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Abstract—In this paper we analyze the M/G/1 processor shar-
ing queue with heavy tailed services and with impatient customers.
It is assumed that impatience depends on the value of the service
required. We prove that a reduced service rate (RSR) approxi-
mation holds for estimating the sojourn time of a customer in the
system, when the queue capacity is finite or infinite. This allows us
to evaluate the reneging probability of customers with very large
service times. We then use these results to investigate the impact of
admission control on a link of a packet network. Admission con-
trol simply consists of limiting the number of simultaneous con-
nections. It turns out that there is a real benefit for the efficiency
of the system to perform admission control: It globally increases
the fraction of customers, who complete their service (i.e. without
being impatient). Finally, we investigate the fairness of the system
and propose a criterion to assess the capacity of the system so as
to allow the completion of very large service times.

Index Terms—Admission control. Elastic traffic. Processor
sharing. Reduced service rate. Heavy tails.

I. INTRODUCTION

In spite of the fact that over the past few years quality of ser-
vice (QoS) issues have become less critical for backbone packet
networks thanks to over-dimensioning, QoS is still a major con-
cern for network operators in the design of access networks.
Before this dichotomy between access and backbone networks,
the need for QoS to emerging multimedia and business Internet
applications has led the IETF to introduce a series of general
traffic management tools. This has given rise to the IntServ
and DiffServ models along with the specification of MPLS. All
these tools are aimed at describing, in one way or another, the
packet flows generated by applications in order to provision
sufficient resources in the network so as to control the QoS
level offered by the network; QoS is in general expressed in
terms of minimum bandwidth, transfer delays, information loss,
etc. . . For this purpose, packet flows, which may correspond to a
single application (micro-flow) or to an aggregate (macro-flow),
are described by means of traffic parameters, namely the well-
known (σ, ρ, π) triplet, which is the basic object of network
calculus. (The quantities π and ρ denote the mean and peak
rates, respectively and σ is the bucket size.) Traffic parameters
are used in particular by admission control algorithms imple-
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mented in network elements, which are in charge of limiting
the load so as to meet the QoS requirements.

Recognizing that the declaration of traffic parameters is a
difficult task for users in general and that a small inaccuracy
when assessing traffic parameters may cause excessive packet
discarding by traffic policers and then result in a severe degra-
dation of the QoS perceived by users, some authors have re-
cently advocated the introduction of a “smoother” admission
control. For instance, Bonald and Roberts [1] and Bonald et
al. [2] have proposed to control an Internet bottleneck link by
blocking some of the flows when its load is above some thresh-
old. For this purpose, they suggest the introduction of an “appli
flow” identifier in order to clearly identify flows on the bottle-
neck. Filtering flows can also be performed by examining port
numbers in TCP segments.

One of the major characteristics of the current Internet is in
that no flows are blocked by the network. The counterpart is
that the number of flows simultaneously active on a link may be
very large. As a consequence, the service rate of each flow may
take very small values. This may lead some users to interrupt
their flows due to impatience (for instance when retrieving large
files). This gives rise to reneging, which corresponds to events
that abort service prior completion. A fraction of the link rate is
thus used by flows, which are eventually not completed, thereby
increasing the reneging probability of other flows.

In this paper the performance of a network link supporting
long elastic flows, which may reneg, is investigated. A network
link crossed by elastic traffic is considered and the transmission
capacity is assumed to be shared according to processor shar-
ing discipline, which is the ideal bandwidth sharing achieved
by TCP. By assuming that impatience is proportional to ser-
vice and that service times are heavy tailed, a simple admission
control of flows is proposed. The improvement of the global
performance of the system is examined as well as the positive
impact on the reneging probability of a given flow admitted in
the system. Problem of fairness are also discussed: does a very
long flow always reneg even with admission control ? To ad-
dress this point, we compute the reneging probability of very
large files and we investigate how reneging could be avoided
for such flows.

The basic queueing system considered in this analysis is the
M/G/1 processor sharing (PS) queue with or without impa-
tience and with finite or infinite capacity. It is generally quite
difficult to get explicit results concerning queues with impa-
tience. For this reason, the purpose of this paper is to give qual-
itative results on the behavior of these queues. For theM/G/1
PS queue under consideration, a result of independent interest
is proved: under some assumptions, a RSR (Reduced Service
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Rate) approximation (also called Reduced Load Equivalence,
see Agrawal et al. [3]) is shown to hold when the services are
heavy tailed. This RSR result sheds some light on the fairness
issues mentioned above and may be used to reduce the impa-
tience of very large flows.

The organization of this paper is as follows: In Section II,
the problem formulation is presented. In Section III, a general
reduced service rate (RSR) approximation is proved. Since the
quantities of interest are rather difficult to compute explicitly, an
approximating model is introduced. In Section IV, the reneging
probability probability for the global system and for large flows
is investigated. Simulation results and comparisons between the
real system and the approximating model are also presented in
this section. In Section V, we discuss some possible extensions
of the model. Concluding remarks are presented in Section VI.

II. PROBLEM FORMULATION

A. Modeling a bottleneck link

Consider a bottleneck link, which may be for instance the
link at the output of a LAN, connecting the LAN to the Inter-
net, or the link between an access network (e.g., an ADSL area)
and the Internet backbone. On this link, several flows with var-
ious characteristics are multiplexed. In a first approach, let us
consider elastic flows only, that is, flows which are able to adapt
to the state of the network (for instance to adjust their transmis-
sion rate to the limited transmission capacity at the bottleneck
link). In the Internet, such flows are regulated by TCP. Other
flows (e.g., UDP flows) will appear as noise later in the analy-
sis.

