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Abstract—An oblivious Active Queue Management scheme is
one which does not differentiate between packets belonging to
different flows. In this paper, we study the existence and the
quality of Nash equilibria imposed by oblivious AQM schemes on
selfish agents. Oblivious AQM schemes are of obvious importance
because of the ease of implementation and deployment, and
Nash equilibrium offers valuable clues into network performance
under non-cooperative user behavior. Specifically, we ask the
following three questions:

1) Do there exist oblivious AQM schemes that impose Nash
equilibria on selfish agents?

2) Are the imposed equilibria, if they exist, efficient in terms of
the goodput obtained and the drop probability experienced
at the equilibrium?

3) How easy is it for selfish users to reach the Nash equilib-
rium state?

We assume that the traffic sources are Poisson but the users can
control the average rate. We show that drop-tail and RED do
not impose Nash equilibria. We modify RED slightly to obtain
an oblivious scheme, VLRED, that imposes a Nash equilibrium,
but is not efficient. We then present another AQM policy, EN-
AQM, that can impose an efficient Nash equilibrium. Finally, we
show that for any oblivious AQM, the Nash equilibrium imposed
on selfish agents is highly sensitive as the number of agents
increases, thus making it hard for the users to converge to the
Nash equilibrium, and motivating the need for equilibria-aware
protocols.

I. Introduction

Several transport layer congestion control algorithms and
router strategies (Active Queue Management schemes) have
evolved over the last fifteen years. Congestion reactive pro-
tocols such as TCP [24], [11] and AQM strategies such as
RED [8] have catalyzed a lot of interesting research during
the last decade. For our purposes, AQM strategies can be
classified into two types: oblivious (stateless) and stateful. An
oblivious AQM scheme does not inspect packets to determine
which flow they belong to. Hence it cannot perform differential
marking or scheduling for different flows. Stateful schemes
such as fair queueing [2] offer good performance on a variety
of metrics. On the other hand, oblivious schemes such as drop-
tail and RED are easier to implement, and have enjoyed wider
deployment.

The current Internet is dominated by TCP traffic [23].
The TCP protocol is well defined, robust, and congestion-
reactive [19]. However, there are indications that the amount
of non-congestion-reactive traffic is on the rise [7]. Most of

this misbehaving traffic does not use TCP. Thus, it seems
important to study scenarios where end-points are greedy and
selfish, and do not follow socially accepted congestion control
mechanisms. TCP (and in fact, any transport protocol that we
are aware of) does not guarantee good performance in the
face of aggressive, greedy users who are willing to violate
the protocol to obtain better performance. It would be quite
useful to have protocols which lead to an efficient utilization
and a somewhat fair distribution of network resources (like
TCP does), and also ensure that no user can obtain better
performance by deviating from the protocol. We use the term
protocol equilibrium to describe this phenomenon. If protocol
equilibrium is achievable, then it would be a useful tool in
designing robust networks.

Of course, one could use stateful schemes such as fair
queueing to guard against selfish users. However, in this
paper, we would like to explore the limits of what can be
achieved using oblivious AQM schemes that are stateless and
easily deployable. The existence and practicality of protocol
equilibrium (even assuming that the routers adopt oblivious
AQM schemes) appear to be very hard questions to answer,
and an incremental approach for tackling this problem seems
appropriate.

Selfish users can be modeled using tools from game the-
ory [18]. In a game there are rules and players. In the Internet
game, the rules are set by the AQM policies and the players
are the end-point selfish traffic agents. A fundamental solution
concept in game theory is the Nash equilibrium [18]. In the
context of our problem, a Nash equilibrium is a scenario where
no selfish agent has any incentive to unilaterally deviate from
its current state. Thus the existence of a Nash equilibrium
implies a stable state of the network in the presence of selfish
users, but does not provide any clues as to how this state
should be achieved.

