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Abstract— A recently proposed active queue management,
CHOKe, is stateless, simple to implement, yet surprisingly effec-
tive in protecting TCP from UDP flows. As UDP rate increases,
even though the number of UDP packets in the queue rises, its
bandwidth share eventually drops to zero, in stark contrast to the
behavior of a regular FIFO buffer. We derive a detailed model
of CHOKe that accurately predicts this, and other behaviors of
CHOKe, and validate the model with simulations. Its key fea-
tures are the incorporation of the feedback equilibrium of TCP
with dropping probability and the spatial characteristics of the
queueing process. CHOKe produces a “leaky buffer” where pack-
ets can be dropped as they move toward the head of the queue.
This leads to a spatially non-uniform distribution of packets and
their velocity, and makes it possible for a flow to simultaneously
maintain a large number of packets in the queue and receive a
vanishingly small bandwidth share. This is the main mechanism
through which CHOKe protects TCP from UDP flows.

I. INTRODUCTION

TCP is believed to be largely responsible for preventing con-
gestion collapse while the Internet has undergone dramatic
growth in the last decade. Indeed, numerous measurements
have consistently shown that more than 90% of traffic on the
current Internet are still TCP packets, which, fortunately, are
congestion controlled. Without a proper incentive structure,
however, this state of affair is fragile and can be disrupted by
the growing number of non-rate-adaptive (e.g., UDP-based) ap-
plications that can monopolize network bandwidth to the detri-
ment of rate-adaptive applications. This has motivated several
active queue management schemes, e.g., [6], [3], [4], [13], [8],
[10], [2], that aim at penalizing aggressive flows and ensuring
fairness. The scheme, CHOKe, of [10] is particularly interest-
ing in that it does not require any state information and yet can
provide a minimum bandwidth share to TCP flows. In this pa-
per, we provide an analytical model of CHOKe that explains its
spatial characteristics.

The basic idea of CHOKe is explained in the following quote
from [10]:

When a packet arrives at a congested router, CHOKe draws
a packet at random from the FIFO (first-in-first-out) buffer
and compares it with the arriving packet. If they both be-
long to the same flow, then they are both dropped; else the
randomly chosen packet is left intact and the arriving packet
is admitted into the buffer with a probability that depends
on the level of congestion (this probability is computed ex-
actly as in RED).

The surprising feature of this extremely simple scheme is that
it can bound the bandwidth share of UDP flows regardless of
their arrival rate. In fact, as the arrival rate of UDP packets in-
creases without bound, their bandwidth share approaches zero!

An intuitive explanation is provided in [10]: “the FIFO buffer
is more likely to have packets belonging to a misbehaving flow
and hence these packets are more likely to be chosen for com-
parison. Further, packets belonging to a misbehaving flow ar-
rive more numerously and are more likely to trigger compar-
isons.” As a result, aggressive flows are penalized. This how-
ever does not explain why a flow that maintains a much larger
number of packets in the queue does not receive a larger share
of bandwidth, as in the case of a regular FIFO buffer. It turns
out that a precise understanding of this phenomenon requires a
detailed analysis of the queue dynamics, the key feature of our
model. A simple model of CHOKe is also presented in [10]
that assumes a Poisson packet arrival process and exponential
service time. The Poisson assumption is critical in order to use
the PASTA (Poisson Arrival Sees Time Averages) property to
compute drop probabilities. This model however ignores both
the feedback equilibrium of the TCP/CHOKe system and the
spatial characteristics of the queue.

Here, we adopt a deterministic fluid model that explicitly
models both features (Section II). Our model predicts, and sim-
ulations confirm, that as UDP rate becomes large, not only does
the total number of UDP packets in the queue increase, more
importantly, the spatial distribution of UDP packets becomes
more and more concentrated near the tail of the queue, and
drops rapidly to zero toward the head of the queue. Hence even
though the total number of UDP packets in the queue is large,
all of them will be dropped before they advance to the head. As
a result the UDP bandwidth share drops to zero, in stark con-
trast to a non-leaky FIFO buffer where UDP bandwidth shares
would approach 1 as its input rate increases without bound.

Our current model is too complex to be solved analytically.
We outline a numerical solution (Section II-C), and compare
our numerical results with detailed ns-2 simulations. They
match accurately not only with average behavior of CHOKe as
reported in [10], but also with much finer spatial characteristics
of the queueing process.

The technique presented here should be applicable to analyz-
ing the queueing process in other types of leaky buffer.

II. MODEL

In general, one can choose more than one packet from the
queue, compare all of them with the incoming packet, and drop
those from the same flow. This will improve CHOKe’s perfor-
mance, especially when there are multiple unresponsive sources
[10]. Here, we focus on the modeling of a single drop candidate
packet. The analysis can be extended to the case of multiple
drop candidates.
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The general setup for our model and our simulations is shown
in Figure 1. We focus on the single bottleneck FIFO buffer at
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Fig. 1. Network topology

router R1 where packets are queued and drained at a rate of c
packets per second. The buffer is shared by N identical TCP
flows and a single UDP flow. All TCP flows have a common
round trip propagation delay of d seconds. We assume the sys-
tem is stable and model its equilibrium behavior.

A. Notations

Quantities (rate, backlog, dropping probability, etc) associ-
ated with the UDP flow are indexed by 0. Those associated
with TCP flows are indexed by i = 1, . . . , N . Since the TCP
sources are identical, these quantities all have the same value,
and hence we will refer to flow 1 as the generic TCP flow. These
are equilibrium quantities which we assume exist.

