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Abstract— Satellite operators have recently begun offering
Internet access over their networks. Typically, users connect to
the network using a modem for uplink, and a satellite dish for
downlink. We investigate how the performance of these networks
might be improved by two simple techniques: caching and use
of the return path on the modem link. We examine the problem
from a theoretical perspective and via simulation. We show that
the general problem is NP-Hard, as are several special cases, and
we give approximation algorithms for them. We then use insights
from these cases to design practical heuristic schedulers which
leverage caching and the modem downlinks. Via simulation, we
show that caching alone can simultaneously reduce bandwidth
requirements by 33% and improve response times by 62%.
We further show that the proposed schedulers, combined with
caching, yield a system that performs far better under high loads
than existing systems.

I. INTRODUCTION

A recent development in Internet access technologies is
satellite based Internet service. In systems such as DirecPC [1]
and Starband [2], users connect to the network via a satellite
dish and a modem. Fig. 1 depicts a typical system. When
a user visits a web page, his modem transmits the request
over the telephone network to the satellite service’s Network
Operations Center (NOC). The NOC retrieves the web page
from its cache or from the origin server over the Internet,
and sends the data to a satellite. The satellite echoes the data,
which is picked up by the user’s satellite dish.

The appeal of these services is that satellite transmission can
be much faster than modem transmission, accelerating both
simple web page access and larger file transfers. However, as
the satellite is a shared resource, the performance of satellite
transmission decreases as the number of users increases. In
contrast, the currently unused modem downlinks, while much
slower than satellite, provide dedicated, or independent, chan-
nels to each user. Unlike the satellite channel, the aggregate
capacity of these links scales directly with the number of
users. We estimate that, in a 100,000 user system, the ratio
of aggregate modem bandwidth to satellite bandwidth will be
greater than 12:11 [3].

Given a small enough user population, and hence, a small
enough service demand, it is possible to service all requests
via the satellite link. As the user base grows, and during peak
usage periods, the satellite is likely to become overloaded. It
is important to understand when this will occur (to estimate

1We estimate that DirecPC dedicates ten 45 Mb/sec satellite channels to its
roughly 100,000 users.
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the capacity of the system), and how to maintain performance
under overload conditions.

We argue that when the system is highly loaded, perfor-
mance is optimized by exploiting the fundamental properties
of each type of link. The satellite link, being a broadcast
channel, is well suited to the delivery of popular objects —
those objects which many users are likely to want. Being a
high speed channel, it is also well suited for the delivery of
large objects. The modem links have the properties of being
dedicated, and self-scaling. They are ideal for the delivery of
small and unpopular objects. By shifting a few small objects,
which still receive reasonable performance, to the modem
links, we can reduce contention for the shared channel, thereby
increasing capacity of the system.

As we explain below, in order to better exploit the power of
the broadcast link, we require storage at the client nodes so that
they can later benefit from cache hits. We note that satellite
network operators already offer receivers, such as DirecTV
Receiver with TiVo [4], with large storage capacity. Given the
low and decreasing cost of disks, it is inexpensive to use some
storage to cache web objects.

Fig. 1 depicts our model. The figure shows a system with
a single user node; the generalization to multiple users is
straightforward. In our model, each user is connected to the
network via a modem, which may be used for bidirectional
communication, and a satellite dish, which is capable of
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reception only 2. In addition, the user node has a disk which
may be used to store recently transmitted objects from both
the modem and satellite channels.

Any object transmitted on the satellite link, whether re-
quested by the node owning the cache or not, may be entered
into the cache. Consider users A and B, and web page W .
Suppose A loads page W at time t, and that the page is
transferred via satellite. User B then places W in his cache.
Later, at time t + ε, when B accesses W , it is loaded directly
from his cache. We refer to this caching of objects requested
by other users as opportunistic caching, or OpCaching. The
zipf-like distribution of web-proxy workloads [5] implies that
there is sufficient locality amongst requests of different users
for this approach to succeed.

Given this model, we seek to optimize mean response time.
Response time is the time from when a user sends a request
until he receives the last byte of the reply. We assume a
response time of zero if the request is a cache hit in the
client’s cache. To accomplish this optimization task, we must
answer two questions for each object transmitted. Namely, we
must determine both when to send the data item, and how to
send it (i.e. which link should be used). The second question
is particularly significant in our setting because the links are
fundamentally different.

In Sec. II, we approach the problem from an analytical
perspective. The aim is to understand how we might compute
an optimal schedule offline, given complete knowledge of
the series of user requests. Based on the theoretical analy-
sis, Sec. III proposes and evaluates offline heuristics. This
offline evaluation isolates heuristic performance from predic-
tor accuracy. Next, in Sec. IV, we use promising aspects
of the offline heuristics to develop online schedulers. Our
performance evaluation of these online schedulers shows that
clever scheduling, coupled with OpCaching, improves both
scalability and response time under high loads.