It is easy to see that an oblivious AQM strategy cannot
lead to a protocol equilibrium unless it also imposes a Nash
equilibrium on selfish users. As a first step, in this paper, we
explore the existence and the quality of the Nash equilibria that
can be imposed on selfish users by oblivious AQM strategies.
We will assume that goodput is the performance metric of
interest to the selfish users, and each user controls its own
offered load. Although our work was motivated by the broader
question of protocol equilibria, we believe that our results are
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interesting in their own right. Oblivious AQM schemes are of
obvious importance because of the ease of implementation and
deployment, and Nash equilibrium offers valuable clues into
network performance under non-cooperative user behavior.

A. Our Contribution

In this paper, we study the Nash equilibria imposed by
oblivious AQM schemes on selfish agents which generate
Poisson traffic but can control the average rate. Even though
Poisson traffic does not accurately model Internet traffic, it
is a reasonable first step. We will restrict ourselves to AQM
strategies that guarantee bounded average buffer occupancy,
regardless of the total arrival rate. Specifically, we address the
following questions:

1) Existence: Are there oblivious AQM schemes that im-
pose Nash equilibria on selfish users?

2) Efficiency: If an oblivious AQM scheme can impose a
Nash equilibrium, is that equilibrium good or efficient,
in terms of achieving high goodput and low drop prob-
ability?

3) Reachability/Achievability: How easy is it for the users
/ players to reach the equilibrium point?

We first derive a necessary and sufficient condition, that we
call the Nash condition, for oblivious AQM schemes to impose
Nash equilibria on selfish users. We show that the popular
oblivious AQM strategies, Drop-tail and RED, do not impose
Nash equilibria on selfish users. Then we propose a variation
of RED, VLRED, that can impose a Nash equilibrium. But we
note that the utilization at the equilibrium point drops to 0
asymptotically as the number of users increases. This moti-
vates us to develop another AQM scheme (EN-AQM) which
can impose a Nash equilibrium and guarantee strict bounds
on equilibrium performance, that is, provide lower bounds
on goodput, bounded average delays, and upper bounds on
drop probability at equilibrium. It is surprising that oblivious
schemes can have such strong properties.

We also observe that for any oblivious AQM scheme, the
Nash equilibrium imposed on selfish agents is highly sensitive
to the increase in the number of users, making it hard to deploy
and difficult for users to converge to. This further motivates
the need for equilibrium aware protocols.

B. Related Work

Game theory [18] is a very mature topic. The current
challenges of game theory applied to computer networks
are summarized by Papadimitrou [21]. Several papers (for
example [6], [22], [16], [15], [3], [27], [1], [26], [25], [17],
[12], [5], [17]) have applied tools from microeconomics and
game theory to computer networks over the last fifteen years.
A thorough literature survey is beyond the scope of the paper.
We now consider some of the most directly relevant related
work, and compare them with our approach.

In [3], Douligeris et. al. determine conditions for Nash and
Stackelberg equilibrium for a M/M/1 system when the utility
function is a composite function of the throughput and the
delay. Our work models routers using more realistic models.

For example, we use the M/M/1/K queue [14] to model Drop-
tail routers. Thus our game is quite different from theirs. Also,
they do not model Drop-tail and RED while we do. Besides,
we present AQM schemes that impose Nash equilibria on
selfish users with bounded average buffer occupancies.

Korilis et. al. [15] model the problem of decentralized
control as a constrained game in which the strategy of any
player is dependent on other players. The model includes a
primitive acknowledgment based Markovian traffic arrival with
an upper bound on the arrival rate and service time. They
show that Nash equilibria can exist in a general product-form
network under the condition guaranteeing that no one user can
be forced out of the system by other users. Unfortunately, that
assumption may not be valid at all times in the Internet. This
is true especially with routers having limited buffers. We, on
the other hand, look at equilibria imposed by AQM schemes
at routers using realistic models with bounded average buffer
occupancies. Besides, we look at oblivious AQM schemes.