We collect here the definitions of all the variables and some
of their obvious properties:
bi: packet backlog from flow i, i = 0, 1.
b: total backlog; b = b0 + b1N .
r: Congestion based dropping probability. The spatial prop-

erties of CHOKe are insensitive to the specific algorithm,
such as RED, to compute this probability, as long as it is
the same for all flows. In general, r = g(b, τ) for some
function g as a function of aggregate backlog b and queue-
ing delay τ .

hi: The probability that an incoming packet of flow i, i = 0, 1,
is dropped by CHOKe:

hi =
bi
b

pi: overall probability that a packet of flow i, i = 0, 1, is
dropped before it gets through, either by CHOKe or RED:

pi = 2hi + r − rhi (1)

The explanation of (1) is provided below.
xi: source rate of flow i, i = 0, 1. The spatial properties of

CHOKe are insensitive to the specific TCP algorithm, such
as Reno or Vegas. In general, x1 = f(p1, τ) for some
function f as a function of overall loss probability p1 and
queueing delay τ at equilibrium.

τ : common round-trip queueing delay. Round-trip time is d+
τ .

It is important to keep in mind that x0 is the only independent
variable; all other variables listed above are functions of x0,
though this is not made explicit in the notations.

B. TCP/CHOKe model

A packet may be dropped, either on arrival due to CHOKe
or congestion (e.g., according to RED), or after it has been ad-
mitted into the queue when a future arrival from the same flow
triggers a comparison. Let pi be the probability that a packet
from flow i is eventually dropped. To see why pi is related to
CHOKe and RED dropping probabilities according to (1), note
that every arrival from flow i can trigger either 0 packet loss
from the buffer, 1 packet loss due to RED, or 2 packet losses
due to CHOKe. These events happen with respective probabil-
ities of (1 − hi)(1 − r), (1 − hi)r, and hi. Hence, each arrival
to the buffer is accompanied by an average packet loss of

2hi + (1 − hi)r + 0 · (1 − hi)(1 − r)

Hence we take the overall loss probability pi to be the packet
loss rate 2hi + (1 − hi)r. We now derive this probability from
another perspective.

Consider a packet of flow i that eventually goes through the
queue without being dropped. The probability that it is not
dropped on arrival is (1 − r)(1 − hi). Once it enters the queue,
it takes τ time to go through it. In this time period, there are on
average τxi packets from flow i that arrive at the queue. The
probability that this packet is not chosen for comparison is

(
1 − 1

b

)τxi

Hence, the overall probability that a packet of flow i survives
the queue is

1 − pi = (1 − r)(1 − hi)
(

1 − 1
b

)τxi

(2)

A simple interpretation of a leaky buffer is as follows: xi

is the source rate of flow i and xi(1 − r)(1 − hi) is the rate
at which flow i enters the queue after CHOKe and congestion-
based dropping. This flow splits into two flows: one eventually
exits the queue and the other is dropped inside the queue by
CHOKe. The rate of the former flow is flow i’s throughput
xi(1 − pi) and the rate of the latter flow is its leak rate xihi, so
that they sum to the input rate xi(1 − r)(1 −hi). Since the link
is fully utilized, the flow throughputs sum to link capacity:

x0(1 − p0) +Nx1(1 − p1) = c

This completes the description of the model. In summary,
the independent variable is UDP rate x0. The ten dependent
variables of the model are:

• backlogs bi of flow i, i = 0, 1; total backlog b = b0+Nb1.
• congestion based dropping probability r, CHOKe drop-

ping probabilities hi, and overall dropping probabilities pi,
i = 0, 1.

• TCP rate x1 and queueing delay τ .
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The relations among these variables define our model. For ease
of reference, we reproduce these ten equations here:

pi = 2hi + r − rhi, i = 0, 1 (3)

pi = 1 − (1 − r)(1 − hi)
(

1 − 1
b

)τxi

, i = 0, 1 (4)

hi =
bi
b
, i = 0, 1 (5)

b = b0 +Nb1 (6)

c = x0(1 − p0) +Nx1(1 − p1) (full utilization) (7)

x1 = f(p1, τ) (TCP) (8)

r = g(b, τ) (e.g. RED) (9)

Let z = (p0, p1, h0, h1, b0, b1, b, x1, r, τ) denote the ten de-
pendent variables. Then the above equations (3)–(9) can be ex-
pressed as

F (z, x0) = 0 (10)

This can be regarded as implicitly defining z as a function of
x0. We assume:
A1: Given any x0 ≥ 0, there is a unique solution z(x0) that

satisfies (10).

C. Numerical solution of TCP/CHOKe model

The set of nonlinear equations (3)–(9) that models the
TCP/CHOKe system can be solved numerically. The solution
can then be used in the differential equation model described
below to solve for spatial properties of the leaky buffer under
CHOKe; see Section III.

The nonlinear equation (10) can be solved by minimizing the
quadratic cost:

min
z

J(z) := F (z, x0)TWF (z, x0)

with an appropriate choice of positive diagonal weighting ma-
trix W . A solution z∗ of TCP/CHOKe satisfies J(z∗) =
minz J(z) = 0.

Matlab is used to implement the above procedure. The
weighting matrix is chosen such that each component in the
vectorWz is in the range [10 100] near the fixed point. A direct
search method [7] for multidimensional unconstrained nonlin-
ear minimization implemented in matlab is used for this opti-
mization problem. The search algorithm is stopped when J(z)
is smaller than 0.05. The solution is accurately validated with
ns-2 simulations in section IV.