Specific contributions of this work are:

• Analyzing the problem of scheduling the combination
of broadcast and unicast channels. We also analyze
simplified variants of this scheduling problem. We give
approximation algorithms for the variants that we show
to be NP-Hard. For several other special cases, we give
polynomial time algorithms.

• Proving a lower bound of Ω(
√

n) on the competitive ratio
for any online algorithm.

• Introducing opportunistic caching, which can reduce the
bandwidth required to service peak loads by 33%, while
improving mean response time by 62%.

• Describing schedulers that gracefully degrade perfor-
mance during high load periods. The schedulers simulta-
neously achieve lower response times, and complete more
requests than the strategy of using the satellite alone.

• Demonstrating that, with typical web workloads, it is

2We use modem and unicast interchangeably. We also use satellite and
broadcast interchangeably. We also use document, file, object and response
interchangeably.

TABLE I

SUMMARY OF THEORETICAL RESULTS

Downlink Files Results Section

Broadcast Same-
size

O(n3)
II-A

Broadcast Variable-
size

NP-Hard, (1 + ε)-speed, (1 + 1
ε

)-
approx II-B

Broadcast Uniform
popular-
ity

3-approx, optimal (special case)
II-C

Broadcast
+ Unicast

Same-
size

NP-Hard
II-D

Broadcast
+ Unicast

Variable-
size

(1 + ε)-speed,(1 + 1
ε

)-approx
II-D

possible to accelerate large object access, while providing
good performance for small objects, even at peak loads.

II. THEORETICAL SECTION

In this section, we analyze our problem from a theoretical
perspective3, assuming an infinite cache at the client’s end.
Therefore, no file needs to be broadcast more than once.
We gradually build from a simple scenario, where only the
broadcast downlink is used and all documents are of the same
size, to the most realistic scenario, which includes broadcast
and unicast links and variable sized objects. We investigate
the problem of finding optimal offline 4 solutions for each
scenario. Table I summarizes the results. In the last subsection,
we consider online algorithms and prove that no o(

√
n)-

competitive algorithm exists for either the broadcast-unicast
case, or its variants.

We show most of the scenarios to be NP-Hard, and give ap-
proximation algorithms for them. Our algorithms use resource
augmentation, a paradigm introduced by Kalyanasundaram
and Pruhs [6] and widely used in scheduling literature. The
idea is to allow our algorithm a slightly faster (1+ε) speed pro-
cessor. We then compare our solution to the optimum solution,
but the optimum is only allowed to use a unit speed processor.
We say that an algorithm is (s − speed, c − approximate) if
it uses an s times faster processor than the optimal algorithm
and produces a schedule which is no more than c times worse
than that of the optimum. Note that in our scenario providing
a speedup of s translates to increasing the bandwidth of a link
by a factor of s.

To obtain a more realistic model, we can associate a release
date ri with each file i. This denotes the time when the
document is first available to be sent. It can be used to account
for the time it takes for the NOC to fetch the document from

3Formally, we explore minimizing:
∑

j∈Clients

∑

i∈Files

max((resij − reqij), 0)

where reqij is the time when client j requests object i (∞ if no such request
is made), and resij denotes the time when the client receives the document
(either by the broadcast link or the unicast link, whichever is first).

4Offline means that the NOC a priori knows the request dates for all objects,
i.e. it has complete future knowledge.
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the origin server or the fact that a document (such as the
score of a basketball match) is only available after a certain
time. Most of the techniques we present in this section can be
extended to incorporate release dates. Details are provided in
[7].

A. Same sized documents - broadcast only

We first consider the simplest case when there is a single
broadcast channel, all files have unit size, and requests have
arbitrary weights. We show that this problem can be solved
by computing a minimum cost perfect matching in a suitably
constructed graph.

Let m denote the number of unique documents (files). For
each file i, let cij denote the cost incurred if the file is served
at time j. That is, cij equals the sum of the weighted response
times incurred by clients if file i is sent at time j. We construct
a bipartite graph with m nodes on the left, where each node
corresponds to a document, and m nodes on the right, where
each node corresponds to a unit time interval. The edge ij
between node i on the left and node j on the right has cost
cij . Finding a schedule now corresponds to finding a minimum
cost matching in the graph, which can be solved in O(m3)
[8]. This solution naturally extends to the case of multiple
broadcast channels [7].