Shenker [27] takes another approach and views the Internet
game from a switch scheduling perspective. The authors prove
that with Markovian arrival rates, the fair share allocation
scheme is the only scheme within a class of buffer allocation
functions (called MAC) that can guarantee a Nash equilibrium
(on selfish agents), and, is also Pareto efficient. The authors
use a simple M/M/1 model for their switch service discipline
and they study equilibria imposed by the buffer allocation
algorithm. We show, in the appendix, that oblivious AQM
schemes with bounded average buffer occupancy cannot be
in MAC. Hence, the MAC framework is not applicable to
our problem. Also, they do not consider existence of Nash
equilibria for newer schemes like RED as we do.

Several other papers have investigated related problems. For
example, Park et. al. [22] study Nash equilibrium properties
of the QoS game. However their utility functions are much
different from ours due to their multilevel service model and
threshold based step functions for modeling utility. They claim
that for a single service level, their model boils down to that
in [27]. Gibbens et. al [9] have studied the effect of selfish
users in the context of the user optimization problem defined
in [13]. Their model assumes that the selfishness arises due to
the user’s disregard for the effect of its own action on prices.
They model the Internet game differently using a AIMD like
protocol with the congestion marks from the routers. Thus, our
assumptions and our problem is different from theirs. Note that
we have not looked at feedback signals from the network and
pricing issues.

In a recent paper Akkela et. al. [1] model greedy users
with a TCP like algorithm where selfish users can control
the traffic by varying the parameters (α, β) of the AIMD
congestion control algorithm. They show that RED does not
have a Nash equilibria using empirical models and through
simulation. Also they have a restricted notion of selfish traffic.
They also propose a variation of CHOKe [20] and show,
by simulation, that a good Nash equilibrium is reached by
TCP like greedy flows. Unlike their work, this paper makes
formal arguments to prove results for a more general class of
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selfish users. Also, unlike them, we consider oblivious AQM
techniques. We are not aware of any other work that formally
analyzes the Nash equilibrium imposed on selfish users by
oblivious AQM strategies.

The format of this paper is as follows. Section II defines
the Internet game. In Section III, we show that the current
mechanisms present in the Internet, Drop-tail and RED, cannot
impose Nash equilibria on selfish agents. Then, we propose
a new variant of RED that achieves Nash equilibrium in
Section III-C. We note that this proposed scheme is not
efficient. In Section IV, we present a simple router mechanism
that imposes a Nash equilibrium and, at the same time, bounds
the network performance at equilibrium. Then we discuss the
sensitivity of the Nash equilibrium imposed by oblivious AQM
schemes in Section VI and argue that selfish users would find
it hard to reach the equilibrium state. Finally we discuss our
future directions and conclude in Section VI.

II. The Markovian Internet Game: Preliminaries

The Markovian Internet game can be defined as follows. The
players are end-point traffic agents. These agents are selfish,
that is, they are only concerned about their own good. Each
player has a strategy which is to control the average rate of
traffic that the player tries to push through the network. We
model the players’ traffic arrival rate by a Poisson process
with an average rate of λi. Each player i has a simple utility
function Ui equal to its goodput µi. The rules of the game are
determined by the AQM schemes in routers. In this work, we
only consider oblivious AQM schemes. An oblivious router
has a drop probability p due to an average aggregate load
of λ and an average service time of unity. Now, oblivious
routers may or may not impose symmetric Nash equilibria
on selfish agents. A symmetric Nash equilibrium ensures that
every agent has the same goodput at equilibrium. We only
consider symmetric Nash equilibrium in this paper and we drop
the symmetric adjective throughout the paper. Also, unless
mentioned otherwise, quantities such as the rates, goodput and
throughput are averages as we assume Poisson traffic sources.

For Nash equilibrium to hold, we have the following con-
ditions:

• No agent can increase their goodput, at Nash equilibrium,
by either increasing or decreasing their throughput. This
can be written down as

∀ i,
∂Ui

∂λi
= 0. (1)

Since Ui = µi,
∂µi

∂λi
≤ 0. for all i.