Some flows may be very short and correspond to short file
transfers (typically, Web page retrieval). Such flows do not
leave the slow start phase and are not very sensitive to the rate
sharing performed by TCP; those flows are referred to as mice.
(See Floyd [4].) From a modeling point of view, the aggregate
corresponding to the superposition of a large number of short
flows is in fact a noise traffic, which reduces the transmission
capacity of longer data transfer.

At the other extreme, long file transfers (referred to as ele-
phants) are more sensitive to rate sharing achieved by TCP. (
Typically, a large flow corresponds to a data transfer of sev-
eral Mbytes.) In a first approximation it is assumed that TCP
achieves a fair sharing of the transmission capacity described by
the processor sharing (PS) discipline. See Kelly [5] and Mas-
soulié and Roberts [6] for fairness issues in TCP and Thompson
et al. [7] for the mice/elephants dichotomy. The performance of
the system and the efficiency of admission control algorithms
depend on the distribution of the volume (in Mbytes) of flows.
Measurements on Internet links tend to show that the volume of
long flows are heavy tailed (namely with a Pareto tail distribu-
tion). For this reason, an M/G/1 PS queue with heavy tailed
service distributions shall be considered.

The time needed to transmit a file with the PS discipline is
very sensitive to the load of the link. At equilibrium, the mean
transmission time of a flow of size x is given by x/c(1 − ρ),
where ρ is the average load of the flows and c the capacity of the
link. When ρ is close to 1, the transmission time of a flow can
be very large, which may cause a user to interrupt its session.

A key property to account for when analyzing the quality of
service perceived by users is their impatience.

In this context, since some flows have to be rejected, the pur-
pose of admission control is to reject flows in a minimal way so
that very few of the accepted flows shall experience impatience
during their transmission. When properly done, admission con-
trol has several advantages:

• To reject flows before any processing, thereby reducing the
overhead of the impatience.

• To increase the proportion of successful transmissions.
Since we are considering ordinary elastic traffic, contrary with
usual situations in telecommunications, admission control can-
not be performed by using an explicit characterisation of flows
(like the (σ, ρ, π) triplet). In this setting, Bonald et al. [2] pro-
posed admission control based on an estimation of the load of
the link. The admission control considered in this paper is based
on the number of accepted flows.

As mentioned earlier, we focus in a first step on traffic of-
fered by elephants. The perturbation due to streaming flows and
shorter flows (typically mice) will be be accounted for later on
(see Section V). The primary objective of this paper is to qual-
itatively study the performance of admission control for long
elastic flows.

B. Definitions and notations

Throughout this paper, we consider a single-server queue
with server working at unit speed. Customers (namely long
elastic flows) arrive at rate λ and require heavy-tailed service
times with generic service times B and with impatience time
C. Customers are served according to the PS discipline and a
customer leaves the system if it has completed its service or if
its sojourn time in the system exceeds C.

Impatience. Customers, who retrieve large files, are ready to
wait more than customers retrieving smaller files. The impa-
tience C of a customer may be any non-decreasing concave
function of its service time B, if we consider that customers
are more and more impatient as time to complete a file transfer
becomes large. For admission control we shall assume that im-
patience is proportional to service, namely C = θB for some
real number θ > 1.

Admission control. It simply consists in fixing some value N
such that any connection is rejected, when N connections are
already accepted. This is equivalent to say that the waiting room
of the queue is of size N .

Loss probability. When the number of flows which can be si-
multaneously active is limited to N (the buffer capacity), PN

denotes the rejection probability (i.e., the fraction of customers,
who cannot enter the system because of the buffer limitation)
and κN denotes the fraction of customers, who leave the sys-
tem because of impatience. The global loss probability πN in
the system is defined by

πN = κN + PN . (1)

1−πN is the fraction of arriving customers, who complete their
service (i.e., who can enter the system and who do not leave
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because of impatience). When the buffer capacity is infinite,
the rejection probability is clearly equal to 0 (i.e., P∞ = 0).

Efficiency of admission control. Admission control is said to
be efficient when N can be chosen so that κN � PN while
πN ≤ π∞, i.e., when impatience has significantly less im-
pact than rejection on the global loss probability, which is itself
less than the global loss probability without admission control.
Thus, we may expect that the QoS perceived by users, who are
admitted in the system, is better that the QoS when there is
no control: less customers enter the system but once they are
in, they do not leave because of impatience. Finally, one may
expect an improvement of the utilization of the link (i.e., the
fraction of time the server is transmitting bits, which belong to
customers, who eventually complete their service).

III. A REDUCED SERVICE RATE APPROXIMATION

A. Properties of the amount of service received by a customer

Assuming that a tagged customer stays permanently in the
queue, the function (L(u);u ≥ 0) denotes the number of (non-
tagged) customers in the system at time u. The amount of ser-
vice received by the tagged customer up to time x is thus given
by

R(x) =
∫ x

0

1
1 + L(u)

du. (2)

If B is some random variable independent of (L(u)) and

V = inf{y ≥ 0;R(y) ≥ B},

then V is the time necessary to complete the service of a cus-
tomer arrived at time 0. If this customer is not impatient, V is
its sojourn time in the queue.

Proposition 1: When there is no impatience and provided
that the queue is stable, we have

R(x)/x def→ γN = 1 − (1 − bN )ρ, (3)

a.s. as x→ ∞, where bN is the rejection probability in the pro-
cessor sharing queue with a permanent customer and capacity
N .