III. SPATIAL CHARACTERISTICS

A. Spatial distribution and packet velocity

If a packet cannot be dropped once it has been admitted into a
FIFO queue, then, clearly, the queueing delay τ and bandwidth
share µi are

τ =
b

c
and µi =

bi
b

(11)

For a leaky buffer where a packet can be dropped while it ad-
vances toward the head of the queue, (11) no longer holds, and

the queueing delay and bandwidth share depend critically on
the spatial characteristics of the queue. The key to their un-
derstanding is the spatial distribution of packets in the queue
and the flow rate (velocity at which packets move through the
queue) at different positions in the queue. We now define these
two quantities and relate them to the variables previously de-
fined.

Let y ∈ [0, b] denote a position in the queue, with y = 0
being the tail and y = b the head of the queue. In a leaky
buffer, the queueing delay of a packet that eventually exits the
queue is no longer the backlog it sees on arrival divided by the
link capacity. This is because it advances toward the head both
when packets in front of it exit the queue and when they are
dropped by CHOKe. To model this dynamics, define v(y) as
the velocity at which the packet at position y moves toward the
head of the queue:

v(y) =
dy

dt

For instance, the velocity at the head of the queue equals the
link capacity, v(b) = c. Then, the queueing delay τ is given in
terms of v(y) as

τ =
∫ τ

0
dt =

∫ b

0

1
v(y)

dy (12)

More generally, define, for x0 ≥ 0, τ(y) by

τ(y) =
∫ y

0

1
v(s)

ds (13)

which can be interpreted as the time for a packet to reach posi-
tion y from position 0. Clearly, τ(b) = τ .

Let ρi(y) be the probability that the packet at position y be-
longs to flow i, i = 0, 1. As usual, we have

ρ0(y) +Nρ1(y) = 1, for all y ∈ [0, b] (14)

The average number of flow i packets in the entire backlog sat-
isfies

bi =
∫ b

0
ρi(y)dy (15)

More importantly, the bandwidth share µi is the probability that
the head of the queue is occupied by a packet from flow i:

µi = ρi(b) (16)

Note that if the queue is not leaky, then the spatial distribution
of packets will be uniform, ρi(y) being independent of position
y:

ρi(y) = ρi(b) for all y ∈ [0, b]

This, together with (15), implies the bandwidth share in (11),
i.e., the bandwidth share depends only on the total number of
flow i packets in the queue. When the queue is leaky, however,
the spatial distribution can be highly non-uniform. The band-
width share ρi(b) of flow i depends on the spatial distribution
of packets only at the head of the queue and does not depend
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directly on the distribution at other positions or the total num-
ber of flow i packets, in stark contrast to the case of non-leaky
buffer. This is the underlying reason why UDP packets can
occupy almost half of the queue, yet receiving very small band-
width share: when UDP rate is high, ρ0(y) decreases rapidly
from y = 0 to y = b with ρ0(b) � 0; see Section III-C.

We have completed the definition of spatial distribution ρi(y)
and velocity v(y) of packets in the queue. We now derive an
ordinary differential (ODE) equation model of these quantities.

B. ODE model of ρi(y) and v(y)
We will derive an ODE model for ρ0(y) and v(y); ρ1(y) can

be obtained from (14).
Consider a small volume v(y)dt of the (one-dimensional

fluid) queue at position y. The amount of fluid (packets) in
this volume that belongs to flow i is ρi(y)v(y)dt, i = 0, 1. For
instance, ρi(0)v(0)dt, i = 0, 1, is the amount of fluid that ar-
rives at the tail of the queue, packets that are not dropped by
CHOKe or congestion based dropping on arrival and admitted
into the buffer. Hence

ρi(0)v(0) = xi(1 − r)(1 − hi), i = 0, 1 (17)

Another boundary condition is the packet velocity at the head
of the queue mentioned above:

v(b) = c (18)

Suppose the small volume ρi(0)v(0)dt of fluid (our “tagged
packet”) arrives at the buffer at time 0, and reaches position
y at time τ(y). During this period [0, τ(y)], there are xiτ(y)
packet arrivals from flow i, and each of these arrivals triggers
a comparison. The tagged packet is selected for comparison
with probability 1/b each time. We model this by saying that
the fluid is thinned by a factor (1 − 1/b)xiτ(y) when it reaches
position y at time τ(y). Thus

ρi(0)v(0)
(

1 − 1
b

)xiτ(y)

= ρi(y)v(y) (19)

Note that this is the same argument that leads to (2).
Taking logarithm on both sides and using (13) to eliminate

τ(y), we have

ln(ρi(y)v(y)) = ln(ρi(0)v(0)) + βxi

∫ y

0

1
v(s)

ds

where

β := ln
(

1 − 1
b

)

Differentiating both sides with respect to y, we get

β
x0

v(y)
=

ρ′
0(y)
ρ0(y)

+
v′(y)
v(y)

(20)

β
x1

v(y)
=

ρ′
1(y)
ρ1(y)

+
v′(y)
v(y)

(21)

Now (20) × ρ0(y) + (21) ×N × ρ1(y) yields

v′(y) = β (ρ0(y)x0 + (1 − ρ0(y))x1) (22)

where we have used (14). Substituting (22) into (20), we get

ρ′
0(y) = β(x0 − x1) ρ0(y)(1 − ρ0(y))

1
v(y)

(23)

Hence the spatial distribution ρi(y) and packet velocity v(y)
is given by the two-dimensional system of nonlinear differential
equations (22)–(23) with boundary conditions (17)–(18). Since
the right-hand sides of (22)–(23) are continuously differentiable
in (v, ρ0), there exists a unique solution in its interval of exis-
tence [11].