B. Different sized documents – broadcast only

Unlike the case of unit size documents, scheduling different
sized documents on a broadcast link is NP-Hard. We show
that this case is a generalization of the minimum weighted
tardiness5 problem, which is NP-Hard [10]. We also give an
approximation algorithm for this problem.

Proving NP-Hardness: For each job i with size, weight and
deadline si, wi and di in the weighted tardiness problem, let
there be a corresponding document in our scheduling problem
(call it i), which has size si and for which wi requests arrive
at time di. In any schedule, the weighted tardiness of file
i is exactly identical to the weighted response time in our
broadcast schedule. Thus, our problem is at least as hard. It is
interesting to note that the weighted tardiness problem remains
NP-Hard even if all the weights are one [11]. This corresponds
to the fact that our broadcast scheduling is hard even if each
file has just one request.

We note that our problem with release dates generalizes
the weighted response time problem [12], for which no
o(n) approximation algorithms are known (except for special
cases). Thus it is unlikely that we can find a non-speedup
approximation algorithm for our problem. Instead, we give a
speedup-based approximation algorithm.

A ((1+ε)-speed, (1+ 1
ε )-approximate) Algorithm: First ob-

serve that the response time in the broadcast schedule can be
thought of as

∑
i∈Files

∑
t≤ci

oi,t, where oi,t the number of

5Given a set S of tasks all released at time 0, let s(i), w(i) and d(i) denote
the processing time (size), weight and deadline respectively of job i. Given a
schedule, the tardiness of a job is defined as the amount by which it exceeds
its deadline (the tardiness is 0 if it finishes before its deadline). Find a single
processor schedule that minimizes total weighted tardiness [9].

outstanding requests for file i at time t and ci is the time when
file i is completely transmitted.

Consider the fractional response time metric, where instead
of counting the total number of outstanding requests for file i
at time t, we consider the fraction of the file remaining at time
t times the number of outstanding requests. Thus, if a third of
file i is sent by time t we count 2/3oi,t for that time in our
metric. Clearly, for any schedule the value of the fractional
response time metric is no more than the value of the original
response time metric.

Let Opt be the schedule which minimizes the value of the
total response time, V (Opt) denote its value, and F (Opt)
denote its fractional response time. Thus, we know that
F (Opt) ≤ V (Opt). Now let Opt′ be the schedule which
minimizes the fraction response time. Thus, F (Opt′) ≤
F (Opt) ≤ V (Opt).

Let us assume for now that the file can be broken up into
infinitesimally small chunks. Then Opt′ can be computed op-
timally, since it simply reduces to the problem of minimizing
the broadcast schedule with unit size objects with arbitrary
weights. More precisely, to transform the original problem, if
there was a request for a file of size si, we break it up into
si requests, one for each chunk of the file. Each chunk of the
file has weight 1/si and size 1.

Having obtained Opt′, we observe that if we have a (1+ ε)
speed processor and just mimic the schedule of Opt′, then at
the time when we finish sending file i, Opt′ would still have
a β = ε

1+ε fraction of the file left. Thus, if we have a faster
processor then the cost of schedule Opt′ using the original
metric, V (Opt′), can be no more than 1

β = 1 + 1
ε .

Thus, we have a (1+ε-speed, 1+ 1
ε -approximate) algorithm.

Recall, we assumed that a file can be broken into very small
chunks. However, simply breaking it into chunks of size
cε, where c < 1, suffices. This affects the approximation
negligibly.

Making the Schedule Non-preemptive: We observe that
the schedule returned by Opt′ might schedule various chunks
of the same file in non-contiguous time blocks. However,
it can be made non-preemptive. Non-preemptive schedules
are preferable in real systems, because there might be over-
heads associated with preemption. To make the schedule non-
preemptive, we simply consider the times when ε

1+ε fraction of
a file in Opt′ is remaining. Call this time ti for file i. We now
order the files according to increasing ti and broadcast them in
this order using our 1+ε faster processor. The above procedure
clearly produces a feasible non-preemptive schedule.

C. Different sized documents, uniform arrivals over time —
broadcast only

Although a non-speedup approximation algorithm for the
general case of scheduling variable sized objects on a broad-
cast link is unlikely, such algorithms are possible for important
special cases of the problem. For the case where the request
rate, λi, is uniform over time for all objects i, we give a (1-
speed, 3-approximate) algorithm. For the further constrained
case where the request rate of an object is correlated with
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its size, si, such that the density of objects, λi/si, satisfies
λi

si
>

λj

sj
⇐⇒ λi > λj , we show that scheduling in order of

decreasing density is optimal.
Note that if the file reaches the clients at time t over the

broadcast channel, then the total expected waiting time for the
outstanding requests for the file is

∫ t

0 (t − x)λidx = λit
2/2.