Proof: Let us consider a time interval [0, t]. Over this
time interval, nt customers enter the system and bring a total
amount of work equal to

∑nt

k=1Bk where Bk is the service
time required by the kth customer. The total amount of work
received by these customers is

∫ t

0

L(u)
1 + L(u)

du.

Let Dt be the backlog of work remaining at time t. We have

Dt =
nt∑

k=1

Bk −
∫ t

0

L(u)
1 + L(u)

du.

Since the system is stable Dt/t → 0 when t → ∞. It follows
that

(1 − bN )ρ = lim
t→∞

1
t

∫ t

0

L(u)
1 + L(u)

du,

since nt/t → (1 − bN )λ as t → ∞. This completes the proof.

In the case of anM/M/1 PS queue with a permanent customer,
the process describing the number of customers in the system
over time is a birth and death process with birth rates equal to
the arrival rate λ and death rates equal to nµ/(n + 1), n ≥ 1,
where 1/µ is the mean service time. When the queue size is
N < ∞, the stationary distribution for the queue length is given
by

P (L = n) =
(n+ 1)ρn

∑N−1
k=0 (k + 1)ρk

(4)

for 0 ≤ n ≤ N − 1, with ρ = λ/µ. The rejection probability
bN is given by

bN =
(1 − ρ)2NρN−1

NρN+1 − (N + 1)ρN + 1
. (5)

Now, by using insensitivity results for the M/G/1 PS queue
(See Burman [8] for an account on insensitivity results in
queueing systems), the above expression for bN holds for any
service distribution. As a consequence, for an M/G/1/N PS
queue without impatience, we have

γN = (1 − ρ) 1
1 −NρN (1 − ρ)/(1 − ρN )

.

When the impatience time of a customer is C = θB, along
the same lines it is not difficult to show that there is some non-
negative constant γθ,N such that almost surely

R(x)/x→ γθ,N (6)

as x→ +∞. The quantity γθ,N is such that

γθ,N = E
[

1
1 + L

]
,

where L is the number of customers in the M/G/1/N PS
queue with a permanent customer. It turns out that this quantity
is in general very difficult to compute explicitly. This is why
we shall study in the following an approximating model.

B. Sufficient conditions for RSR

IfB is sufficiently heavy-tailed, then the law of large number
will pertain and lead to a result of the form of a RSR approxi-
mation (also called Reduced Load Equivalence), namely

P (V > x) ∼ P (B > γx) (7)

when x → ∞, where γ = γθ,N is defined by relation (6). So
far, this result has been only proven for theM/G/1 queue with
infinite buffer size and without impatience. (See Jelenković and
Momčilović [9].) Our goal in this section is to show that equa-
tion (7) holds for other systems as well, in particular when cus-
tomers may be impatient.

For convenience, we assume that the distribution function of
B has a regularly varying tail, i.e.,

P (B > x) = !(x)x−ν , (8)
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with ν > 1 and ! a slowly varying function. The following
result is crucial.

Proposition 2: The RSR relation (7) holds when
1) B is regularly varying of index ν > 1;
2) R(x)/x → γ a.s. as x→ ∞ with 0 < γ < 1;
3) There exists a positive and finite constant K such that

P (R(x) ≤ x/K) = o(P (B > x)).
Proof: Define g(x) = − log P (B > x). Since B is regu-

larly varying, then g (which is non-decreasing) satisfies

lim
ε↓0

lim sup
x→∞

g(x(1 + ε)) − g(x) = 0.

Thus, for every δ > 0 there exist an ε > 0 and x0 such that for
all x ≥ x0, we have

g(x+ εx) ≤ g(x) + δ.

Iterating this inequality we get, for y ≥ x0,

g(y + kεy) ≤ g(y) + kδ

if x = y + kεx; this leads to the inequality

g(x) − g(y) ≤ δ

⌈
x− y
εy

⌉
≤ C0

(
x− y
y

+ 1
)
, (9)

for C0 = δ/ε and x ≥ y ≥ max(x0, x/K).

Since P (B > R(x)) = I + II + III , where

I = P (B > R(x);R(x) ≥ (γ + ε)x) ,
II = P (B > R(x); (γ − ε)x < R(x) < (γ + ε)x) ,
III = P (B > R(x);R(x) ≤ (γ − ε)x) ,

the three terms I , II and III are treated separately. Note that
term I is less than

P (B > (γ + ε)x) P (R(x) > (γ + ε)x) ,

which is o(P (B > γx)) by Condition 2). Term II can be lower
bounded by

P (γx− εx < R(x) < γx+ εx) P (B > γx+ εx)
∼ P (B > γx+ εx) ,

and upper bounded by P (B > γx− εx), hence, after letting
ε go to 0 and using the regular variation property of the dis-
tribution of B, one gets that the quantity II is equivalent to
P (B > γx).

We now turn to Term III . Write III = IIIa + IIIb dis-
tinguishing between the two respective cases R(x) < x/K and
R(x) ≥ x/K. Condition 3) implies that IIIa can be neglected.
To deal with IIIb, note that

IIIb = E
(
e−g(R(x));x/K < R(x) < (γ − ε)x

)

and then

IIIb = P (B > γx)

× E
(
eg(γx)−g(R(x));x/K < R(x) < (γ − ε)x

)
.