We make an important remark. Given x0, quantities such
as τ, b, bi are uniquely determined by (10) by assumption A1.
At the same time v(y) and ρ0(y) are uniquely determined by
the differential equations (22)–(23) with boundary conditions
(17)–(18). The relations (12) and (15) between these two sets
of quantities are not necessarily true a priori. Even though they
seem reasonable based on their physical interpretation, they
nonetheless remain a postulation:
A2: Relations (12) and (15) hold.
Note that (14) holds without assumption and defines ρ1(y).

C. Structural properties

In this subsection, we prove some structural properties of the
velocity v(y) and spatial distribution ρ0(y). They are illustrated
in Figure 2.

Theorem 1. For all x0 ≥ 0, packet velocity v(y) is a convex
and strictly decreasing function with v(0) = (x0(1 − h0) +
Nx1(1 − h1))(1 − r) and v(b) = c. It is linear if and only if
x0 = x1.

Proof. Using (14), (22) can be rewritten as

v′(y) = β(ρ0(y)x0 +Nρ1(y)x1) < 0

where β = ln(1 − 1/b) < 0. Hence v(y) is strictly decreasing.
Differentiating again and using ρ′

0(y) + Nρ′
1(y) = 0 from

(14), we have

v′′(y) = β(ρ′
0(y)x0 + x1ρ

′
1(y)N)

= β(x0 − x1)ρ′
0(y)

From (23), we have

v′′(y) = β2(x0 − x1)2ρ0(y)ρ1(y)
N

v(y)
≥ 0

with equality if and only if x0 = x1. Hence v(y) is convex and
is linear if and only if x0 = x1.

The boundary values of v(y) follows from (17) (sum over i)
and (18).

Given x0, define

ρ∗ :=
1
3

(
1 − x1

x0 − x1

)

and the inflexion point y∗ by

ρ0(y∗) = ρ∗
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Theorem 2. Suppose x0 > x1. Then ρ0(y) is a strictly de-
creasing function, with

ρ0(0) =
x0(1 − h0)

x0(1 − h0) +Nx1(1 − h1)

Moreover,
• if ρ0(0) ≤ ρ∗, then ρ0(y) is convex.
• if ρ0(b) ≥ ρ∗, then ρ0(y) is concave.
• if ρ0(b) < ρ∗ < ρ0(0), then ρ0(y) is concave for y ≤ y∗

and convex for y ≥ y∗.

Proof. From (23), we have

ρ′
0(y) = β(x0 − x1)ρ0(y)(1 − ρ0(y))

1
v(y)

Since β < 0 and x0 ≥ x1, ρ′
0(y) ≤ 0, i.e., ρ0(y) is a decreasing

function. The value of ρ0(0) follows from (17) and Theorem 1.
Differentiating (22), we have after some algebra

ρ
′′

0 (y) =
β2(x0 − x1)ρ0(y)(1 − ρ0(y))

v2(y)
·

((1 − 3ρ0(y))(x0 − x1) − x1)

There are three possible cases:

• ρ0(0) ≤ ρ∗: (1−3ρ0(y))(x0−x1) − x1 ≥ 0 and ρ
′′

0 (y) ≥
0. In this case ρ(y) is convex decreasing.

• ρ0(b) ≥ ρ∗: (1−3ρ0(y))(x0−x1) − x1 ≤ 0 and ρ
′′

0 (y) ≤
0. In this case ρ(y) is concave decreasing.

• ρ0(0) > y∗ > ρ0(b): Then ρ
′′

0 (y) ≤ 0 for y ≤ y∗ and
ρ

′′

0 (y) ≥ 0 for y ≥ y∗. Hence ρ(y) is strictly concave de-
creasing before the inflexion point y∗ and strictly convex
decreasing after.

Theorems 1 and 2 are illustrated in Figure 2. The figure also
shows the asymptotic properties of v(y) and ρ0(y), to which we
now turn.

D. Asymptotic properties

We will prove that v(y) and ρ0(y) take the form shown in the
right-hand column of Figure 2 asymptotically as x0 → ∞.

We make more assumptions:
A3: Given any x0 ≥ 0, the solution z(x0) of (10) is con-

tinuous in x0 and that limx0→∞ z(x0) exists. Denote
limx0→∞ z(x0) by z∞ = (p∞

0 , p
∞
1 , . . .).

A4: The pointwise limits of v(y) and ρ0(y) as x0 → ∞, de-
noted by v∞(y) and ρ∞

0 (y), exist. Moreover, relations
(12), (13) and (15) are satisfied in the limit with z(x0),
v(y) and ρ0(y) replaced by z∞(x0), v∞(y) and ρ∞

0 (y)
respectively.

A5: The TCP (equilibrium) algorithm f(p1, τ) is continuous
in its arguments. Moreover, x1 = f(p1, τ) < ∞ when
p1 > 0.

A6: The congestion based dropping g(b, τ) is continuous in
its arguments. Moreover, g(b, τ) → 1 as b→ ∞.

