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Abstract—We propose a new parametric class of scheduling and
routing policies for open multiclass queueing networks. We es-
tablish their stability and show they are amenable to distributed
implementation using localized state information. We exploit our
earlier work in [1] to select appropriate parameter values and out-
line how optimal parameter values can be computed. We report
numerical results indicating that we obtain near-optimal policies
(when the optimal can be computed) and significantly outperform
heuristic alternatives.

Index Terms— Scheduling, Routing, Multiclass Queueing Net-
works, Fluid models.

I. INTRODUCTION

RECENT trends in communications and computing have
popularized the use of application service providers

(ASPs) in running demanding applications. ASPs own a clus-
ter of servers, including, Web, database, and other application-
specific servers, often connected in a high-speed LAN. Users
can access this cluster remotely to run the desired application,
which can involve multiple tasks, e.g., accessing a Web in-
terface, authentication, queries to database servers, accessing
other application servers. As a result, overall performance is
not only dictated by communication latencies, but, increasingly,
by processing times of these tasks at the various servers.

Typical control actions that affect performance include rout-
ing and scheduling or sequencing. Routing decisions determine
which server, among potentially multiple candidates, will be
assigned to a particular task. Scheduling decisions determine
which task to serve at each point in time. Scheduling can be
done at both the server level, among jobs that wait to be pro-
cessed by the server, and within a server among jobs that wait
to access the various server resources (e.g., CPU, disk, NIC,
etc.). See for example [2] on the importance of the latter sort of
scheduling in Web servers.

In this paper we cast these problems in a unified framework
and consider scheduling and routing in a Markovian Multiclass
open Queueing NETwork (MQNET). Nodes in the network cor-
respond to servers in the cluster and/or internal server resources
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(e.g., CPU of server 1). Jobs to be processed can belong to mul-
tiple types differing in their arrival processes, routes through the
network, processing times, and cost per unit of waiting time.
The objective is to minimize a weighted sum of mean waiting
times. We should note that although our main motivation is to
optimize the operation of server clusters, the model we consider
is rather general and applies to many other domains, including,
manufacturing systems, multiprocessor computer systems, and
communication networks.

Performance analysis in MQNETs is notoriously hard. Only
a very special class of networks, BCMP and Kelly networks,
have a product form solution. Naturally, optimizing an MQNET
is an even harder problem. A version of the scheduling problem
we consider has been shown to be EXP-complete in [3], i.e.,
an exponential-time algorithm is required to obtain an optimal
policy. Under Markovian assumptions the problem can be for-
mulated as a stochastic dynamic programming (DP) problem,
which is only useful in solving very small instances.

There is, by now, a fair amount of work in optimizing
MQNETs. A part of the literature has focused on heavy-traffic,
Brownian, approximations to derive policies in special cases,
see, e.g., [4]. [1] and [5] provide a polyhedral approximation
of the region of achievable performance and obtain bounds on
optimal performance. This approximation is shown to be exact
in the single-node case [6]. The work on the achievable region
has also led to results on stability [7]. Stability is an impor-
tant and more basic question than optimization. It should be
noted that in open MQNETs the usual condition of node uti-
lizations to be less than one is not sufficient for the stability of
all policies. [8] proves a seminal result establishing that the sta-
bility of a fluid model is a sufficient condition for the stability of
the stochastic open MQNET. Several scheduling policies have
been proposed for MQNETs, including, fluctuation smoothing
policies in [9], affine shifts of policies for the fluid model [10],
tracking of heavy-traffic-based policies [11], and tracking opti-
mal trajectories of the fluid model [12].

We propose a new class of policies that “steer” the state of the
system towards a pre-determined and fixed “target”. We will
refer to these policies as target-pursuing. They are motivated
by the efficiency of state feedback tracking policies in control
and the work in [1]. As a first indication of their efficiency
we show that they are stable. To that end, and following [8]
we work with the fluid model. The selection of an appropriate
target significantly affects performance. We argue that the work
in [1] can lead to effective and easily computable targets. As
we will see the proposed policies can be easily implemented
in a decentralized manner. Scheduling and routing decisions
are made at the individual nodes for the jobs they process by
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using only localized state information. We provide illustrative
numerical results suggesting that the proposed policies are near-
optimal (when the optimal can be computed) and outperform
heuristic alternatives.

The remainder of the paper is organized as follows: Sec. II
presents our basic model of open MQNETs where only
scheduling is subject to optimization. Sec. III introduces the
proposed target-pursuing policies. Sec. IV discusses implemen-
tation issues. Sec. V establishes their stability and Sec. VI out-
lines how to tune policy parameters. Sec. VII extends our re-
sults to MQNETs where routing is also subject to optimization.
Sec. VIII reports illustrative numerical results. Conclusions are
in Sec. IX.
Notational conventions: Throughout the paper all vectors are
column vectors unless explicitly stated otherwise. We will use
lower case boldface letters to denote vectors and for economy
of space we will write x = (x1, . . . , xR) for the column vector
x ∈ R

R. Matrices will be denoted by boldface upper case let-
ters and prime will denote transpose. We will use e to denote
the vector of all ones, 0 for the vector of all zeroes, ei for the
ith unit vector, and I for the identity matrix. For any event A,
A will denote its complement and 1{A} its indicator function.
We will also use the following weighted L1 and L2 norms

|x|β �
=

∑R
i=1 βi|xi|, ‖x‖2

β =
∑R

i=1 βr(xr)2. (1)

When we drop the subscript β it will be assumed β = e.

II. THE MODEL AND KEY QUANTITIES

In this section we present the model of the open MQNET we
wish to study and introduce some of our notation. We will, ini-
tially, consider a model of an MQNET involving only sequenc-
ing decisions. Later on, we will broaden the scope and consider
open networks that involve routing decisions as well.

Consider a network that consists of N single-server nodes.
Jobs entering the network are being processed at a series of
nodes before, eventually, leaving the system. Externally arriv-
ing jobs can be of multiple types differing in their arrival pro-
cesses, routes through the network, processing requirements at
the various nodes, and costs per unit of waiting time. To account
for jobs processed at different nodes let us define the class of a
job as the pair of job type and node at which it is waiting for
service. For example, if the network processes K job types,
there can be up to K ×N classes. Let R be the total number of
classes processed by the network.

We let σ(r) denote the node at which class r is served and

Ci
�
= {r | σ(r) = i} the constituency list of node i, that is, the

set of classes served at node i. Routing is probabilistic, namely,
when a class r job finishes processing at nodeσ(r) it is routed to
node σ(r′) and becomes a job of class r′ with probability prr′ ,
or leaves the network with probability pr0 = 1 − ∑R

r′=1 prr′ .
Notice that we identify the external (to the network) world as
class zero. We denote by P = {prr′}R

r,r′=1 the routing matrix,
which, since the network is open, is assumed to be substochas-
tic, or equivalently the matrix (I − P′) is invertible. External
arrivals come according to R independent Poisson processes,
one for each class, with rate λ0r for class r. Finally, service

times are independent of anything else in the network and ex-
ponentially distributed with parameter µr for class r.