We must show that the second factor converges to 0 as x→ ∞.
Inequality (9) combined with the relation x/K < R(x) < γx
gives

g(γx) − g(R(x)) ≤ C0

(
(γx−R(x))/R(x) + 1

)

≤ C0

(
K(γx−R(x))/x+ 1

)
≤ C0(Kγ + 1),

hence IIIb is upper bounded by

P (B > γx) eC0(Kγ+1)P (R(x) < (γ − ε)x) .

This last quantity is o(P (B > γx)) by Condition 2). This com-
pletes the proof.
The above result is analogous to Theorem 5.1.1 in Núñez-
Queija [10]. The main strength of Proposition 2 is the weakness
of the third condition. In Núñez-Queija [10] a related condition
needs to be satisfied for every K > 1/γ. As indicated in [10],
this condition can only be checked if detailed information of
the sojourn-time distribution is known. In a different context,
similar arguments as in the above proof can be found in Foss
and Korshunov [11].

It is easy to see that the conditions of Proposition 2 are sat-
isfied if the buffer capacity is finite (just choose K in the third
condition of Proposition 2 as the buffer size). In the next section
we show that under some weak condition, the RSR approxima-
tion applies in the case of anM/G/1/∞-PS with impatience.

C. Infinite buffer with impatience

In this section, we consider an infinite processor sharing
queue with heavy tailed service and Poisson arrivals with rate
λ. We assume that the impatience time C of a customer is arbi-
trary and has a finite pth moment.

Proposition 3: Whatever be the dependence of the impa-
tience C with respect to service time, as long as it has a finite
pth moment for some p > 1 and the service time B is regularly
varying of index ν > 1, the RSR approximation (7) holds.

Proof: It is sufficient to show that Condition 3) of
Proposition 2 holds. The variable L(u) is stochastically up-
per bounded by the number of customers L1(u) in anM/G/∞
queue with service time I and arrival rate λ. We obtain that

R(x) ≥
∫ x

0

1
1 + L1(u)

du.

For ε > 0, a customer is said to be “small” if its service time is
smaller than εx, otherwise, the customer is “large”.

Let H1(ε, x) be the number of large customers in the system
at time 0, clearly enoughH1(εx) has a Poisson distribution with
rate λE (I, I > εx). Now let H2(ε, x) be the number of large
customers arrived between time 0 and x,H2(ε, x) has a Poisson
distribution with rate λxP (I > εx).

Finally, set H(ε, x) = H1(εx) +H2(εx). Note that H(ε, x)
has a Poisson distribution with rate

µ1(εx)
def= λE

(
I1{I>εx}

)
+ λxP (I > εx) ,

Thus, there exists some C = Cε such that the inequality
µ1(εx) ≤ Cx1−p holds. This implies that for each k and each
ε > 0,

P (H(ε, x) > k) = O
(
x−k(p−1)

)
= o(P (B > x)),
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the latter inequality being valid if k is chosen big enough such
that k(p − 1) > ν. From now on k is chosen so that this is
satisfied.

The right hand side of the above inequality

P
(
R(x) <

x

K

)
≤ P

(∫ x

0

1
1 + L1(u)

du <
x

K

)

can be split as I+II according to the possibilitiesH(ε, x) ≤ k
or H(ε, x) > k. Note that II is upper bounded by

P (H(ε, x) > k) = O
(
x−k(p−1)

)
= o(P (B > x)).

It has to be shown that I is also o(P (B > x)). For k ≥ 0, if
H(ε, x) ≤ k then

L1(u) ≤ k + L1,<εx(u),

with L1,<εx(u) denoting the number of small customers at time
u in the queue, τ(ε, x) denotes the number of busy periods of
(L1,<εx(u)) completed at time x. Note that, during each busy
period 1 ≤ i ≤ τ(ε, x), the permanent customer gets at least
Ei/(k + 1) units of service, with Ei exponentially distributed
with rate λ. (A busy period always starts with one customer for
an exponential amount of time.)

If for n ≥ 0, Sn
def= E1 + · · · + En, we can conclude

that, if H(ε, x) ≤ k then R(x) ≥ Sτ(ε,x)/(k + 1). Thus it
is enough to show that there exists a finite constantK such that
P

(
Sτ(ε,x) ≤ x/K

)
= o(P (B > x)). For a > 0,

P
(
Sτ(ε,x) ≤ x/K

)
≤ P (τ(ε, x) < ax)

+ P (Sax < x/K) ,

clearly the second term decreases exponentially fast in x, pro-
vided that K is such that aλK > 1. Thus, it remains to show
that

P (τ(ε, x) < ax) = o(P (B > x)).

for some ε and a.
For i ≥ 1, Pi(εx) denotes the length of the ith busy cycle of

theM/G/∞ queue when only small customers are considered,
P0(εx) the remaining busy cycle at time 0. The density function
of P0(εx) is given by P (P1(εx) ≥ y) dy/E (P1(εx)) for y ≥
0.

Since E (P1(εx)) ≤ E (P1(∞)), one can choose a > 0 and
δ > 0 small enough such that aE (P1(εx)) < (1 − δ) for all
ε > 0 and x > 0. If for n ≥ 0, Tn denotes the sum P1(εx) +
· · · + Pn(εx), then

P (τ(ε, x) < ax) ≤ P
(
P0(εx) + T�ax	 > x

)

≤ P (P0(εx) > δx) + P
(
T�ax	 > (1 − δ)x

)
.

This last expression is written as III + IV .
A bound on the tail distribution of P1(εx). Proposition 1 of

Resnick and Samorodnitsky [12] implies that for each ε > 0
there exists some β > 0 such that P (P1(εx) > x) = o(x−β).
Consequently, this implies that P (P0(εx) > x) = o(x1−β).