Conditions A5 and A6 are nonrestrictive: A5 says that the TCP
rate is finite if there is any loss, and A6 says that if backlog
grows without bound then eventually all incoming packets will
be dropped. Note that we are not assuming that the limit func-
tions v∞(y) and ρ∞

0 (y) satisfy the ODEs of Section III-B.
We start with a result that says that regardless of the UDP rate

x0, every flow, including UDP flow, occupies less than half of
the queue. This implies that asymptotically as x0 → ∞, con-
gestion based dropping probability r < 1 and queueing delay
τ > 0. These properties are used later to prove the asymptotic
UDP throughput and the asymptotic spatial properties of the
leaky buffer of CHOKe.

Theorem 3. 1) For all x0 ≥ 0, bi ≤ b/2, i = 0, 1.
2) As x0 → ∞

a) h∞
0 = (1 − r)/(2 − r) and h∞

1 = 1/N(2 − r).
b) r∞ < 1.
c) x∞

1 <∞ and τ∞ > 0.
d) b∞i <∞, i = 0, 1

Proof.
1) From (3), 2hi + (1 − hi)r = pi ≤ 1 and hence using (5),

we have

bi
b

= hi ≤ 1 − r
2 − r

The right-hand side is a decreasing function for 0 ≤ r ≤
1 with a maximum value of 1/2 at r = 0.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



2) Since x0(1 − ρ0) ≤ c for all x0, p0 must tend to 1 as
x0 → ∞. Hence 2h0 + (1 − h0)r = p0 → 1. Then
h0 → (1 − r)/(2 − r), or b0 → b(1 − r)/(2 − r). Since
b = b0 +Nb1, we have h1 → 1/N(2 − r).
Suppose r∞ = 1. From (3), 2hi + (1 − hi)r = pi ≤ 1
and hence, for i = 0, 1,

r ≤ 1 − 2hi

1 − hi
≤ 1

with equalities if and only if hi = 0 for i = 0, 1. But this
contradicts that h0 +Nh1 = 1. Hence r∞ < 1.
Consider TCP flow i = 1. Since h∞

1 = 1/(N(2 −
r∞)) > 0 from part 2(a), (4) implies that p∞

1 > 0. By as-
sumption A5, x∞

1 = f(p∞
1 , τ

∞) <∞. Now suppose for
the sake of contradiction that τ∞ = 0. Then (4) implies

1 − p∞
1 = (1 − r∞)(1 − h∞

1 )

but (3) implies

1 − p∞
1 = (1 − r∞)(1 − h∞

1 ) − h∞
1

yielding h∞
1 = 0, contradicting that h∞

1 = 1/(N(2 −
r∞)) > 0. Hence τ∞ > 0.
Finally, if b∞i = ∞, then by assumption A6, we have
r∞ = limx0→∞ g(bi, τ) = 1, contradicting (b).

We next show that the UDP throughput vanishes as x0 grows
without bound. This result is also obtained independently in
[9] and in [14], using different methods. Recall (13) that for
x0 ≥ 0

τ(y) =
∫ y

0

ds

v(s)
.

Theorem 4. As x0 → ∞, x0(1 − p0) = ρ0(b)c→ 0.

Proof. From (23), we have

ρ′
0(y)

ρ0(y)(1 − ρ0(y))
= β(x0 − x1)

1
v(y)

where β = ln(1 − 1/b). Integrating both sides from 0 to y, we
get

ln
ρ0(y)

1 − ρ0(y)
− ln

ρ0(0)
1 − ρ0(0)

= β(x0 − x1)τ(y)

Hence

ρ0(y) =
aeβ(x0−x1)τ(y)

1 + aeβ(x0−x1)τ(y) (24)

where

a = ln
ρ0(0)

1 − ρ0(0)
(25)

UDP throughput share x0(1−p0)/c is ρ0(y) evaluated at y = b
where τ(y) = τ . From Theorem 3(c), limx0→∞ τ(b) = τ∞ >
0, and hence by Lemma 5 below, limx0→∞ ρ0(b) = 0.

The following lemma implies that, asymptotically as x0 →
∞, not only does the throughput of UDP x0(1 − p0) → 0,
moreover, all UDP packets are dropped before the first point
where τ(y) is nonzero.

Lemma 5. If limx0→∞ τ(y) > 0, with y possibly a function of
x0, then

lim
x0→∞

ρ0(y) = lim
x0→∞

aeβ(x0−x1)τ(y)

1 + aeβ(x0−x1)τ(y) = 0

Proof. We will show that the numerator of (24) tends to 0 as
x0 → ∞. From Theorem 2, we have

ρ0(0) =
x0(1 − h0)

x0(1 − h0) +Nx1(1 − h1)
(26)

and hence from (25), we have

a = ln
x0(1 − h0)
Nx1(1 − h1)

The numerator is then

ln
x0(1 − h0)
Nx1(1 − h1)

· eβ(x0−x1)τ(y)

From Theorem 3, as x0 → ∞, h∞
i < 1, i = 0, 1, and

x∞
1 < ∞. Moreover, from Theorem 3(d), b∞ < ∞ and hence
β∞ = ln(1 − 1/b∞) < 0. Then, if limx0 τ(y) > 0, it can
be shown that a grows at most logarithmically to ∞, while
eβ(x0−x1)τ(y) tends at least exponentially to 0. Hence the nu-
merator aeβ(x0−x1)τ → 0.

The next result says that the asymptotic spatial distribution
ρ∞
0 (y) of UDP takes the form shown in Figure 2.