Thus, the problem of minimizing the total response time in
this case is equivalent to minimizing the weighted response
time squared where all the release dates are 0, and the weight
of the file is given by λi.

A (1-speed, 3-approximate) Algorithm: Transmitting the
files in non-increasing order of λi/si gives us the required
algorithm. Let ri denote the response time of file i and
let Opt denote the optimal value of

∑
i λir

2
i . We consider

another metric which we call the fractional weighted response
time squared. In this metric we divide file i into si chunks
each of size 1 and weight λi/si each. If rij denotes the
response time of the jth chunk of file i, the value of the
metric is

∑
i

∑si

j=1
λi

si
r2
ij . Clearly, for any schedule, the value

of fractional weighted response time squared is at most that
of weighted completion squared metric. Let FOpt denote the
fractional weighted response time squared for the schedule
Opt.

Let Opt(F ) denote the cost of a schedule which mini-
mizes the fractional weighted response time squared. Clearly,
Opt(F ) ≤ FOpt ≤ Opt. Now, finding the optimal fractional
schedule is easy, since each job is of size 1 and weight λi/si.
Simply scheduling the jobs according to non-increasing order
of λi/si minimizes the fractional weighted response time
squared. We show that the optimal fractional response time
schedule yields a solution that is no more than 3 times worse
than the optimal traditional response time schedule. This gives
our desired 3-approximation.

Let ri0 denote the starting position of the first chunk in the
optimal fraction schedule. Thus, the contribution of file i to the
fractional weighted response time squared is λi/si

∑si

j=1(ri0+
j)2 whereas the contribution to the original metric is λi(ri0 +
si)2. Note that

λi/si

si∑

j=1

(ri0 + j)2

= λi(r2
i0 + ri0(si + 1) + (si + 1)(2si + 1)/6)

≥ λi(r2
i0 + ri0si + s2

i /3)

≥ 1
3

λi(ri0 + si)2

Thus, the 3-approximation follows.
An Optimal Algorithm: When the order of λi

si
is the same

as λi, scheduling in decreasing order of λi/si is optimal. We
show that this holds whenever the response time metric is
λtn, for any positive n. Assume to the contrary. Then, there
exist 2 consecutive jobs, say job 1 and job 2, in an optimal
schedule OPT, such that 2 is scheduled before 1, even though
(λ2

s2
< λ1

s1
). We will show that switching them improves the

metric, and so, we get a contradiction to optimality.

Note that switching 1 and 2 does not affect the schedule of
any jobs except these two (since these are consecutive jobs).
Let the schedule obtained by switching 1 and 2 be OPT’ and
the contribution of response time from job 1 and 2 be ROPT.

Let x be the time when job 2 starts in OPT. Then

ROPT = λ2(x + s2)n + λ1(x + s1 + s2)n

ROPT’ = λ1(x + s1)n + λ2(x + s1 + s2)n

We show that

λ2(x + s1 + s2)n − λ2(x + s2)n

≤ λ1(x + s1 + s2)n − λ1(x + s1)n

and hence, interchanging the jobs leads to a better schedule.
If s1 ≤ s2, we are directly done, since λ2 < λ1.
If s1 > s2, we rewrite as

λ2s1(
∑n−1

i=0 (x + s1 + s2)i(x + s2)n−1−i)

≤ λ1s2(
∑n−1

i=0 (x + s1 + s2)i(x + s1)n−1−i)

Now since λ1s2 > λ2s1, and each term of the summation
is greater, OPT’ is better than OPT and the contradiction is
shown.

D. The Broadcast-Unicast problem

We now explore the target problem of scheduling for both
the broadcast and the unicast channels. Unfortunately, we show
that the Broadcast-Unicast problem is NP-Hard, even if all files
are unit-sized. Although we give an approximation algorithm,
it provides few insights into devising a practical algorithm.

Proving NP-Hardness: We give a transformation from
Exact Cover by 3-Sets6, in which each element occurs in at
most 3 subsets [9].

Given an instance of Exact Cover by 3 sets, let the elements
of X be u1, . . . , u3q and let Si ∈ C denote the 3-element
subsets. We create an instance of the Broadcast-Unicast prob-
lem as follows: Each ui corresponds to a client and each Si

corresponds to a file. Client ui requests file j iff i ∈ Sj .
Note that since each element lies in at most 3 sets, each client
requests at most 3 files. Next, we add dummy requests for each
client such that total number of files requested by a client is
exactly q +1. A dummy request for a client ui is a file which
is requested by ui only. Finally, all the q +1 requests by each
client (u1 through u3q), are made at time t = q.