From this result, it follows that, given δ, one can choose β
large enough and ε small enough such that

III = P (P0(εx) > δx) = o(P (B > x)).

One has to show that IV = P
(
T�ax	 > (1 − δ)x

)
is also

o(P (B > x)). Take q > 0, IV is certainly smaller than

�ax
P (P1(εx) > qx) +

P
(
P1(εx) ∧ qx+ · · · + P�ax	(εx) ∧ qx > (1 − δ)x

)
.

For given q, the first term is of o(P (B > x)) if ε is chosen
suitably small (w.r.t. q). The second term is smaller than

P
(
P1(∞)∧qx+ · · · +P�ax	(∞)∧qx > (1−δ)x

)
. (10)

Since I has finite pth moment, the same holds for Pi(∞), see
e.g. Proposition 1 of Daley [13]. If p1 = E (P1(∞)), for η > 0
define

T̃n(qx) = P1(∞) ∧ qx+ · · · + Pn(∞) ∧ qx− n(p1 + η).

Then, the quantity (10) is given by

P
(
T̃�ax	(qx) > (1 − δ)x− (p1 + η)�ax


)

≤ P
(

sup
n≥0

T̃�ax	(qx) > (1 − δ)x− (p1 + η)�ax

)
.

If η is chosen small so that (1−δ)−(p1+η)a > 0, then Lemma
3.2 (i) of the extension of Jelenković and Momčilović [9] gives
that for any β > 0 there exists a q > 0 such that

P
(

sup
n
T̃n(qx)>(1 − δ)x− (p1 + η)�ax


)
=o

(
x−β

)
.

This completes the proof.
To estimate the reneging probability, we are led to compute

the quantities γθ,N when the buffer capacity is finite and the
corresponding limiting value γθ, when the buffer capacity is
infinite. γθ,N is equal to

E
[

1
1 + L

]

where L is the number of customers in the stationary regime
in the M/G/1/N PS queue with a permanent customer. γθ is
the corresponding quantity, when N = ∞. As mentioned ear-
lier, these two quantities are very difficult to compute explicitly.
This is why we study an approximating model in the next sec-
tion.

D. Approximating model

Let us first consider an infinite capacity system and assume
that service times are exponentially distributed. Given that in
the system considered so far, impatience is proportional to ser-
vice, when the number of customers in the system is greater
than �θ
, it is very likely that customers leave the system due
to impatience. On the contrary, when the number of customers
is less than �θ
, the next departure is certainly due to service
completion. We are thus led to consider a model based on the
M/M/1 PS sharing queue, where customers arrive at the sys-
tem according to a Poisson process with rate λ and leave the
system
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• due to service completion when the number of customers
is less than or equal to �θ
 (with rate µ),

• due to impatience when there are more than �θ
 customers
in the system (with rate nµ/θ).

The above system is slightly different from that analyzed by
Coffman et al [14], where impatience is independent of service.

The process describing the number of customers in the above
system is a birth and death process with birth rates λn = λ for
all n ≥ 0 and death rates µn = µmax(n/θ, 1) for n ≥ 1. The
stationary distribution of the queue size L̃ is then

P
(
L̃ = n

)
=

1
G∞

{
ρn n ≤ �θ
,
ρnθn−�θ	�θ
!/n! n > �θ
, (11)

where G∞ is the normalizing constant, given by

G∞ =
1 − ρ�θ	+1

1 − ρ
+

∞∑

n=�θ	+1

ρnθn−�θ	�θ
!
n!

.

Now, when the buffer capacity is finite (equal to N > �θ
),
the stationary distribution of the queue size L̃N is given by

P
(
L̃N = n

)
=

1
GN

{
ρn n ≤ �θ
,
ρnθn−�θ��θ	!

n! �θ
 < n ≤ N.

with the normalizing constant GN given by

GN =
1 − ρ�θ	+1

1 − ρ
+

N∑

n=�θ	+1

ρnθn−�θ	�θ
!
n!

.

The rejection probability P̃N is

P̃N = P
(
L̃N = n

)
=

1
GN

ρnθn−�θ	�θ
!
n!

,

and the fraction of reneging customers (among all arriving cus-
tomers) is

κ̃N =
1

ρθGN

N∑

n=�θ	+1

n
ρnθn−�θ	�θ
!

n!
. (12)

It is worth noting that in this model, the fraction of reneging
customers is null whenN ≤ �θ
 and the rejection probability is
then equal to the rejection probability in anM/M/1/N queue.

Similar computations can be carried out in the case when
there is one permanent customer in the system. The number
L̃′

N of customers in the system (excluding the permanent one)
evolves as a birth and death process with birth rates λn equal to
λ for all n ≥ 0 and with birth rates µn given by

µn =
{
nµ/(n+ 1) n ≤ �θ
 − 1,
nµ/θ n ≥ �θ
.

The stationary distribution of L̃′
N is given by

P
(
L̃′

N = n
)

=

1
G′

N

{
(n+ 1)ρn, n < �θ
,
�θ
ρnθn−�θ�+1(�θ	−1)!

n! , �θ
 ≤ n ≤ N − 1,
(13)

where G′
N is the normalizing constant.

As we shall see in Section IV-B from simulation results, L̃N

(resp. L̃′
N ) yields a quite fair approximation of the number of

customers in the M/G/1 PS queue with impatience and with-
out a permanent customer (resp. with a permanent customer).
As a consequence, we shall approximate the constant γθ,N by
the mean value

γ̃θ,N = E

[
1

1 + L̃′
N

]
.