Theorem 6. Let y∗ := b∞(1 − r∞)/(2 − r∞). Then

ρ∞
0 (y) =

{
1, 0 ≤ y < y∗

0, y∗ < y ≤ b∞

Proof. From Theorem 4, we know ρ∞
0 (b) = 0. Hence we can

define

ŷ := inf{ y | ρ∞
0 (y) = 0 }

Let y′ be any point with ρ∞
0 (y′) = 1. One exists because, from

proof of Lemma 5, we know ρ∞
0 (0) = 1 (see (26)). Consider

the midpoint y′′ between y′ and ŷ, y′′ = (y′ + ŷ)/2. It suffices
to prove that (i) either ρ∞

0 (y′′) = 1 or y′′ = ŷ, and (ii) ŷ = y∗.
(i) Suppose ρ∞

0 (y′′) < 1. We need to show that y′′ = ŷ.
Since ρ0(y) is decreasing y for any finite x0 ≥ x1 (Theorem 2),
its limit ρ∞

0 (y) is nonincreasing in y. Hence, y′′ ≤ ŷ. Suppose
for the sake of contradiction that δ := ŷ − y′′ > 0.

We first prove that v∞(y′′) < ∞. Consider for any finite
x0 ≥ 0 the quantity ρ1(y)v(y), the TCP flow rate at position y′′

in the queue. Using (19) and (17), we have

ρ1(y′′)v(y′′) ≤ ρ1(0)v(0) = x1(1 − r)(1 − h1)

Taking limit as x0 → ∞, we have

ρ1(y′′)v(y′′) ≤ x∞
1 (1 − r∞)(1 − h∞

1 )

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



which is bounded by Theorem 3. Note that ρ∞
0 (y′′) < 1 by

definition of y′′. Since ρ0(y′′)+Nρ1(y′′) = 1, we have (taking
limit of the corresponding finite-x0 expression as x0 → ∞)

ρ∞
0 (y′′) =

ρ∞
0 (y′′)v∞(y′′)

ρ∞
0 (y′′)v∞(y′′) +Nρ∞

1 (y′′)v∞(y′′)
< 1

Hence, ρ∞
1 (y′′)v∞(y′′) < ∞ implies ρ∞

0 (y′′)v∞(y′′) < ∞.
This in turn implies that v∞(y′′) < ∞ since ρ∞

0 (y′′) > 0 by
definition of y′′ (otherwise, y′′ = ŷ and we are done).

Now define y′′′ be the midpoint of y′′ and ŷ, y′′′ = (y′′ +
ŷ)/2. Then ρ∞

0 (y′′′) > 0 by definition of ŷ. We now show that
v∞(y′′) <∞ implies ρ∞

0 (y′′′) = 0, a contradiction.
From Theorem 1, v(y) is strictly decreasing in y and hence

τ(y) defined by (13) satisfies

τ(y′′′) =
∫ y′′′

0

ds

v(s)

≥
∫ y′′′

y′′

ds

v(s)

>

∫ y′′′

y′′

ds

v(y′′)

=
δ

2v(y′′)

Taking limit as x0 → ∞, we have

τ∞(y′′′) ≥ δ

2v∞(y′′)
> 0

where the last inequality follows from v∞(y′′) < ∞. Hence
ρ∞
0 (y′′′) = 0 by Lemma 5. But this contradicts the definition

of ŷ since y′′′ < ŷ. Hence we must have y′′ = ŷ.
(ii) The above shows that ρ∞

0 (y) takes the form shown in Fig-
ure 2. Then, by (15) and Theorem 3, we have (using assumption
A4)

1 − r∞

2 − r∞
b∞ =

∫ ŷ

0
dy = ŷ

This completes the proof.

The next result proves the shape of v∞(y).

Theorem 7. Let y∗ = b∞(1 − r∞)/(2 − r∞). Then

v∞(y) =
{

∞, 0 ≤ y < y∗

c− β∞x∞
1 (b∞ − y), y∗ < y ≤ b∞

Proof. We first prove for y < y∗ and then for y > y∗.
Assume there exists y′ < y∗ such that v∞(y′) < ∞. Con-

sider y′′ = (y′ + y∗)/2. Since v∞(y) is nonincreasing in y,
we have v∞(y) ≤ v∞(y′) < ∞ for any y′ ≤ y ≤ y′′. Hence,
using assumption A4, we have

τ∞(y′′) =
∫ y′′

0

ds

v∞(s)

≥
∫ y′′

y′

ds

v∞(s)

≥ y′′ − y′

v∞(y′)
> 0

Then Lemma 5 implies that ρ∞
0 (y′′) = 0. Since y′′ < y∗, this

contradicts theorem 6. So for y < y∗, v∞(y) = ∞.
For y > y∗, we prove the theorem in 4 steps.

Step 1: v∞(y) <∞ for all y > y∗.
Using (19) and (17), and taking limit as x0 → ∞, we have

ρ∞
1 (y)v∞(y) ≤ ρ∞

1 (0)v∞(0) = x∞
1 (1 − r∞)(1 − h∞

1 )

But by Theorem 6, ρ∞
1 (y) = (1 − ρ∞

0 (y))/N = 1/N for
y > y∗, and by Theorem 3, the right-hand side is finite. Hence
v∞(y) <∞ for all y > y∗.
Step 2: τ∞(y) > 0 for y > y∗.
Fix y > y∗. Since v(y) is strictly decreasing (Theorem 1) we
have, for each finite x0 ≥ 0,

τ(y) =
∫ y

0

ds

v(s)

>

∫ y

y∗+y
2

ds

v(s)

>
y − y∗

2v
(

y∗+y
2

)