Let n(t) = (n1(t), . . . , nR(t)) denote the vector of the num-
ber of jobs present in the network from each class at time t. Un-
der the Markovian assumptions we have imposed, and under a
Markovian policy (i.e., a policy whose actions at time t depend
on n(t) only), the network evolves according to a continuous-
time Markov chain with state n(t). Letting λr denote the total
(external and internal) mean arrival rate of class r jobs, the fol-
lowing traffic equations are satisfied

λr = λ0r +
∑R

r′=1 pr′rλr′ , r = 1, . . . , R. (2)

In matrix notation this system of equations can be written
as λ = λ0 + P′λ, where λ = (λ1, . . . , λR) and λ0 =
(λ01, . . . , λ0R). Since the network is open, (2) has a unique
solution given by λ = (I − P′)−1λ0. Let us now denote by

ρr
�
= λr/µr the fraction of time that server σ(r) spends work-

ing on class r jobs. The utilization of server i is given by
ρi =

∑
r∈Ci

ρr. For stability purposes we will be assuming
that ρi < 1 for all nodes i. Otherwise, the network is unstable
in the sense that |n(t)| → ∞ w.p.1 (with probability one) as
t → ∞.

Another key quantity of interest we will use later on is the
solution L(t) = (L1(t), . . . , LR(t)) to the following system of
equations

Lr(t) = nr(t) +
∑R

r′=1 pr′rLr′(t), r = 1, . . . , R, (3)

or equivalently, L(t) = (I − P′)−1n(t). Lr(t) can be inter-
preted as the expected (with respect to the routing process)
number of jobs in the network at time t that will need to undergo
class r service. Clearly, Lr(t) ≥ nr(t) a.s. (almost surely) for
all r and t.

We are interested in devising a scheduling policy that mini-
mizes the linear cost function

∑R
r=1 hrE[nr(t)], (4)

where h = (h1, ..., hR) are given weights. Using Little’s law
this cost function can be easily transformed into a linear cost
function involving mean waiting times.

III. TARGET-PURSUING POLICIES

In this section we introduce the family of scheduling poli-
cies we will consider. Our motivation comes from [1] and [5]
that provided a characterization of the achievable region for the
performance vector E[n(t)] under all Markovian, preemptive,
and stable policies. Note that by allowing randomized (non-
Markovian) policies, the achievable region can be seen to be
convex. We will denote by A this convex achievable region; ev-
ery point in A is achievable by randomizing or “time-sharing”
among Markovian policies.

More specifically, [1] derives a polyhedron, say P , that con-
tains the achievable region for E[n(t)] (see Fig. 1 for an illus-
tration). Optimizing the linear function h′E[n(t)] overP yields
an optimal solution, say w∗, whose cost is a lower bound on the
optimal performance. Although the polyhedron P has an expo-
nential number of constraints in R, optimizing h′E[n(t)] can
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be done in polynomial time by solving a linear programming
(LP) problem in an associated higher-dimensional polyhedron
with a polynomial in R number of variables and constraints [1].
The bound is often quite tight and is exact in the case of a multi-
class queue with Bernoulli feedback (Klimov’s model, see [6]).
In the general network case though, w∗ is not in A and can not
be achieved by any policy. An interesting question we will try
to address is whether w∗ “contains information” that can lead
to a “good” policy.

h
z∗

w∗

A

P

Fig. 1. The achievable region A (dashed line) included in a polyhedron P
(solid line) obtained in [BPT94]. We denote w∗ �

= argminz∈P h′z and

z∗ �
= argminz∈A h′z.

Motivated by the fact that w∗ can be computed efficiently
(in polynomial time) and that is often “close” to the achievable
region A we will consider a myopic state feedback policy that
aims at “steering” the state of the system towards w∗. Such a
policy belongs to the following class of policies.

Definition 1
We define as target-pursuing (TP) the class of scheduling poli-
cies which at each time t minimize

lim
dt→0

E[‖n(t+ dt) − θ‖ − ‖n(t) − θ‖ | n(t)]/dt

for some norm ‖ · ‖.

More intuitively, TP policies select control actions to minimize
E[‖n(t + dt) − θ‖ | n(t)], for small enough dt, and are state
feedback laws leading to an attractor. Similar policies have
been proven useful in control systems. Note that the selection
of the norm and of θ are intentionally left open. Moreover, as
defined, TP policies are not necessarily work-conserving (i.e.,
idling a server only if no jobs are waiting). We will say work-
conserving TP to refer to their work-conserving versions. In the
sequel, we will consider the weighted norms of (1) and explore
several ways of selecting an appropriate “target” θ. As we have
indicated above, one potential target is w∗. We will see that
setting θ = w∗ often leads to a good policy.

IV. IMPLEMENTATION ISSUES

In this section we discuss how to best implement the pro-
posed class of TP policies. We will see that the implementation
complexity amounts to solving an LP problem at each decision
epoch. However, the computations can be decomposed across
nodes and nodes require only (limited) localized state informa-
tion to perform them.

Consider the network of Section II and let us uniformize the
corresponding continuous-time Markov chain with state n(t).
In particular, define ν =

∑R
r=1 λ0r +

∑R
r=1 µr, and consider

the uniformized version of n(t) with uniform transition rate ν.
Let {τk} be the sequence of epochs at which the uniformized
Markov chain makes transitions; this is also the sequence of
ticks from a “Poisson clock” with rate ν. As n(t) is right-
continuous in time, n(τk) refers to the state right after the kth
transition. In the uniformized Markov chain, scheduling deci-
sions need only to be made at those epochs.

Denote by Br(τk) the event that node σ(r) is working on
class r at time τk, and by Br(τk) its complement. For any
θ ∈ R and any weighted norm ‖ · ‖β it can be verified that
the corresponding TP policy minimizes

νE[‖n(τk+1) − θ‖β | n(τk)] − ν‖n(τk) − θ‖β =
R∑

r=1

λ0r‖n(τk) + er − θ‖β

+
R∑

r=1

µr1{Br(τk)}
[ R∑

r′=1

prr′‖n(τk) − er + er′ − θ‖β

+ pr0‖n(τk) − er − θ‖β

]

+
R∑

r=1

µr1{Br(τk)}‖n(τk) − θ‖β − ν‖n(τk) − θ‖β. (5)

Set x(τk) = (1{B1(τk)}, . . . ,1{BR(τk)}). Notice that the
rhs (right hand side) of (5) is linear in x(τk) and write it as
x(τk)′q(n(τk),θ,β) where q(n(τk),θ,β) ∈ R

R is properly
defined.

It can now be seen that implementing the TP policy which
uses a weighted norm ‖ · ‖β amounts to solving the following
LP problem at each epoch τk

(LP1) minimize x(τk)′q(n(τk),θ,β)
subject to

∑
r∈Ci

xr(τk) ≤ 1, ∀i,
0 ≤ x(τk) ≤ n(τk),

(6)

where x(τk) is the decision vector. The first inequality con-
straint above bounds the utilization of each server by one and
the constraint x(τk) ≤ n(τk) ensures that no capacity is al-
located to empty classes. In the case of the work-conserving
TP, the first inequality constraint becomes an equality. Un-
der both work-conserving and non-work-conserving TP poli-
cies, the feasible set is a polytope with integer extreme points,
thus, the optimal solution, say x∗(n(τk),θ,β), is an integer.
This implies, that at each epoch τk each node allocates its en-
tire capacity to a single class (assuming a single class is also
selected to break ties).