IV. ADMISSION CONTROL CONSIDERATIONS

A. Minimal value for the choice of the buffer capacity

The M/G/1 PS model is used to describe the dynamic be-
havior of flows multiplexed on the bottleneck link. The impa-
tience of a user is given by C = θB with θ > 1. If flows are
rejected when the number of accepted flows is N0 = �θ
, then
users cannot be impatient anymore since

∫ θB

0

1
1 + L(u)

du ≥ θ

N0
B ≥ B.

For this choice of the capacity, as soon as a flow is accepted,
it certainly completes its transmission. Note that in this case,
there is no overhead due to impatience. The blocking probabil-
ity bN defined by (5) determines the loss rate of this system.

In spite of the fact that this choice of the buffer size is very
conservative, it turns out to be quite efficient in practice. The
quantity bN has to be compared with the reneging probability,
which is the loss probability in the system when the buffer size
is infinite.

The exact evaluation of the reneging probability, when the
buffer is infinite, is very difficult. Nevertheless, it turns out
that the approximating model described in Section III-D proves
quite accurate, as shown in the next section, where simulation
results are reported.

B. Simulation results

Figures 1-3 show the probability distribution of the number
of customers in the M/G/1 PS queue with an impatience co-
efficient θ = 10 for different values of the load ρ, when ser-
vice times are exponential or Pareto distributed with β = 1 and
α = 1.25. In this latter case, the complementary probability
distribution function of service times is given by

P (B > x) =
1
xα
.

for large x.
From these figures, it turns out that the approximating model

is quite accurate for estimating the number of customers in the
queue, when the buffer capacity is infinite. The same simu-
lation experiments have been performed when the impatience
coefficient θ is equal to 3. The results also show that L̃ is a fair
approximation of the number of customers in the queue with
impatience.

It follows that the reneging probability can be well approx-
imated by κ̃N given by equation (12) when N = ∞. Table I
gives the reneging probability κ∞ for exponential and Pareto
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Pareto service (α = 1.25)
Exponential service
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Fig. 1. Approximation vs. simulation results for exponential and Pareto (ν =
1.25) service times for ρ = 80%, θ = 10.
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Fig. 2. Approximation vs. simulation results for exponential and Pareto (ν =
1.25) service times for ρ = 100%, θ = 10.

service times. Once more, we can observe that the approxima-
tion κ̃∞ is quite accurate when the load ρ is not too large and
the impatience coefficient θ is sufficiently large. Table I also re-
ports the rejection probability when the buffer capacity is lim-
ited to �θ
. The salient property of the system is that the global
loss probability P�θ	 (in the caseN = �θ
, there is no reneging
as observed in the previous section) is less than the loss proba-
bility when the buffer capacity is infinite (i.e., when there is no
admission control). We hence deduce that there is a real gain in
the global performance of the system, when admission control
is performed.

To further investigate the benefit of admission control, Fig-
ure 4 displays the rejection probability, the reneging probability
and the global loss probability as a function of the buffer capac-
ityN for a load ρ = 80% and an impatience coefficient θ = 10.
We observe that for N ≥ �θ
, there is always a gain to perform
admission control. On the contrary, if the buffer capacity is too
drastically reduced, the rejection probability may be larger than
the reneging probability in the system with no admission con-
trol. There is nevertheless a quite large range of the buffer ca-
pacity such that the global loss probability can be significantly
reduced.

Figure 5 and Figure 6 show the same quantities as Figure 4
for a load ρ = 100% and a load ρ = 120%; the conclusions
remain essentially the same.

In spite of the fact that admission control improves the global

Pareto service (α = 1.25)
Exponential service

Approximation

n

lo
g

P{
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n
}

2520151050
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0.1

0.01

0.001

0.0001

1e-05

Fig. 3. Approximation vs. simulation results for exponential and Pareto (ν =
1.25) service times for ρ = 120%, θ = 10.

limiting value
Global loss

Loss due to impatience
Rejection probability

N

20151050

10

1

0.1

0.01

0.001

Fig. 4. Loss due impatience and to rejection for ρ = 80% and θ = 10.

performance of the system, one may wonder whether the buffer
capacity can be increased while ensuring that very large ele-
phants have a good chance of completing their transmission.
This point, which is more or less related to the fairness of the
system (any customer should have a good chance of completing
its service) is addressed in the next section.

C. Transmission of large files: fairness issues

The value of N0 = �θ
 of Section IV-A is quite conser-
vative. It indeed achieves complete fairness between all cus-
tomers, since impatience is completely eliminated. But, one
may wonder whether the capacity of system could be increased
while keeping fairness between all customers. If the global ob-
jective is to reduce as much as possible the overhead due to
impatience, an option is to secure the success of long transmis-
sions when they are accepted. This option is also meaningful
if the impatience of small transfers is supposed to quite large
compared to their sizes. In this case admission control has to be
fair for the large transfers. Define

N1 = sup{N : θγN,θ > 1},

where γN,θ is defined by (6). Note that N1 ≥ N0. The prob-
ability of reneging when the service is x is given by κN,θ =
P (R(θx)/x ≤ 1).

If θγN,θ < 1, this implies that κN,θ converges to 1 as x →
+∞. In this case, if a large elephant is accepted it will not
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TABLE I
LOSS PROBABILITY κ∞ FOR PARETO (ν = 1.25) AND EXPONENTIAL SERVICE TIMES.