• At Nash equilibrium, all flows have the same utility or
goodput. That is, ∀i, j {µi = µj and λi = λj}.

• For oblivious AQM strategies and functions of router
states like drop probability and queue length,

∀i,
∂

∂λi
=

d

dλ

.

The above conditions can be used to derive an interesting
condition that must be true at Nash equilibrium. The utility
function for each agent can be written down as

Ui = µi = λi(1 − p).

Taking partial derivatives we get

∂µi

∂λi
= 1 − p − λi

∂p

∂λi
= 0.

Since we consider only oblivious AQM schemes, we have

∂p

∂λi
=

dp

dλ

. Since we consider symmetric Nash equilibrium, we must also
have.

λi =
λ

n
.

Thus, we have the following Nash condition which must be
satisfied at Nash equilibrium:

dp

1 − p
=

ndλ

λ
. (2)

To evaluate whether the Nash equilibrium imposed by an AQM
scheme is good, let us define a term, efficiency. Let the the
aggregate throughput, goodput, drop probability be denoted
by λ̃N , µ̃N and p̃N respectively. The Nash equilibria imposed
by an AQM is efficient, if the goodput of any selfish agent
is bounded below when the throughput (offered load) of that
same agent is bounded above. The conditions for efficiency
are:

1) λ̃N (1 − p̃N ) ≥ c1
2) λ̃N ≤ c2

where c1, c2 are some constants. Thus is easy to see that even
the drop probability at equilibrium is also bounded.

TCP Traffic and Equilibria

Before we delve into the technical details, it is interesting
to see how TCP traffic fits into the picture. TCP traffic is the
dominant traffic in the Internet. However, TCP does not exhibit
selfish behavior unless one changes the underlying protocol. It
is known ( [10]) that there exists a unique equilibrium point in
a network with long lived TCP flows resulting in a steady state.
Akkela et.al [1] model selfish traffic that behaves like TCP on
loss indications, uses an AIMD protocol, and allows the level
of selfishness to be controlled by the two AIMD parameters
(α, β) [1]. We believe that their model covers only a subset of
selfish users. In our work, we do not make any assumption of
the nature of the selfish protocol. In the following subsections,
we will consider the interaction of routers and greedy Poisson
traffic with variable rates.
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III. Existence

In this section, we answer the existence question as outlined
in Section I-A, that is, whether there exist oblivious router
strategies that impose Nash equilibria on selfish agents. First,
we consider the existence of equilibria imposed by popular
AQM schemes like Drop-tail and RED. Then, we propose a
simple scheme of our own. We shall use simple router models
with the help of queueing theory [14]. Recall that, for the sake
of simplicity, we assume that the average service time of our
queueing systems is unity.

A. Drop-tail Queueing

In this section, we consider Drop-tail routers prevalent in
the Internet and we model them with a M/M/1/K queue. From
queueing theory, we know that the drop probability of a Drop-
tail router with a buffer size B and offered load λ is given by

p =
λB(1 − λ)
1 − λB+1 .

Then we have the following theorem, the proof of which is
simple and intuitive, and, is presented here for completeness:

Theorem 1: For selfish agents and routers implementing
Drop-tail queuing, there is no Nash equilibrium.

Proof: Consider a single link with a maximum buffer
size of B and several selfish flows traversing this link. Let
λi, µi be the throughput, goodput of each flow respectively.
Assume p to be the drop probability of the router. Then, µi is
given by

µi = λi(1 − p) =
(

λi

λ

)
λ(1 − p) =

(
λi

λ

)
µ.

Applying the condition for Nash equilibrium, and noting that
Drop-tail is oblivious, we have

∂µi

∂λi
= µ

∂

∂λi
(
λi

λ
) +

(
λi

λ

)
dµ

dλ
.