A couple of remarks on the implementation complexity are
in order. The size of (LP1) is O(RN) which is polynomial in
the size of the queueing network. Very large instances of lin-
ear programming problems can be solved efficiently (in polyno-
mial time) using interior-point algorithms. For large networks,
though, the computational requirements for solving (LP1) (in
the form it appears in (6)) can be substantial. Fortunately, the
work can be decentralized and distributed across nodes of the
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network. To see that, and for simplicity of the exposition, let
us consider a specific norm, namely, the L2 norm of (1) with
β = e. Similar analysis can also be done with the remain-
ing norms that will be considered in Section V. We will use
E[‖n(τk+1)− θ‖2 | n(τk)] as the objective function of (LP1),
which is equivalent to the one in (5). After a fair amount of
algebra and dropping constant terms this objective function be-
comes equal to

R∑
r=1

µrxr(τk)(2 − pr0) + 2
R∑

r=1

µrxr(τk)pr0(nr(τk) − θr)

+ 2
R∑

r=1

µrxr(τk)
R∑

r′=1

prr′[nr′(τk) − θr′ − nr(τk) + θr].

Let xi(τk)′qi(n(τk),θ,β) the part of the above involving only
xr(τk) with r ∈ Ci, where xi(τk) is the vector of such xr(τk)
and qi(n(τk),θ,β) is properly defined. Decomposing (LP1)
across nodes, node i has to solve

(D-LP1) min xi(τk)′qi(n(τk),θ,β)
s.t.

∑
r∈Ci

xr(τk) ≤ 1,
0 ≤ xr(τk) ≤ nr(τk), ∀r ∈ Ci.

(7)

Typically the number of classes served at an arbitrary node i
is much less than R. Moreover, in order to solve (D-LP1),
node i needs state information for all local classes r ∈ Ci,
and all classes in its local neighborhood, that is, classes r′ with
prr′ > 0 for all r ∈ Ci. The number of such classes r′ would
also be much less than R in most practical situations. As a re-
sult, (D-LP1) can be solved by each node using localized infor-
mation and much faster than solving (LP1) at a central location.

V. STABILITY ANALYSIS

In this section we establish that TP policies are stable. To
that end, and following the work in [8], [13], we will consider
a fluid model for the network, establish stability of the fluid
model, and then infer the stability of the stochastic system.

A. A Fluid Model

To avoid overburdening our notation we use n(t) to denote
the queue length vector in the fluid model as well; it will be
evident from the context whether we refer to the fluid model or
the stochastic system. Let Tr(t) denote the cumulative amount
of time server σ(r) has spent working on class r in the time
interval [0, t]. In the fluid model, for all t ≥ 0 the dynamics of
the network satisfy

ṅr(t) = λ0r +
∑R

r′=1 µr′pr′rur′(t) − µrur(t), ∀r,∑
r∈Ci

ur(t) ≤ 1, i = 1, . . . ,M, (8)

nr(t), ur(t) ≥ 0, r = 1, . . . , R.

Here, ur(t) = Ṫr(t) and can be interpreted as the fraction of
server’s σ(r) capacity allocated to class r at time t. We will
write u(t) = (u1(t), . . . , uR(t)). The functions nr(t) and
ur(t) are absolutely continuous, and thus, differentiable almost
everywhere. The equations in (8) hold for all times t at which

nr(t) and ur(t) are differentiable; these points in time will be
referred to as regular.

It is convenient to write the fluid model dynamics in (8) using
matrix notation. Let M = diag(µ1, µ2, ..., µR), and U(t) =
diag(u1(t), ..., uR(t)), where diag(x1, . . . , xR) denotes the di-
agonal matrix with main diagonal x1, . . . , xR and zeroes else-
where. Let also C = (cir) be the constituency matrix of the
network with cir = 1{σ(r) = i}, for all r = 1, . . . , R and
i = 1, . . . , N . Then, the fluid model dynamics can be written
as

ṅ(t) = λ0 − (I − P′)M U(t) e, (9)

C u(t) ≤ e,

n(t),u(t) ≥ 0.

For establishing our stability results, and in the numerical re-
sults we will present in Section VIII, we consider three different
weighted norms with norm weights β > 0: (i) the L1 norm of
L(t) (cf. (3)), β′L(t), (ii) the L2 norm of L(t), ‖L(t)‖β, and
(iii) the L2 norm of n(t), ‖n(t)‖β. We will next derive the fluid
versions for each of these TP policies.

Note that at every decision epoch the TP policy minimizes
the expression given in Definition 1 subject to the constraints of
(LP1) (cf. (6)). Let us first consider the objective function in
this minimization. Let |n(0)| = k > 0 and consider the fluid
scaling of the stochastic system

n̄k(t) =
1
k
nk(kt),

where nk(·) denotes the queue length vector in the stochastic
system initialized with |n(0)| = k. Since we will deal with
the limit k → ∞ in the space of sample paths of nk(t), let
us explicitly write nk(t, ω) for a particular sample path ω of
nk(t). Let us restrict ourselves only to ω satisfying the strong
law of large numbers (SLLN) for the arrival, service, and rout-
ing processes. [13] proves that if |nk(0, ω)|/k is bounded as
k → ∞, then n̄k(·, ω) is precompact as k → ∞ in the Skoro-
hod path space D

R[0,∞) endowed with the u.o.c. (uniformly
on compact sets) topology. This implies that n̄k(·, ω) is tight as
k → ∞ (see [14], [15]). Thus, for each sequence k → ∞ there
exists a subsequence ks → ∞ along which

n̄ks(·, ω) → n̄(·), u.o.c.,

for some process n̄ ∈ D
R[0,∞) which is called fluid limit and

satisfies the fluid model equations in (8). At time kt and for
any of the three norms introduced above the corresponding TP
policy minimizes

lim
dt→0

E[‖n(kt+ dt) − θ‖ − ‖n(kt) − θ‖ | n(kt)]/dt.

Scaling by 1/k, and since the stochastic system converges to
the fluid model for all ω considered above, this is equivalent to
minimizing

lim
dt→0

[‖n̄(t + dt/k) − θ/k‖ − ‖n̄(t) − θ/k‖]/dt.