ρ = 80% ρ = 100% ρ = 120%
θ = 3 θ = 10 θ = 3 θ = 10 θ = 3 θ = 10

Pareto (ν = 1.25) 0.3642 7.1014e-2 0.5574 .37630 0.7036 0.7158
Exponential 0.3856 7.7067e-2 0.5681 0.3718 0.7182 0.7279

Approximation 0.3016 7.3926e-2 0.641227 0.3720 0.9164 0.8470
P�θ� 0.1734 2.3493e-2 0.2500 0.0910 0.3219 0.1925

limiting value
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Loss due to impatience
Rejection probability

N

20151050

10

1

0.1

0.01

0.001

Fig. 5. Loss due impatience and to rejection for ρ = 100% and θ = 10.
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Fig. 6. Loss due impatience and to rejection for ρ = 120% and θ = 10.

complete its transmission with a probability close to 1. On the
other hand if θγN,θ > 1, then a large elephant will reneg with
a small probability. In this case the reneging probability can be
estimated as follows. (See Boyer et al. [15] for the proof)

Proposition 4: If B is Pareto with index ν > 1 and if
θγθ,N > 1, then there exists some l∗ ≥ 1 such that

P (R(θx) < x) ≤ C0
1

xl∗(ν−1) .

This result has the following intuitive explanation, based on
large-deviation arguments for heavy tails. For related argu-
ments we refer to Likhanov and Mazumdar [16] and Zwart et
al. [17].

To let the event R(θx) < x happen, the average service rate
should become smaller than 1/θ for a long period of time. In
Boyer et al. [15], it is shown that the most likely way for this
to happen is that there are a certain number of other jobs in the

system which have size O(x). Suppose that there are l other
jobs in the system. together with the large job under consider-
ation, the system behaves like a processor sharing queue with
l + 1 permanent customers. Let γθ,N,l be the average service
rate for this system (with γθ,N,0 = γθ,N ). It is obvious that
γθ,N,l is decreasing in l. The l in the proposition is the small-
est possible number of other elephants making the service rate
smaller than 1/θ, i.e., we have

l∗ = arg min{l : γθ,N,l < 1/θ}.

We refer to Boyer et al. [15] for more precise assumptions, a
formal proof and some extensions of this result. Note that, in
the case θ = N = ∞, we have γ∞,∞,l = (1 − ρ)/(l+ 1), so in
this case it is possible to compute l∗ explicitly. In general, one
has to resort to approximations.

Proposition 2 suggests the following approximation for the
loss probability of an elephant of size x if θγθ,N > 1:

κN,θ ≈ x−l∗(ν−1).

This approximation is exponentially decreasing in l∗, while l∗

becomes larger if N gets smaller. This suggests that admission
control makes sense even if θγθ,N > 1 for all N .

In any case, the buffer capacity N should be chosen between
N0 andN1, a choice close toN0 shall be conservative and ifN
is close to N1, then overhead will significantly increase at the
expense of large elephants.

From the above discussion, we see that that a criterion for
choosing N is that we should have θ.γθ,N > 1. From a numer-
ical point of view, it can happen that γθ,N tends to a limit γθ,∞,
which is such that θ.γθ,∞ > 1. By taking into the approximat-
ing model described in Section III-D, the limiting value γθ,∞
can be approximated by the limit γ̃θ,∞ defined by

γ̃θ,∞ = E
[

1
1 + L̃′

∞

]
.

For instance, when ρ = 80% and θ = 10, the values of
θ.γθ,N as a function of N are given by Table II for the approx-
imating model. In this case, it turns out that the limiting value
γ̃θ,∞ is such that θ.γ̃θ,∞ = 2.35 > 1. This means that the ca-
pacity of the system can be increased without penalizing large
elephants.

For the different set of values ρ = 120% and θ = 10, the
values of θ.γθ,N are given by Table III. In this case, we see that
the limiting value γ̃θ,∞ is such that θ.γ̃θ,∞ = 0.926059 < 1. In
fact, the capacity of the system can be increased up to N = 15
without excessively penalizing large elephants.
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TABLE II
VALUES OF θ.γθ,N FOR DIFFERENT VALUES OF N WHEN ρ = 80% AND

θ = 10.

N θ.γθ,N

Approx. exponential Pareto (α = 1.25)
2 6.923077 6.9213 6.9921
3 5.398230 5.4029 5.4450
4 4.494519 4.4947 4.5566
5 3.901578 3.8990 3.9020
6 3.486347 3.4853 3.5601
7 3.182247 3.1799 3.2421
8 2.952249 2.9466 2.9469
9 2.774097 2.7649 2.9097

10 2.633591 2.6265 2.7229
11 2.530838 2.5085 2.5089
12 2.460334 2.4231 2.519
13 2.414770 2.3656 2.5210
14 2.387035 2.3331 2.3778
15 2.371150 2.3057 2.4185
16 2.362592 2.3096 2.3637
17 2.358255 2.3015 2.3514
18 2.356184 2.2952 2.2913
19 2.355250 2.3044 2.3360
20 2.354851 2.2914 2.3711

TABLE III
VALUES OF θ.γθ,N FOR DIFFERENT VALUES OF N WHEN ρ = 120% AND

θ = 10.