The first term in the above equation is positive as

∂

∂λi

(
λi

λ

)
=

λ − λi

λ2 .

The proof of the second term being positive is shown in
Section B of the appendix. Thus, ∂µi

∂λi
is positive for all λi > 0,

and there can be no Nash equilibrium.

B. RED

RED [8] (Random Early Detection) is an AQM scheme
that prevents global synchronization and achieves lower av-
erage buffer occupancies. To analyze whether this scheme can
impose a Nash equilibrium using our approach, we need an
analytical model of RED that yields the drop probability as
a function of the offered load. Thus, we borrow an approx-
imate steady state model of RED from [4] for our analysis.

The standard RED transfer function and that along with our
transformation is shown in Figure 1.

Let the average queue length at the router be lq and the
drop probability at the router be p. The RED characteristics
can be expressed by

p =

{
0 if lq < minth
(lq − minth) × pmax

maxth−minth
if minth ≤ lq ≤ maxth

1 otherwise.

(3)

As long as the queue length is below minth, the drop
probability is zero. If queue length is between minth and
maxth, drop probability increases linearly between 0 and
pmax. After this limit is crossed, drop probability becomes
unity.

As defined earlier, let λ be the aggregate offered load, and
let p be the drop probability. The RED router sees a thinned
arrival process with a rate of λ(1 − p). Thus, we have the
following lemma:

Lemma 1: The steady state average value of the queue-
length with utilization λ and drop probability p is given by

lq =
λ(1 − p)

1 − λ(1 − p)
. (4)

In the steady state, the average queue length of a RED router
is never larger than maxth. Thus we have:

Lemma 2: In the steady state, the average queue length of
a RED router is never larger than maxth

If the average drop probability seen at this router is p and the
steady state queue length is between the interval minth and
maxth, the drop probability p at this router is given by

p =
( λ(1−p)
1−λ(1−p) − minth) × pmax

maxth − minth
.

With the above model, the following theorem is easy to
prove:

Theorem 2: RED does not impose a Nash equilibrium on
uncontrolled selfish agents.

Proof: From Equation 4, we solve for 1 − p and get

1 − p = (
lq

1 + lq
)(

1
λ

).

Now the goodput, µi, in terms of the offered load λi as

µi = λi(1 − p) = (
λi

λ
)(

lq
1 + lq

).

Now taking partial derivatives, we have

∂µi

∂λi
= (

lq
1 + lq

)
∂

∂λi
(
λi

λ
) + (

λi

λ
)

∂

∂λi
(

lq
1 + lq

).

Now, ∂
∂λi

(λi

λ ) > 0. Since RED is oblivious, the second term

in the above equation is (λi

λ ) 1
(1+lq)2

dlq
dλ . It is easy to prove

that dlq
dλ ≥ 0. The proof is very simple, and has been omitted.

Thus ∂µi

∂λi
> 0.

The intuition behind the above proof is as follows. RED
punishes all flows with the same drop probability. The nature
of the drop function is considerably gentle. Thus, misbehaving
flows can push more traffic and get less hurt (marginally).
Hence there is no incentive for any source to stop pushing
packets. This implies the non-existence of an equilibrium.
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Fig. 1. The different models of RED. In this example, the maximum buffer size = 50, minth = 10, maxth = 20 and pmax = 0.3

C. Virtual Load RED (VLRED)

In the previous sub-sections, we saw that drop-tail and RED
do not impose Nash equilibria on selfish users. In this section,
we answer the question of the existence of Nash equilibria as
defined in Section I-A. We show that Nash equilibrium can
be imposed by changing the RED transfer function. In this
section, we present a new AQM technique, Virtual Load RED
(VLRED), where the transfer function for the drop probability
can be written down as

p =




0 lvq < minth
lvq−minth

maxth−minth
minth < lvq < maxth

1 otherwise

(5)

Here lvq = λ
1−λ . Note that lvq is the length of the infinite

buffer M/M/1 queue when faced with the same load. Instead
of using the measured queue length, as in RED, we have used
virtual queue lengths, hence the name VLRED. Now, we ask
whether this AQM strategy has a Nash equilibrium.