Taking k → ∞, we conclude that for all θ the fluid version of
the TP policy seeks to minimize

d

dt
‖n̄(t)‖ (10)
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at regular t.
Consider next the constraints of (LP1) under which the min-

imization of (10) is done. We distinguish two cases based on
the three norms introduced above: (a) the case of norm (iii),
and (b) the case of norms (i) and (ii). In case (a) the constraints
of (LP1) under the fluid scaling translate to the constraints in
(9) with the additional constraint that for all classes r it holds
ur(t) = 0 whenever nr(t) = 0. In case (b), imposing such a
constraint will not allow us to prove stability of the correspond-
ing fluid model. In the fluid model we can in fact serve a class
with zero queue length at exactly the incoming flow rate. To use
this opportunity, which as we will see will enable us to prove
stability, we have to slightly modify the stochastic version of
our TP policies. In the interest of space, we will not get into
the technical details. Briefly, at all queues of the network we
introduce threshold levels (or safety stocks) that are on the or-
der of log k, where k is the initial total population as before.
We use the TP policy of (LP1) when all queues are above their
threshold levels. Otherwise, we implement a policy that takes
all queues above their threshold levels in the minimal possible
amount of time. Using results from [16] it can be shown that the
fluid scaling of this modified TP policy leads to the policy that
minimizes the objective in (10) subject to the constraints in (9),
which permits serving a class in the fluid model even when the
corresponding queue length is zero. Hereafter, and for all three
norms considered, we will be referring to the fluid version of
the TP policy as the fluid target-pursuing (FTP) policy. It aims
at making scheduling decisions in order to maximize the neg-
ative drift and drive the state of the fluid model towards zero.
We will also refer to the modified (with safety stocks) TP pol-
icy for the stochastic system in case (b) above as the modified
target-pursuing (MTP) policy.

B. Stability of the Fluid Model

We next establish the stability of the fluid model operating
under the FTP policy. We start the analysis by considering the
FTP policy using the weighted L1 norm |n(t)|β′(I−P′)−1 . We
show that under this policy each fluid solution n(t) (i.e., a so-
lution of the fluid model equations in (8)) reaches zero in finite
time. According to the terminology in [13], the fluid model is
stable. The result is stated in the following Proposition.

Proposition V.1 Consider the fluid model operating un-
der the FTP policy which uses the weighted L1 norm
|n(t)|β′(I−P′)−1 = β′(I− P′)−1n(t), where β > 0. For ev-
ery solution of the fluid equations (8) with |n(0)| ≤ 1 there
exists some δ > 0 such that n(t) = 0 for all t ≥ δ.

Proof : We use a Lyapunov argument similar to the one used
in [13] to show the stability of a processor sharing policy. Let
G(t) = |n(t)|β′(I−P′)−1 = β′(I − P′)−1n(t). To prove sta-
bility of the fluid model we will rely on [13, Lemma 2.4.7].

First note that G(t) = β′L(t) (cf. (3)) and that G(t) =
0 if and only if n(t) = 0. Moreover, it can be shown that
G(n(t)) is Lipschitz continuous in n(t). We will proceed by
upper bounding Ġ(t) for all regular t. Using the fluid model
equations in (9) and letting d(t) = MU(t)e we have

L̇(t) = (I − P′)−1ṅ(t) = λ − d(t).

Thus,

Ġ(t) =
∑R

r=1 βr(λr − dr(t)). (11)

Now consider the work-conserving processor sharing policy
which at each node allocates capacity according to the uti-
lization vector ρ = (ρ1, · · · , ρR). More specifically, for all
r = 1, . . . , R this policy sets

ur(t) =




ρr


1− ∑

l∈Cσ(r)|nl(t)=0
ρl




∑
i∈Cσ(r)|ni(t)>0

ρi
, if nr(t) > 0,

ρr, otherwise.

(12)

That is, at node σ(r) the policy allocates a fraction ρi of the
capacity to all empty classes i and the remaining capacity is
allocated to all nonempty classes j according to their utilization
ρj . Since

∑
i∈Cj

ρi < 1 is assumed for all nodes j, it can be
seen that for all classes r we have ur(t) > ρr + ε for some
ε > 0 when nr(t) > 0 . Therefore, using this processor sharing
policy, (11) yields

Ġ(t) ≤ −ε
∑

r|nr(t) �=0

βr +
∑

r|nr(t)=0

βr(λr − dr(t))

= −ε
∑

r|nr(t) �=0

βr

≤ −εβmin < 0, (13)

where βmin = mini βi. In the equality above we have used the
fact that the processor sharing policy of (12) sets dr(t) = λr

for all empty classes. Since the FTP policy described in the
statement of the Proposition minimizes Ġ(t) for all t we have
Ġ(t) ≤ −εβmin < 0 under this latter policy as well. Hence,
due to [13, Lemma 2.4.7] the fluid model under this FTP policy
converges to zero within time G(0)/(εβmin).

Remark : It should be noted that the FTP policy considered
in the Proposition above is work-conserving. To see that note
from Eq. (11) that a policy that minimizes Ġ(t) is necessarily
work-conserving.

We next consider the FTP policy under the L2 norm ‖L(t)‖β.
In particular, as defined in Section V-A, this FTP policy mini-
mizes d

dt‖L(t)‖β for each t. The following proposition proves
a result which is a bit weaker than the one in Proposition V.1
but, as we will see, still sufficient to prove the stability of the
stochastic system.

Proposition V.2 Consider the fluid model operating under the
FTP policy which uses the weighted L2 norm ‖L(t)‖2

β, where
β > 0. For every solution of the fluid equations (8) with
|n(0)| ≤ 1 there exists some δ > 0 such that for all 0 < η < 1
and all t ≥ δ it follows |n(t)| ≤ η.

Proof : Fix η ∈ (0, 1). As in the proof of Proposition V.1
we use a Lyapunov argument to show convergence of the fluid
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model in the region |n(t)| ≤ η. Let B = diag(β1, . . . , βR) and
define

G(t)
�
= ‖L(t)‖2

β = n′(t)(I − P)−1B(I − P′)−1n(t).

Since L(t) ≥ n(t) it can be seen that G(t) = 0 if and only if
n(t) = 0. Furthermore, G(n(t)) can be shown to be locally
Lipschitz continuous in n(t), that is, for any compact set O,
there exists a constant κ(O) such that for any n1(t),n2(t) ∈ O
it holds |G(n1(t)) −G(n2(t))| ≤ κ(O)|n1(t) − n2(t)|.

We will derive an upper bound on the time derivativeofG(t).
Using the fluid model dynamics of (9) we obtain

Ġ(t) = 2n′(t)(I − P)−1B(I − P′)−1ṅ(t)
= 2n′(t)(I − P)−1Bλ

−2n′(t)(I − P)−1BM U(t) e, (14)

where in the last equation we used the traffic equations (cf.
(2)). As in the proof of Proposition V.1 we employ the work-
conserving processor sharing policy of (12). As we argued
there, all nonempty classes r are allocated a fraction ur(t) >
ρr + ε/µr of the capacity of node σ(r) for some ε > 0,
and all empty classes are kept empty by allocating a frac-
tion ρr of the capacity to them. Using this policy and letting
ζ = (1{n1(t) > 0}, . . . ,1{nR(t) > 0}), Eq. (14) yields

Ġ(t) ≤ −2εn′(t)(I − P)−1Bζ

= −2εL′(t)ζ

≤ −2ε
∑

i|ni(t)>0

ni(t) = −2ε|n(t)|. (15)

In the last inequality above we used the fact L(t) ≥ n(t).
Eq. (15) establishes that G(t) is non-increasing in time.