N θ.γθ,N

Approx. exponential Pareto (α = 1.25)
2 6.470588 6.4716 6.5017
3 4.715026 4.7155 4.7441
4 3.668671 3.6712 3.7112
5 2.976640 2.9790 2.9812
6 2.486837 2.4888 2.4775
7 2.123216 2.1235 2.1472
8 1.843530 1.8469 1.8467
9 1.622435 1.6214 1.6573

10 1.443806 1.4438 1.4608
11 1.306832 1.2914 1.2982
12 1.203413 1.1745 1.1849
13 1.125581 1.0909 1.0647
14 1.067186 1.0315 0.9976
15 1.023732 0.9885 0.9662
16 0.991889 0.9581 0.9411
17 0.969077 0.9357 0.9160
18 0.953214 0.9208 0.9150
19 0.942569 0.9099 0.9023
20 0.935707 0.9048 0.9067

V. EXTENSIONS

Some possible generalizations of the above results are briefly
presented. (See the paper in preparation by Boyer et al. [15] for
details.)

A. Fluctuating service rate

To take into account the impact of mice or priority traffic,
one may assume that the service capacity for long elastic flows
fluctuates according to some process Z(t) , t ≥ 0. The quantity
R(x) becomes

R(x) =
∫ x

0

Z(u)
1 + L(u)

du.

To check the RSR approximation, there are again two cases:
when the buffer size is finite or when there is impatience. In the
first case,

R(x) ≥ C0

∫ x

0
Z(u) du.

Thus, the validity of Condition 3 of Proposition 2 crucially de-
pends on properties of the process Z. Some examples in which
Condition 3 is satisfied are:

• (Z(t)) is a Gaussian process with stationary increments
and covariance function regularly varying of index 2H <
2. In particular, this includes fractional Brownian motion
(0 < H < 1).

• Z(u) is a semi-Markov process as long as periods during
which Z(u) is small are sufficiently light-tailed.

The case with N = θ = ∞ has recently been investigated
by Borst et al. [18], for the special case Z(u) > ρ. Using our
methods, it is easy to recover their result: lower bound R(x)
with a standard PS having capacity ρ+ ε, and combine Propo-
sitions 2 and 4.

B. Discriminatory processor sharing

So far, we considered the case when bandwidth is equally
shared among the different elastic flows (max-min fairness).
One may, nevertheless, introduce some weighing coefficients,
in order to give more bandwidth to some flows. This is precisely
the task achieved by the so-called discriminatory processor
sharing discipline. Consider the case with K customer classes,
each class is assigned a weight coefficient φi, i = 1, . . . ,K.

To check whether the RSR approximation still holds, tag a
customer of a given class, say, class 1. In this case R(x) be-
comes (with obvious notation)

R(x) =
∫ x

0

φ1

φ1 +
∑K

i=1 φiNi(u)
du.

Of course, Assumption 3 is satisfied if the total amount of cus-
tomers in the system is bounded. If one considers the case with
impatience and infinite buffer, one can prove condition 3 of
Proposition 2 following exactly the same approach as in Sec-
tion III.
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C. TheM/G/s PS queue

The Processor sharing queue with multiple servers operates
as follows. Suppose the number of customers in the system at
a given time u is Q(u). When Q(u) ≥ s, each customer is
being served with rate s/Q(u). Otherwise, a customer receives
service rate 1. This model formulation could be used to in-
corporate the fact that maximum transmission rates of files can
be substantially smaller than the total system capacity, see e.g.
Kherani and Kumar [19].

For this model, if θ = ∞, one can still compute γ explicitly,
using the fact the model is insensitive. moreover, it can also be
shown that the RSR remains valid for all possible value of N
and θ.

VI. CONCLUSION

In this paper we have used theM/G/1 PS processor sharing
queue with heavy tailed services and with impatience propor-
tional to service to qualitatively study the problematic of admis-
sion control of elastic flows in packet networks. in particular we
have established an RSR approximation for computing the so-
journ time of a flow in the system. This result has been proved
under quite general assumptions. Finally, we have proposed an
approximating model, which yields quite accurate results for
certain values of the parameters (moderate load and sufficiently
large impatience coefficient).

It turns out that under the specific assumption that impatience
is proportional to service, there is a real gain in the global per-
formance of the system, when admission control is performed.
This function simply consists of limiting the number of flows,
which can be simultaneously active on the link. The capac-
ity of the system can be chosen so as to eliminate impatience.
Moreover, numerical evidence shows that the capacity can be
slightly increased, while ensuring a certain fairness (long flows
still have a good chance of completing their service), at the ex-
pense of globally increasing impatience and the loss probabil-
ity.

All the results are encouraging to continue investigations on
admission control of elastic flows in packet networks. In par-
ticular, it has to be checked, whether the results obtained in this
paper for impatience proportional to service remain valid, when
impatience take a more general form (for instance an affine
function of the service time or more generally a concave func-
tion of service). This point will be addressed in a further study.

REFERENCES

[1] T. Bonald and J. Roberts, “Performance modeling of elastic trafic in over-
load,” in SIGMETRICS’2001, (Cambridge, MA, USA), June 2002.

[2] T. Bonald, S. Oueslaty-Boulahia, and J. Roberts, “QOS is still an issue:
we need a new paradigm.” France Telecom technical report, 2002.

[3] R. Agrawal, A. M. Makowski, and P. Nain, “On a reduced load equiva-
lence for fluid queues under subexponentiality,” Queueing Systems. The-
ory and Applications, vol. 33, no. 1-3, pp. 5–41, 1999.

[4] V. Paxson and S. Floyd, “Wide area traffic: the failure of Poisson model-
ing,” IEEE/ACM Transactions on Networking, vol. 3, no. 3, pp. 226–244,
1995.

[5] F. Kelly, A. Maulloo, and D. Tan, “Rate control for communication net-
works: shadow prices, proportional fairness and stability,” Journal of the
Operational Research Society, vol. 49, 1998.
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