Theorem 3: VLRED imposes a Nash equilibrium on selfish
agents if minth ≤ √

1 + maxth − 1.
Proof: Suppose there are n flows with each source i

offering a load of λi. Let us assume that the drop probability
can be written down as a continuous function for all lvq <
maxth given by

p =
λ

1−λ − minth

maxth − minth
.

Then we have

λ
dp

dλ
=

(
1

maxth − minth

) (
λ

1 − λ
+

(
λ

1 − λ
)2

))
.

Now using the Nash condition in Equation 2, we have(
1

maxth − minth

)(
λ

1 − λ
+ (

λ

1 − λ
)2
)

= n

(
1 −

λ
1−λ

− minth

maxth − minth

)
.

=>
λ

1 − λ
+ (

λ

1 − λ
)2 = n

(
(maxth − minth) − (

λ

1 − λ
− minth)

)
Substituting t = λ

1−λ and simplifying, we have

t2 + (n + 1)t − n.maxth = 0 (6)

The positive root of the the above equation is

t =

√
(n + 1)2 + 4n.maxth

2
− n + 1

2
For this solution to be valid, t ≥ minth. It is easy to show

that this is true if minth ≤ √
1 + maxth − 1. The proof is

very simple and has been omitted. Thus, the existence of
the solution under the given condition proves that the Nash
equilibrium exists. Note that we can get the throughput at the
Nash equilibrium by λ̃n = t

1+t < 1. A surprising feature of
our solution is that the root, when valid, is independent of
minth.

D. Discussion

We now illustrate the properties of this Nash equilibrium
with an example. We take minth = 0, maxth = 50, n =
1, .., 50 and solve Equation 6. As n increases, the goodput of
the system starts to decrease due to increasing drop probability
due to the average buffer occupancy approaching maxth and
the lvq rising very steeply. This effect is shown in Figure 2
where the y-axis plots both the throughput and the goodput as
we increase the number of flows, shown in the x-axis. Also,
we can formally prove the following:

Theorem 4: VLRED is not efficient.
Proof: Assuming a unit service rate at a router, the drop

probability p can be written in terms of the total arrival rate
λ as

p =
αλ

1 − λ
+ β.

where α and β are some constants. Differentiating the above
equation we have

dp

dλ
=

α

(1 − λ)2
.

Now rearranging the terms after using Equation 2 and equating
with the above equation, we have

(
λ

1 − λ
)2 =

nλ(1 − p)
α

.

Now, λ
(1−λ) = lvq and λ(1−p) is the total goodput µ. Assume

that VLRED is efficient. Then, by the definition of efficiency,
the goodput is bounded above and below by constants, and,
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Fig. 2. The throughput and the goodput at a VLRED router as the number
of flows changes

hence, nµ = θ(l2vq). Now, in VLRED, lvq is bounded
by maxth

1+maxth
. Thus, nµ is bounded by a constant. Hence, the

goodput falls to 0 asymptotically.
Thus, even though VLRED has a Nash equilibrium, it is clear
that the equilibrium points do not have very high utilization.
Hence, there is a need to design oblivious AQM strategies that
result in efficient equilibria.

IV. Efficiency

In the previous section, we have seen that even though
VLRED can impose a Nash equilibria on selfish users, it
is not efficient. In this section, we ask whether there is a
router strategy that can impose an efficient Nash equilibrium.
This is the second question as defined in Section I-A. We
present an oblivious AQM strategy, namely Efficient Nash
AQM (EN-AQM), which ensures the existence of an efficient
Nash equilibrium.