Let now βmin = mini βi. Whenever |n(t)| ≥ η

G(t) =
∑

i

βi(Li(t))2 ≥
∑

i

βi(ni(t))2 ≥

βmin

∑
i

(ni(t))2 ≥ βmin
(
∑

i ni(t))
2

R
≥ βmin

η2

R
, (16)

where the third inequality above can be shown using induc-
tion. Consider the following optimization problem with optimal
value equal to φ∗

φ∗ = minimize |n|
subject to G(n) ≥ βmin

η2

R
n ≥ 0,

(17)

where G(n) = n′Qn and Q = (I−P)−1B(I−P′)−1. Due to
(16), any n ≥ 0 with |n| = η is a feasible solution of (17) and
thus, η ≥ φ∗ > 0. Furthermore, any feasible solution of (17)
satisfies n ≥ 0, G(n) ≥ βminη

2/R and |n| ≥ φ∗. Thus, in the
fluid model operated with the processor sharing policy of (12),
wheneverG(n(t)) ≥ βminη

2/R Equation (15) yields

Ġ(t) ≤ −2ε|n(t)| ≤ −2εφ∗. (18)

Since the FTP policy described in the statement of the Proposi-
tion minimizes Ġ(t) for all t, Ġ(t) is bounded above by −2εφ∗

under the latter policy as well.

Suppose now that G(0) ≥ βminη
2/R. Eq. (18) implies that

G(t) will reach the region G(t) ≤ βminη2/R within time tη
satisfying

tη ≤ G(0) − βminη
2/R

2εφ∗ .

Furthermore,G(t) will remain in this region for all t ≥ tη since
it is a non-increasing function of time. We conclude that for all
t ≥ tη, it holds |n(t)| ≤ η, since otherwise G(t) ≥ βminη

2/R.
Finally, in the case G(0) ≤ βminη

2/R the same argument ap-
plies and |n(t)| ≤ η for all t ≥ 0.

Remark : As before, the FTP policy considered in the Propo-
sition above is work-conserving. This is seen from Eq. (14) by
noting that n′(t)(I−P)−1B is a non-negative row vector, thus,
a policy that minimizes Ġ(t) is necessarily work-conserving.

Finally, we consider next the non-work-conserving FTP
policy under the L2 norm ‖n(t)‖β, that is, the non-work-
conserving policy minimizing d

dt‖n(t)‖β for each t. The fol-
lowing result is similar to Proposition V.2. In the interest of
space we omit the proof which follows the general structure of
the proof of Proposition V.2.

Proposition V.3 Consider the fluid model operating under the
non-work-conserving FTP policy which uses the weighted L2
norm ‖n(t)‖2

β, where β > 0. For every solution of the fluid
equations (8) satisfying |n(0)| ≤ 1 and ur(t) = 0 whenever
nr(t) = 0 for all r, there exists some δ > 0 such that for all
0 < η < 1 and all t ≥ δ it follows |n(t)| ≤ η.

C. Stability of the Stochastic Network

We conclude our stability results by establishing that the mul-
ticlass queueing network is stable under the TP policies using
the L1 and L2 norms considered in Section V-B. Note that
for any target θ ∈ R

R the TP policy is Markovian and un-
der this policy the state of the network is the queue length vec-
tor n(t) ∈ Z

R
+ which evolves as a continuous-time Markov

chain. The next theorem establishes that this Markov chain
is positive Harris recurrent. Harris recurrence is defined and
discussed in detail in [14], [8], [13]. In particular, letting
τx
B = inf{t ≥ 0 | n(t) ∈ B,n(0) = x} denote the first

passage time to the set B starting from x, and denoting by B
the Borel σ-field of the state space Z

R
+, we say that the Markov

chain n(t) is Harris recurrent if there exists some σ-finite mea-
sure ν on (ZR

+,B) such that whenever ν(B) > 0 and B ∈ B
it holds P[τx

B < ∞] = 1. If n(t) is Harris recurrent then an
essentially unique invariant measure π exists. If this invariant
measure is finite then it can be normalized to a probability mea-
sure and the Markov chain is called positive Harris recurrent.
This also implies ergodicity [14].

Theorem V.4 Consider the MQNET of Section II operated un-
der one of the following TP policies

1) the MTP policy that uses the norm |L(t)|β;
2) the MTP policy that uses the norm ‖L(t)‖β; or
3) the TP policy that uses the norm ‖n(t)‖β,
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where β > 0. The Markov chain n(t) is positive Harris recur-
rent.

Proof : For Case 1 the result follows directly from [8] and the
stability of the corresponding FTP policy which has been estab-
lished in Proposition V.1. For Case 2 and 3, we need to slightly
modify the proof in [8]. We omit the details in the interest of
space.

VI. OPTIMIZING OVER POLICY PARAMETERS

In this section we discuss how we can optimize over the pa-
rameters of TP policies, namely the target θ and the weight vec-
tor β, in order to obtain the best policy within the class (for each
selection of the norm). To that end, we will use a simulation-
based method developed in [17]. The underlying idea is rather
simple: during the course of a simulation of the system we ob-
tain “gradient information” which we then use to optimize over
the parameters. An alternative is to use an actor-critic method
such as the one analyzed in [18].

1) Smooth Target-Pursuing policies: Consider the uni-
formized Markov chain of Section IV and suppose we em-
ploy a TP policy using one of the weighted norms of Sec-
tion V with weight vector β > 0. At each transition epoch τk,
scheduling decisions are made according to the optimal solu-
tion x∗(n(τk),θ,β) of (LP1). Note that if (LP1) has a unique
optimal solution at (θ,β), then x∗(n(τk),θ,β) is locally con-
stant in (θ,β). In fact, x∗(n(τk),θ,β) is piecewise constant in
(θ,β) with the jumps occurring at the points that the optimal
solution switches from one extreme point of the feasible set to
another. Hence, using a simulation-based gradient optimization
method to optimize over the parameters (e.g., the one in [17])
would not be very successful since the required gradients would
be zero most of the time.

To bypass this difficulty we use randomization to introduce a
smoother version of our target-pursuing policies. For simplicity
of the exposition, we concentrate on work-conserving TP poli-
cies; the non-work-conserving case can be handled similarly.
Let y(r)(n(τk),θ,β) be a feasible solution of (LP1) such that
at time τk class r is served at node σ(r) and x∗(n(τk),θ,β) is
mimicked at all other nodes. Set

α̂r(n(τk),θ,β) =

e−γy(r)(n(τk),θ,β)′q(n(τk),θ,β)∑
r′∈Cσ(r),nr′ (τk)>0

e−γy(r′)(n(τk),θ,β)′q(n(τk),θ,β)
,

where γ > 0 is a scalar. At time τk we serve class r at node
σ(r) with probability:

αr(n(τk),θ,β) =
{

α̂r(n(τk),θ,β), if nr(τk) > 0
0, otherwise,

(19)
Notice that as γ → 0 all non-empty classes at a node have
equal probability of being served, and as γ → ∞ the random-
ized policy converges to the policy implied by x∗(n(τk),θ,β).

Furthermore, for each node j all quantities that involve ele-
ments of q(n(τk),θ,β) corresponding to classes not in Cj can-
cel from the numerator and denominator in the definition of
α̂r(n(τk),θ,β) , thus,

α̂r(n(τk),θ,β) =
e−γqr(n(τk),θ,β)∑

r′∈Cσ(r),nr′(τk)>0

e−γqr′(n(τk),θ,β)
,

where qr(·) is the rth coordinate of q(·). We will be referring
to this policy as the work-conserving smooth target-pursuing
(STP) policy.