Taking limit as x0 → ∞, we have for y > y∗

τ∞(y) ≥ y − y∗

2v∞
(

y∗+y
2

) > 0

Step 3: There exists an integrable function H
x0(y) such that,

for all x0 ≥ 0 and y > y∗,

Hx0(y) := x0ρ0(y) + x1(1 − ρ0(y)) ≤ H
x0(y)

From (24) we have

x0ρ0(y) =
x0ae

β(x0−x1)τ(y)

1 + aeβ(x0−x1)τ(y)

Since τ∞(y) > 0 for all y > y∗, the proof of Lemma 5 shows
that, as x0 → ∞, a grows at most logarithmically to ∞ while
eβ(x0−x1)τ(y) grows at least exponentially to 0. Hence the nu-
merator x0ae

β(x0−x1)τ(y) tends to 0 as x0 → ∞. Moreover,

m(y) := max
x0≥0

x0ae
β(x0−x1)τ(y)

is finite. Hence, for x0 sufficiently large (so that a > 0), we
have

x0ρ0(y) ≤ m(y)

Note that m(y) is independent of x0. Hence if we define
H

x0(y) = m(y) + x1, then Hx0(y) ≤ H
x0(y). Since x1 is

finite for all x0 (Theorem 3),H
x0(y) is integrable over (y∗, b).1

Step 4: v∞(y) = c− β∞x∞
1 (b∞ − y) for y > y∗.

Fixed y > y∗. From (22), we have, for each x0 ≥ 0,

v(y) = c− β
∫ b

y

(ρ0(s)x0 + (1 − ρ0(s))x1)ds

= c− β
∫ b

y

Hx0(s)ds

1To be precise, b = bx0 is a function of x0. To make the domain of inte-
gration independent of x0, extend Hx0 (y) and H

x0 (y) to (y∗, maxx0 bx0)
by defining them to be zero for y not in (y∗, bx0 ).
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Taking limit as x0 → ∞, we have

v∞(y) = c− β lim
x0→∞

∫ b

y

Hx0(s)ds

From Step 3, Hx0(s) is upper bounded by an integrable func-
tion and converges pointwise to H∞(y) = x∞

1 as x0 → ∞.
Hence Legesgue convergence theorem applies (see [12, p.229],
[1, pp. 215]):

lim
x0→∞

∫ b

y

Hx0(s)ds =
∫ b∞

y

H∞(s)ds = x∞
1 (b∞ − y)

Hence, v∞(y) = c− β∞x∞
1 (b∞ − y) for y > y∗.

This completes the proof.

We summarize these structural properties. First, when x0 is
large, the spatial distribution ρ0(y) decreases rapidly toward the
head of the queue. This means that most of the UDP packets are
dropped before they reach the head. It is therefore possible to
simultaneously maintain a large number of packets (concentrat-
ing near the tail) and receive a small bandwidth share, in stark
contrast to the behavior of a non-leaky FIFO buffer. Indeed, as
x0 grows without bound, UDP share drops to 0. Second, the
packet velocity is infinite before the position y∗ because UDP
packets are being dropped at an infinite rate until y∗.

IV. SIMULATION RESULTS

We implemented a CHOKe module in ns-2 version 2.1b9 and
have conducted extensive simulations using the network shown
in Figure 1 to study the equilibrium behavior of CHOKe. There
is a single bottleneck link from router R1 to router R2 shared by
N TCP sources and one UDP source. The UDP source sends
data at constant rate (CBR). For all our simulations, the link
capacity is fixed at c = 1Mbps and the round trip propagation
delay is d = 100ms. Packet size is 1KB. The simulation time is
200–300 seconds.

We use RED+CHOKe as the queue management with RED
parameters: min th b = 20 packets, max th b = 520 packets,
pmax = 0.5. This defines the function g in our model (9). For
the TCP function in (8), we use ([5]):

p1 =
2

2 + x2
1(d+ τ)2

(27)

We vary UDP sending rate x0 from 12.5pkts/s to 1250 pkts/s
and the number N of TCP flows from 12 to 64 to observe their
effect on the equilibrium behavior of CHOKe. We measure,
and compare with our numerical solutions, the following quan-
tities

1) aggregate queue size b
2) UDP bandwidth share µ0 = ρ0(b)
3) TCP throughput x1(1 − p1) = µ1c = ρ1(b)c
4) spatial distribution ρ0(y) of UDP packets

The results illustrate both the equilibrium behavior of CHOKe
and the accuracy of our analytical model. They show the ability
of CHOKe to protect TCP flows and agree with those aggregate
measurements of [10]. Moreover, they exhibit the fine struc-
ture of queue dynamics, and confirm the spatial character of
our CHOKe model.

We next discuss these results in detail.

A. Effect of UDP rate x0

First we study the effect of UDP sending rate on queue size
and bandwidth allocation. The number of TCP sources is fixed
at N = 32. We vary the UDP sending rate x0 from 0.1× link
capacity to 10× link capacity. The results are in Figure 3.

The aggregate queue length b steadily increases as UDP rate
x0 rises. UDP bandwidth share µ0 = ρ0(b) rises, peaks, and
then drops to less than 5% as x0 increases from 0.1c to 10c,
while the total TCP throughput follows an opposite trend even-
tually exceeding 95% of the capacity. We have shown both
TCP throughput – the total number of TCP packets, from allN
flows, transmitted by the link during each simulation – and TCP
goodput – sum of largest sequence numbers in each simulation.
TCP goodput does not count retransmitted packets and is hence
lower than TCP throughput. These results match closely those
obtained in [10], and with our analytical model.