Consider a single bottleneck link. From the previous sec-
tions, we have seen that in order for a router queue manage-
ment technique to enforce a Nash equilibrium Equation 2 must
be satisfied. Now, assume that the total desirable offered load
at Nash equilibrium is related to the number of greedy agents
in the following way

λ̃n = 1 − 1
4n2 . (7)

The intuition behind this relation is presented in Section V.
Using the above equation, and the Nash condition, after
allowing n to be continuous for the time being, we can write
down

dp

1 − p
=

dλ

2λ
√

1 − λ
.

Now, substituting y2 = 1 − λ, we have

−dp

1 − p
=

1
2
[

dy

1 + y
− −dy

1 − y
].

0 10 20 30 40 50
Number of flows

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 o
ff

er
ed

 lo
ad

/d
ro

p 
pr

ob
./g

oo
dp

ut

offered load 
drop probability
goodput

Fig. 3. The offered load (throughput), drop probability and the goodput at
the Nash equilibrium imposed by EN-AQM as the number of flows passing
through our router mechanism changes

Integrating the above equation, we have

log 1 − p = log
√

1 + y

1 − y
+ log k.

where k is an arbitrary constant to be determined. The solution
can be written down as

p = 1 − k

√
1 + y

1 − y
.

To choose k, we assume that when there is one user, we would
like to ensure that the drop probability is zero as long as his
offered load is less than unity. This gives k = 1√

3
. Thus the

transfer function of EN-AQM is given by

p = 1 − 1√
3

√
1 +

√
1 − λ

1 − √
1 − λ

. (8)

By our assumption, λ̃n is bounded. It is simple, albeit tedious,
to prove that p̃n is also bounded. We omit the proof, and,
instead, use Figure 3 to illustrate the efficiency of EN-AQM.

To see how EN-AQM works, let us look at Figure 3.
We see that even though the number of flows through the
router increases, the drop probability and the goodput at the
Nash equilibrium are bounded. This illustrates that EN-AQM
can ensure an efficient Nash equilibrium. Hence, with very
minimal information, we can ensure that our oblivious router
mechanism achieves the objective of ensuring a Nash equi-
librium that yields good performance under selfish behavior.
The constants which the drop probability and the throughput
depend on can be fine tuned by modifying the constant k and
the constant 4 in Equation 7.

V. Achievability

In the previous section, we have seen that EN-AQM can
impose an efficient Nash equilibrium on selfish agents with
bounds on performance and drop probability. Now we move
on to answer the third question in Section I-A: How can we
ensure that agents actually reach the Nash equilibrium state?
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In this section, we show that the equilibrium imposed by any
oblivious router strategy is very sensitive to the number of
agents, thus making it impractical to deploy in the Internet.

Let us define λ̃i to be the offered load at equilibrium when
the number of agents is i. We can now rewrite the drop
probability p, as a function of the aggregate offered load λ̃i, as
pi = f(λ̃i). Let us also assume that f is non-decreasing and
convex. From Equation 2 and the fact that an efficient AQM
will bound the drop probability, we get

α1
i

λ̃i

≤ f ′(λ̃i) ≤ α2
i

λ̃i

.

where α1, α2 are some constants. Let us also define a sensi-
tivity coefficient ∆i, when the number of agents in the system
is i, such that

∆i = λ̃i − λ̃i−1.

Now, the following must be true due to the convexity of p̃i

p̃i ≥ p̃1 + ∆1f
′(λ̃1) + ∆2f

′(λ̃2) + ... + ∆i−1f
′(λ̃i−1).

By efficiency, we get the following equation
∞∑

i=1

i∆i ≤ c where c is a constant.

Consider ∆i = iα. Then, using the above equation, we have
∞∑

i=1

iα+1 ≤ c.

Now the left hand side is bounded iff α + 1 < −1, or
α < −2. This gives us ∆i = i−(2+ε). Hence, we can see that
as i increases, the sensitivity coefficient becomes smaller and
smaller, that is, it falls faster than an inverse quadratic. Thus,
it is hard for agents to reach the equilibrium point without any
help from the router.