2) Simulation-based Optimization: We adopted the STP
policy and used the simulation-based method of [17] to opti-
mize the objective of (4) over the parameters (θ,β). In Sec-
tion VIII we report illustrative numerical results and compare
with a set of other scheduling policies. Under a set of stability
and regularity conditions and a standard diminishing step-size
rule, the algorithm in [17] (with updates at every transition of
the underlying Markov chain) is shown to convergence w.p.1
to a local minimum. Stability has already been established in
Section V for the TP policies for all θ and β > 0. Thus, it will
also be satisfied by the STP policy in the same parameter space
for γ >> 1, since the STP policy converges to the TP policy as
γ → ∞. Unfortunately, the required regularity conditions are
not always satisfied. As a result, we had to combine random
search and various heuristics with the simulation-based method
of [17] to optimize over (θ,β). For example, in the case of
the STP policy using anyone of the L2 norms in Section V,
and for fixed β, the transition probabilities of the correspond-
ing Markov chain satisfy the regularity conditions of [17] and
the optimization over θ is guaranteed to converge. These tran-
sition probabilities, though, are not smooth enough with respect
to β and we resorted to random search around β = e to select
a good β. Admittedly, using a simulation based method to op-
timize over θ can be slow. We noticed that when we initialized
the algorithm from a good target, such as w∗ obtained from the
achievable region LP, the method converged relatively fast.

VII. COMBINED ROUTING/SCHEDULING DECISIONS

In this section we extend the basic queueing network model
of Section II to consider the case where routing is not fixed but
also subject to optimization. Following the line of development
so far, we first discuss how to implement a TP policy in this
setting and then establish stability using a fluid analysis.

We adopt the same model and notation as in Section II, in-
dicating only the differences with the extended model we con-
sider here. As Section II, jobs of class r = 1, . . . , R arrive
to the network according to a Poisson arrival process of rate
λ0r. Upon arrival, though, and before joining the correspond-
ing queue, a router selects a particular class and routes the ar-
riving job to that class. Let Arr′(t) denote the event that an
externally arriving job of class r is routed to class r′ upon its
arrival at time t. Routing decisions are also made at the various
nodes when jobs are admitted for service. Let Brr′(t) the event
that at time t node σ(r) is working on a class r job that will be
routed to class r′ upon completion of service.
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In this modified queueing network setting, we are interested
in devising a combined scheduling and routing policy to mini-
mize the linear cost function of (4). Target-pursuing (TP) poli-
cies are defined exactly as in Section III (cf. Definition 1) with
the only exception that the minimization is with respect to both
scheduling and routing decisions. A polyhedral relaxation P of
the achievable region A can be obtained in this case as well (see
[1]); an optimal solution of this achievable region LP, denoted
again by w∗, is one particular choice for the target θ.

To describe the implementation of TP policies in the ex-
tended model we uniformize the Markov chain n(t) as in
Sec. IV. Let again ν be the uniform transition rate and {τk} the
sequence of transition epochs in the uniformized Markov chain.
For any θ and any weighted norm ‖ · ‖β the corresponding TP
policy minimizes

νE[‖n(τk+1) − θ‖β | n(τk)] =
R∑

r=1

R∑
r′=1

λ0r1{Arr′(τk)}‖n(τk) + er′ − θ‖β

+
R∑

r=1

µr

[ R∑
r′=1

1{Brr′(τk)}‖n(τk) − er + er′ − θ‖β

+ 1{Br0(τk)}‖n(τk) − er − θ‖β

]

+
R∑

r=1

µr

R∑
r′=0

1{Brr′(τk)}‖n(τk) − θ‖β. (20)

Let now xrr′(τk) = 1{Brr′(τk)} for r = 1, . . . , R and
r′ = 0, . . . , R, yrr′(τk) = 1{Arr′(τk)} for r, r′ = 1, . . . ,
R and denote x(τk) = (1{B10(τk)}, . . . ,1{BRR(τk)}),
y(τk) = (1{A11(τk)}, . . . ,1{ARR(τk)}). Noticing that the
rhs of the above is linear in x(τk) and y(τk) we can write
it as x(τk)′q1(n(τk),θ,β) + y(τk)′q2(n(τk),θ,β) where
qi(n(τk),θ,β), i = 1, 2 are appropriately defined. Implement-
ing the TP policy with weighted norm ‖ ·‖β amounts to solving
the following LP problem at each epoch τk

(LP2) min x(τk)′q1(n(τk),θ,β)
+y(τk)′q2(n(τk),θ,β)

s.t.
∑

r∈Ci

∑R
r′=0 xrr′(τk) ≤ 1, ∀i∑R

r′=0 xrr′(τk) ≤ nr(τk), ∀r,∑R
r′=1 yrr′(τk) = 1, ∀r,

x(τk),y(τk) ≥ 0.

(21)

In the case of a work-conserving TP, the first inequality con-
straint above becomes an equality. It should be noted that situa-
tions where a class can only be routed to a subset of other class
are easily accommodated; one needs to simply add constraints
of the form xrr′(τk) = 0 and yrr′(τk) = 0 if r can not be
routed to r′. Again, as it was the case with (LP1), the work to
solve (LP2) can be distributed across the nodes of the network
with node i deciding for xrr′(τk) and yrr′(τk) with r ∈ Ci.
Furthermore, each node needs only localized state information,
i.e., state information for all classes served at the node and all
classes the node can route jobs to.

Finally, for the combined scheduling/routing case as well,
the discussion of Sec. VI applies and one can use a simulation-
based method to optimize over the policy parameters θ and β.

Since the optimal solution of (LP2) is integer, one has to use a
smooth TP policy (as in Sec. VI) to that end.

A. A Fluid Model and the Fluid TP Policy

We will now proceed to establish the stability of the class of
TP policies in the combined scheduling/routing model.

Let Ãrr′(t), r, r′ = 1, . . . , R, denote the number of external
class r arrivals routed to class r′ upon arrival in the time interval
[0, t]. Let also Trr′(t), r = 1, . . . , R, r′ = 0, . . . , R, denote the
cumulative amount of time server σ(r) has spent in the time
interval [0, t] working on class r jobs that are routed to class r′.
In the fluid model, for all t ≥ 0 the dynamics of the network
satisfy

ṅr(t) =
∑R

r′=1 λ0r′ ãr′r(t) +
∑R

r′=1 µr′ur′r(t)

−µr

∑R
r′=0 urr′(t), r = 1, . . . , R, (22)∑

r∈Ci

∑R
r′=0 urr′(t) ≤ 1, i = 1, . . . , N,∑R

r′=1 ãrr′(t) = 1, r = 1, . . . , R,
ãrr′(t) ≥ 0, r, r′ = 1, . . . , R,

nr(t), urr′(t) ≥ 0, r = 1, . . . , R, r′ = 0, . . . , R,

where urr′(t) = Ṫrr′(t) is the fraction of server’s σ(r) capac-
ity allocated at time t to class r which will be routed to class

r′, and ãr′r(t) = ˙̃Ar′r(t)/λ0r′ is the fraction of class r′ exter-
nal arrivals routed to class r upon their arrival at time t. The
equations in (22) hold for all regular t.