Figure 4 shows the spatial distribution ρ0(y) of UDP packets
(compare with Figure 2(b)). To get the packet distribution from
each simulation (x0 value), we took J = 3000 snapshots of the
queue every 100ms for 300 seconds. From the J sample queue
sizes bj , we first calculated the average bavg :=

∑
j b

j/J . The
distribution was estimated over this range [0, bavg], as follows.
For each y ∈ [0, bavg], the sample distribution is calculated as

ρ(y) =
1
J

∑

j

1j(y)

where 1j(y) is 1 if the packet in position 
ybj/bavg� of the jth
snapshot is UDP, and 0 otherwise. This distribution is plotted
in Figure 4, together with the numerical solution of our CHOKe
model.

When x0 = 0.1c (Figure 4(a)), UDP packets are distributed
roughly uniformly in the queue, with probability close to 0.08 at
each position. As a result, its bandwidth share is roughly 10%.
As x0 increase, ρ0(y) concentrates more and more near the tail
of the queue and drops rapidly toward the head, as predicted by
Theorems 2 and 6.

Also marked in Figure 3(b), are the UDP bandwidth shares
corresponding to UDP rates in Figure 4. As expected the UDP
bandwidth shares in 3(b) are equal to ρ0(b) in Figure 4. When
x0 > 10c, even though roughly half of the queue is occupied by
UDP packets, almost all of them are dropped before they reach
the head of the queue!

B. Effect of number N of TCP flows

Figure 5 shows the effect ofN on aggregate queue size b and
on per-flow TCP throughput µ1c = ρ1(b)c.

Not surprisingly, the queue size increases and per-flow TCP
throughput decreases with N as the queue becomes more con-
gested. Again, the simulation and analytical results match very
well, further validating our model.

V. DISCUSSION

Our model captures well the equilibrium behavior of CHOKe
under the assumption that the queue size b is between b and b.
This holds if c is sufficiently small or N is sufficiently large.
A sample queue size is shown in Figure 6. It may not hold for
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Fig. 3. Effect of UDP rate x0 on queue size and bandwidth allocation. N =
32, x0 = 0.1c to 10c, c = 1Mbps, simulation duration = 300sec.
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(c) UDP rate x0 = 10c
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(d) UDP rate x0 = 100c

Fig. 4. Spatial distribution ρ(y) of packets in queue at different UDP rates x0.
N = 32, c = 125pkts/s, simulation duration = 300sec. (Compare with Figure
2(b).)
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Fig. 5. Effect of number N of TCP flows on aggregate queue b and per-flow
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Fig. 6. Queue Size at N=40

small N .
With smaller N , each TCP source gets a larger bandwidth

share, and a larger TCP sending rate requires a lower drop-
ping probability. However, when CHOKe is active, it imposes
a lower bound on the dropping probability: from (1)

pi = 2hi + (1 − hi)r

≥ 2hi ≥ 1
N

(28)

where the last inequality follows from (5) and the fact that UDP
packets occupy at most half of the queue (Theorem 3(1)).

We can estimate the minimum N with which CHOKe is al-
ways active. Approximate the TCP function in (27) by

p1 =
2

x2
1(d+ τ)2

Combining with (28) to get

2N
x2

1(d+ τ)2
≥ 1

When UDP sending rate is large, TCP flows take almost all the
bandwidth, so

x1 ≈ c

N

Around b, queueing delay is roughly

τ ≈ b

c

Putting all these together, the minimum number of TCP flows
required for CHOKe to remain active is roughly

N ≥ 3

√
(cd+ b)2

2

Using the same parameters as in the last section, we can es-
timate the minimal N to be 8.43. When N = 8, queue size
oscillates around b = 20 packets, constantly turning CHOKe on
and off, as shown in Figure 7 (compare with Figure 6).
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Fig. 7. Queue Size at N=8
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The same phenomenon is observed when c increases (with
fixed N ). The lower bound on dropping probability when
CHOKe is active, p1 ≥ 1/N , eventually prevents TCP flows
from making full use of the available capacity. An interest-
ing positive effect is that the queue length is controlled to stay
around b.

When there are more than one unresponsive UDP flows,
CHOKe may not be very efficient in protecting TCP traffic. The
UDP flows may take a larger bandwidth share at high sending
rate.

VI. CONCLUSIONS

CHOKe is completely stateless and extremely simple to im-
plement, yet surprisingly effective in bounding the bandwidth
share of UDP flows. As shown in the simulations of [10],
as UDP source rate increases, its bandwidth share eventually
drops to zero, exactly opposite to how a regular FIFO buffer
behaves. To understand this precisely requires a careful study
of the queueing process under CHOKe.

In this paper, we have developed a model of CHOKe. Its
key features are the incorporation of the feedback equilibrium
of TCP and a detailed modeling of the queue dynamics. We
have introduced the concepts of spatial distribution and veloc-
ity of packets in the queue. We prove structural and asymptotic
properties of these quantities that make it possible for UDP to
simultaneously maintain a large number of packets in the queue
and receive a vanishingly small bandwidth share, the mecha-
nism through which CHOKe protects TCP flows.

Finally, we remark that CHOKe algorithm may be constantly
turned on and off when the link capacity is high or the num-
ber of TCP sources is small. This can prevent TCP flows from
making full use of available capacity but regulate the queue size
to around b.
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