Note that the above analysis points out the relation between
the number of users and the total offered load in Equation 2.
We see that relation must have a term in 1

n1+ε . Choosing ε =
1, and setting some realistic boundary conditions, we get the
strategy EN-AQM; this is the intuition behind Equation 7 in
Section IV.

VI. Discussions, Conclusion and Future Work

In this paper, we have investigated the following three
questions pertaining to Nash equilibria imposed by oblivious
AQM techniques on selfish users: existence, efficiency and
achievability. We have shown that Drop-tail and RED, cannot
impose a Nash equilibrium. We have also shown there are
simple mechanisms, such as VLRED, that do impose Nash
equilibria. Then we showed that there are AQM schemes,
such as EN-AQM, that can impose efficient Nash equilibria.
Finally, we showed that the equilibrium points in oblivious
AQM strategies are very sensitive to the change in the number
of users. Thus it may be hard to deploy oblivious schemes that
do have Nash equilibria without the explicit help of a protocol.

Previous work [27] has shown that only the fair share
mechanism can have Pareto efficient Nash equilibria. Also,
Douligeris et. al [3] show that it is possible to to reach Nash
equilibria with the power utility function. They assume a
M/M/1 system with infinite buffer capacity and they use a
very different composite utility function involving the goodput
and the delay. In contrast, we have considered more realistic
models of router mechanisms with bounded buffers for Drop-
tail queueing and we also analyze RED. We have noticed that
the results are significantly different due to our requirement
of bounded average buffer occupancies.

We need to explore each of the above proposed policies
in detail. For VLRED, we need to explore why the Nash
equilibrium point does not result in good network utilization.
Our conjecture is that VLRED’s drop function becomes very
harsh as we reach equilibrium. Thus, there is a need to
study gentler versions of VLRED and determine whether such
modifications can still impose Nash equilibria.

We should note that the it is difficult for users to reach
the equilibrium point as the equilibrium point is too sensitive.
This motivates the question of Protocol Equilibrium: Can
we design protocols which lead to efficient network operation,
such that no user has any incentive to unilaterally deviate from
the protocol?
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Appendix

A. Oblivious AQM and MAC

Shenker [27] defines a class of allocation of functions called
MAC that forms the basis of the analysis. Consider rates of
agents ri and their buffer occupancy ci. Now any allocation
is in MAC must have

1) ∂ci

∂rj
≥ 0 for all i and j.

2) ∂ci

∂ri
> 0 for all i.

We have the following observation:
Theorem 5: Any oblivious router mechanism with average

bounded buffer occupancy cannot in MAC.
Proof: Suppose an oblivious strategy satisfying the above

is in MAC. Let R =
∑n

i=0 ri and L be the average queue
length. Since we assume Poisson traffic sources, we can write
ci as

ci =
ri

R
L.

Now taking partial derivatives and noting that our router
strategy is oblivious, we have

∂ci

∂rj
=

−riL

R2 +
ri

R

(
dL

drj

)
=

ri

R

(−L

R
+

dL

dR

)
. (9)

Now, for the above condition (1) to hold, we have have ∂ci

∂rj
≥

0. That implies
dL

L
≥ dR

R
.

On solving the above, we have

L ≥ kR , k is a constant.

Now, R is unbounded in the MAC framework. Hence L must
be unbounded. But we assume that L is bounded. Hence, this
is a contradiction. Thus, this AQM cannot be in MAC
Since drop-tail and RED are oblivious, and ensure bounded
average buffer occupancy, they cannot be in MAC.

B. Drop Tail

Lemma 3: In a M/M/1/K queue, the goodput increases as
the offered load increases.

Proof: Assume the service rate is unity. The goodput µ
is given by

µ = λ(1 − p) =
λ(1 − λB)
1 − λB+1 .

Thus,

µ = 1 − 1
1 + λ + λ2 + . . . + λB

.

Thus, we see that µ has always a positive derivative. Thus,
goodput increases with offered load
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