Following the same reasoning as in Section V-A, for all t and
θ the fluid version of the TP policy selects the variables ãrr′(t)
and urr′(t) to minimize

d

dt
‖n̄(t)‖,

where n̄(t) is the fluid limit of the stochastic system and sat-
isfies the fluid model equations in (22). Regarding the con-
straints under which this minimization is performed, the dis-
cussion of Section V-A applies. Specifically, a modified (with
safety stocks) stochastic TP policy has to be used for the L1
and L2 norms of L(t), and the FTP policy in the case of the L2
norm of n(t) needs to satisfy urr′(t) = 0 whenever nr(t) = 0
for all r, r′, and t.

B. Stability Analysis

The following proposition is similar to Proposition V.3 and
establishes a certain form of stability for the fluid model us-
ing the non-work-conserving FTP policy under the L2 norm
‖n(t)‖β.

Proposition VII.1 Consider the fluid model operating under
the non-work-conserving FTP policy which uses the weighted
L2 norm ‖n(t)‖2

β, where β > 0. Suppose there exists a rout-
ing probability matrix P = {prr′}R

r,r′=1 and non-negative yrr′ ,
r, r′ = 1, . . . , R, such that

λr =
∑R

r′=1 λ0r′yr′r +
∑R

r′=1 λr′pr′r, r = 1, . . . , R,∑R
r′=1 yrr′ = 1, r = 1, . . . , R,
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yrr′ ≥ 0, r, r′ = 1, . . . , R,∑
r∈Ci

λr

µr
< 1, i = 1, . . . , N,

and (I− P′) is invertible. Then for every solution of the fluid
equations (22) satisfying |n(0)| ≤ 1 and urr′(t) = 0 whenever
nr(t) = 0 for all r, r′, and t, there exists some δ > 0 such that
for all 0 < η < 1 and all t ≥ δ it follows |n(t)| ≤ η.

Proof : Fix η ∈ (0, 1). Let again B = diag(β1, . . . , βR) and
define

G(t)
�
= ‖n(t)‖2

β = n′(t)Bn(t).

Using the fluid model dynamics of (22) we obtain

Ġ(t) = 2
∑R

r=1 βrnr(t)
[∑R

r′=1 λ0r′ ãr′r(t)

+
∑R

r′=1 µr′ur′r(t) − µr

∑R
r′=0 urr′(t)

]
.

Let us adopt a policy that decomposes routing and scheduling
decisions. More specifically, we employ a (fixed) routing policy
that uses a routing matrix P and non-negative yrr′ that satisfy
the set of equations given in the statement of the proposition.
As in the pure scheduling problem, let ur(t) =

∑R
r′=0 urr′(t)

denote the fraction of server’s σ(r) capacity allocated to class r
at time t. With this fixed routing policy we have ãr′r(t) = yr′r
and ur′r(t) = ur′(t)pr′r for all t, yielding

G(t) = 2
∑R

r=1 βrnr(t)
[ ∑R

r′=1 λ0r′yr′r

+
∑R

r′=1 µr′ur′(t)pr′r − µrur(t)
]
. (23)

Notice that the FTP policy described in the statement of the
proposition minimizes Ġ(t) over routing and scheduling deci-
sions, thus, the resulting Ġ(t) is less than or equal the one in
(23) for all t.

We have now reduced the problem to the exact same schedul-
ing problem addressed in Proposition V.3. Here, we have an
open multiclass network with fixed routing matrix P and exter-
nal Poisson arrival rate equal to

∑R
r′=1 λ0r′yr′r for class r. The

first of the set of equations in the statement of the proposition is
the traffic equation and the last is the usual stability condition
at each node.

Following the same steps as the proof of Theorem V.4 we
can also establish that Proposition VII.1 implies the stability
of the stochastic system. The main result for the TP policy in
the combined routing/scheduling model is summarized in the
following theorem.

Theorem VII.2 Consider the MQNET of this Section involv-
ing both sequencing and routing decisions and operated un-
der the TP policy using the weighted norm ‖n(t)‖β, where
β > 0. Suppose there exists a routing probability matrix
P = {prr′}R

r,r′=1 and non-negative yrr′ , r, r′ = 1, . . . , R, such
that

λr =
∑R

r′=1 λ0r′yr′r +
∑R

r′=1 λr′pr′r, r = 1, . . . , R,

∑R
r′=1 yrr′ = 1, r = 1, . . . , R,
yrr′ ≥ 0, r, r′ = 1, . . . , R,∑
r∈Ci

λr

µr
< 1, i = 1, . . . , N,

and (I − P′) is invertible. Then, the corresponding Markov
chain n(t) is positive Harris recurrent.

VIII. NUMERICAL RESULTS

In this section we present some illustrative numerical results
to assess the performance of the proposed TP policies. When
using the TP policy with norm ‖n(t)‖β we simply implement
the policy suggested by (LP1) (or (LP2) if routing decisions
are to be made as well). In the other two cases, that is when us-
ing norms |L(t)|β and ‖L(t)‖β, we have seen in Sec. V that a
modified (with safety stocks) TP policy has to be used to prove
stability. This was essentially due to technical problems at the
boundaries nr(t) = 0 while passing from the stochastic sys-
tem to the fluid model. In the numerical results that follow we
ignore this modification of the stochastic TP policies. The pri-
mary reason for doing so is ease of implementation. Since we
will optimize over policy parameters, it is likely that the opti-
mization process will keep us away from poor policies. For sta-
ble policies, the introduction of safety stocks will most likely
hurt performance.

µ2µ1

λB

λA 1 3

2

Fig. 2. Example 1: there are two types of jobs with Poisson arrival rates λA
and λB (and 3 classes indicated on the figure). All jobs require an exponentially
distributed service time with rate µ1 and µ2 at nodes 1 and 2, respectively.

ALP DP TPn(w∗) OTPn Thr. Gap

I.L. 0.63 0.671 0.678 0.678 0.679 1.0 %
B.L. 0.73 0.843 0.856 0.856 0.857 1.5%
I.M. 1.9 2.084 2.119 2.117 2.129 1.6%
B.M. 2.1 2.829 2.96 2.895 2.895 2.3%
I.H. 9.6 9.97 10.36 10.33 [10.13] 10.15 1.6%
B.H. 9.9 – 18.0 17.4 [15.5] 15.5 0%

