at levels 16 and 24. The reason is
that a majority of prefixes are actually 16 or 24 bits long.
The results were comparable only for an extra space of
approximately 5× 104 and 105 trie nodes. Extensible hashing
was able to achieve an expected performance enhancement of

16.92% (over a level compressed trie) for 5×104 extra nodes,
8% worse than our algorithm. For 105 extra nodes, extensi-
ble hashing achieved an expected performance enhancement
of just 17%, barely half of the corresponding performance
enhancement derived from our scheme.

VII. CONCLUDING REMARKS AND ONGOING RESEARCH

In this paper we have formulated and presented a novel
approximation method for the longest matching prefix prob-
lem. We have also analyzed the performance of the scheme
and have outlined implementation techniques that reduce the
runtime and required space. We have demonstrated that our
scheme is capable of considerable performance improvements
over extensible hashing.

Ongoing research in our group focuses on improvements
of the scheme concerning time complexity and approximation
ratio. While O(n log n) is likely to be a lower bound on the
time complexity of any algorithm, there is a question as to
how much ξ(d) can be reduced. Finally, an incremental version
of the algorithm would be of great value. As we have noted
in the introduction, the only assumption made concerns the
static nature of the routing table. It is desirable that changes
in the routing table do not demand a recalculation of the entire
structure. Small changes in either the access statistics or the
prefix set should cause only minor variations on the existing
structure. At the rate routing tables are updated, this may be
the most important open problem in this area. Updates with
respect to changing access patterns would also be of similar
importance.
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