TABLE I

The first example we consider is the two-node network of
Figure 2. In Table I we compare several work-conserving
scheduling policies. Scheduling here amounts to selecting
which class to serve at node 1 at each point in time in order to
minimize the objective of (4) with h = e. Let ρ = (ρ1, ρ2)
the utilizations of nodes 1, 2, respectively. We use the fol-
lowing abbreviations for the various traffic scenarios we con-
sidered: I.L. (Imbalanced Light, ρ = (0.3, 0.2)), B.L. (Bal-
anced Light, ρ = (0.3, 0.3)), I.M. (Imbalanced Medium, ρ =
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(0.6, 0.4)), B.M. (Balanced Medium, ρ = (0.6, 0.6)), I.H. (Im-
balanced Heavy, ρ = (0.9, 0.6)), and B.H. (Balanced Heavy,
ρ = (0.9, 0.9)). The 2nd column (ALP) lists the lower bound
on optimal performance obtained by solving the achievable re-
gion LP of [1] (see Sec. III). The 3rd column (DP) lists the
optimal performance obtained via dynamic programming; the
last row is missing because it was computationally intractable
to obtain. The 4th column [TPn(w∗)] reports the performance
(obtained by simulation) of the TP policy using the L2 norm
for n(t) with target θ equal to the optimal solution w∗ of the
achievable region LP and norm weight vector β = e. The 5th
column (OTPn) reports the performance of the TP policy using
the same norm but with optimized (as discussed in Sec. VI) pol-
icy parameters. For the first four rows we only optimized over
θ and used β = e. For the last two (heavy traffic) rows we also
optimized over β and report those results in brackets. The op-
timal β turned out to be (1, 3.4, 7.2) for I.H. and (1, 2.6, 11.2)
for B.H., respectively. We do not report results for the TP poli-
cies using the L1 norm of L(t) and the L2 norm of L(t); in the
former case the performance was inferior and the in latter case
similar to the OTPn column. In the 6th column (Thr.) we list
the performance of a threshold policy proposed in [4] based on
heavy traffic Brownian approximations, which is conjectured
to be asymptotically optimal in heavy traffic. According to this
policy, priority is given to type A jobs at node 1 if the num-
ber of jobs at node 2 is below some threshold; otherwise pri-
ority is given to type B jobs at station 1. The results listed in
column 6 are for the best such policy (i.e., optimized over the
threshold). Finally, in the last column we report the percent-
age distance of the best policy we came up with (OTP column
in this case) with the best other policy found. In particular,
Gap = [(Best Ours) − (Best Other)] × 100%/(Best Other). To
facilitate the reader we use bold for these two values we com-
pare.

A couple of remarks are in order. First, the TP policy using
θ = w∗ performs quite well from light to moderate traffic sce-
narios. This is quite appealing since obtaining w∗ can be done
in polynomial-time by solving the associated achievable region
LP. It is interesting to see that the optimal solution of this LP
can lead to a fairly good policy. The optimized TP policy per-
forms even better and is close to optimal. In the heavy-traffic
cases (especially B.H.) using a weighted norm improves per-
formance. The numerical results suggest that β3 >> β1, β2

is appropriate for those cases. This is to be expected since as
β3 → ∞ the TP policy approaches the threshold policy of [4]
with threshold θ3 and the latter policy is known to be effective
in heavy-traffic.

ALP DP TPn(w∗) OTPn TPL(w∗) OTPL BPP Gap

I.L. 0.62 0.663 0.684 0.671 0.678 0.675 0.743 1.2%
B.L. 0.71 0.798 0.844 0.803 0.809 0.8 0.916 0.3%
I.M. 1.76 1.966 2.15 2.01 2.068 2.005 2.31 2%
B.M. 1.94 2.56 2.81 2.59 2.69 2.58 3.07 0.8%
I.H. 7.63 – 9.41 8.45 9.77 8.50 9.21 -8.3%
B.H. 8.21 – 16 13.8 [13.6] 15.3 13.8 15.1 -9.9%

TABLE II

The second example we consider is the six-class network of

M 2M 1M 1

µ1

µ3

µ2

µ5 µ6

µ4λB

λA

Fig. 3. Example 2: there are two types of jobs with Poisson arrival rates λA
and λB . All jobs require exponentially distributed service times with rate µi

for class i = 1, . . . , 6. We set h = e.

Figure 3. The results are reported in Table II, where we use
the same notation and abbreviations as in Table I. Here we also
report results for the TP policy using the L2 norm for L(t) with
target either derived from w∗ (6th Column) or optimized (7th
Column). In the 5th and 7th Columns optimization was done
over θ keeping β = e. In the last row of the 5th Column we
also optimized over β and report the result in brackets. The 8th
Column (BPP) lists results from the best strict priority policy
we were able to find. Finally, as in Table I, the last column
reports the percentage gap of our best policy with the best other
policy found.

The conclusions in this more challenging network are simi-
lar. The TP policies with target equal to w∗ perform quite well
from light to moderate traffic scenarios. In heavy-traffic per-
formance can further be improved by optimizing over policy
parameters (θ,β). Overall, we are within 2% of the optimal
(when possible to compute) or we outperform by more than 8%
the best other policy found.

λ

µ

µ

Fig. 4. Example 3.

Load ALP SQ OTPn Gap

Light 1.22 1.69 1.69 0%
Medium 2.33 2.94 2.94 0%
Heavy 9.00 9.56 9.56 0%

TABLE III

Our third and final example is the system of Figure 4. Jobs
arrive according to a Poisson process of rate λ and are to be
routed either at the top or bottom node (e.g., this could model
a simple load-balancing mechanism directing requests to two
Web servers). Service times are exponentially distributed with
rate µ at both nodes. We need to decide where to route each job
in order to minimize the objective of (4) with h = e. Table III
reports our results for three traffic scenarios corresponding to
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ρ = λ/(2µ) = 0.55, 0.7, 0.9, respectively. Again we use the
notation and abbreviations used in previous tables. The third
column (SQ) lists the performance of the policy that sends jobs
to the shortest queue, which is known to be optimal [19]. The
4th Column lists the performance of the optimized, over θ and
with β = e, TP policy using the L2 norm of n(t). The last col-
umn compares the two policies. It is evident that the optimized
TP policy achieves optimality. This is to be expected since from
the structure of (LP2) and (20) it can be easily verified that any
TP policy with target θ such that θ1 = θ2 and β = e makes
routing decisions identical to the SQ policy.

IX. CONCLUSIONS

We proposed a new class of what we called target-pursuing
policies for scheduling and routing in Markovian MQNETs.
These networks can model a variety of systems, including clus-
ters of computing servers, multiprocessor computer systems,
wireless sensor networks, and manufacturing systems. Exter-
nal arrivals were assumed to be Poisson with class-dependent
rates and service times exponentially distributed with class-
dependent rates. These assumptions, although restrictive, can
even accommodate heavy-tailed service distributions encoun-
tered in Web servers by using a hyperexponential approxima-
tion of the heavy-tailed distribution.

The proposed policies “steer” the state of the system towards
a fixed target θ, where distance is measured using a weighted
norm with weight vector β. We demonstrated that these poli-
cies are stable for any θ under both an L1 and an L2 norm
with weight vector β > 0. Hence, they are safe to implement
even if the parameter vector (θ,β) is not optimally selected (as
long as β > 0). Furthermore, they are amenable to distributed
implementation using localized state information. Our numer-
ical results suggest that the polyhedral relaxations of achiev-
able performance obtained in [1] contain enough information to
yield good targets θ, especially in light to moderate load condi-
tions. This might be sufficient in many practical situations in-
volving clusters of servers, where performance considerations
lead capacity planners to avoid heavy loads. Further perfor-
mance improvements can be realized by optimizing over the pa-
rameter vector (θ,β); we outlined how this can be done using
simulation-based methods. As our numerical results indicate,
overall and across all load conditions, we obtain near-optimal
policies (when the optimal can be computed) and significantly
outperform heuristic alternatives.
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