Our goal is to show that all the requests can be satisfied by
time q (i.e. the Broadcast-Unicast problem has cost zero) iff
the original problem instance has an exact cover.

First, we show that given an exact cover C ′ we can satisfy
all requests by time q. This is done by transmitting file i for
each Si ∈ C ′ over the broadcast channel. By the definition
of exact cover, the broadcast schedule will satisfy exactly one
request for each of the 3q clients. Finally, for each client we

6Given a set X with |X| = 3q and a collection C of 3-element subsets of
X . Does there exist an exact cover for X , i.e., a sub-collection C′ ⊆ C such
that every element of X occurs in exactly one member of C′? The problem
is NP-Complete even if no element occurs in more than three subsets.
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simply send the remaining q requests using its personal unicast
link. Thus, all requests are satisfied by time q.

For the other direction, we show that any zero cost
broadcast-unicast schedule gives an exact cover. Since all
requests are satisfied by time q, each client has at least
one request satisfied by the broadcast channel. Now, any file
transmitted by the broadcast channel can either satisfy 3 clients
(if it is a file corresponding to some Si) or 1 client (if it is
a dummy file for some client). Since there are 3q clients and
each has at least one request satisfied by the broadcast channel,
every file sent over the broadcast channel must correspond to
some Si. Thus, we have an exact cover in the original instance.

Hence, finding the optimal Broadcast-Unicast schedule is
NP-Hard. Moreover, it is also impossible to obtain a non-
speedup approximation algorithm for the problem (since any
algorithm which is not optimal has a non-zero cost, whereas
the optimal cost is zero).

Although no 1-speed approximation is possible, a (1 + ε)-
speed, (1 + 1

ε )-approximate algorithm is possible using linear
programming. The algorithm and proof are given in [7].

E. Online Algorithms

In this subsection, we consider how well online algorithms
perform as compared to their offline counterparts in our
scenarios. An algorithm is said to be c-competitive if it is
a c-approximation algorithm that computes online.

Because an offline algorithm can use the cache in a more
judicious fashion by pushing documents that it knows would
be requested next, it can perform considerably better than
an online algorithm. We prove that no o(

√
n)-competitive

algorithm exists, even for the simple case in which just one
broadcast channel is available for sending files, and the files
are same-sized. This result holds even if we make changes to
this model like adding back the unicast channels, having dif-
ferent sized-objects, and having multiple broadcast channels.

Consider 2k unit length files that are each requested at time
t = 0. At time k, there are k additional requests for each of
the k remaining files. The document sent in slot [k + i − 1,
k+i) would contribute i∗(k+1)+k to the total response time.
Thus, the total response time for the online schedule is Θ(k3).
The offline scheduler would send out the k popular ones first,
and hence, the total response time would be Θ(k2). The total
number of requests n=Θ(k2), and hence, the competitive ratio
is Θ(

√
n). The above also shows that if no more than k

requests arrive at any time, then a lower bound of Ω(
√

k)
holds.

III. OFFLINE HEURISTICS

Since finding an optimal solution to the offline broadcast-
unicast problem is NP-Hard (Sec. II-D), in this section,
we devise and evaluate heuristics to minimize the average
response time. Our primary focus is to find heuristics that
work well in an online setting, since our algorithms would
finally be deployed in an online setting. In addition, we also
evaluate heuristics that would work well in an offline setting,
to get a sense of how much better we could perform if we

had a perfect predictor. Subsection A details our heuristics.
In subsection B, we present the results and expound on the
lessons learned. These in turn motivate our choices for the
online algorithms evaluated in Sec. IV.

A. Heuristics

Instead of solving the whole problem in one step, we solve
the broadcast case first, and then use it to determine the unicast
schedule. This is a natural approach, since the broadcast
channel has much higher bandwidth and also happens to be
shared, thus making it imperative to find a good schedule for it.
Fortunately, we also have some heuristics that are guaranteed
to work well in the broadcast-only case (Sec. II-B, II-C).

Note that the broadcast schedule tells us the time when a
particular file would reach the clients. For determining each
client’s unicast schedule, we then step through its requests
in order of their arrival time, and send a requested file over
the unicast link iff doing so makes the new waiting time
of the client for that particular request threshold times the
original waiting time. Reducing threshold involves a tradeoff
— forsaking immediate gains (reduction in waiting time due to
the present request) in anticipation of future gains (subsequent
documents sent over unicast would reach the user faster)7. We
experiment with different values of threshold in arriving at a
unicast schedule.

Now that we have reduced our problem to finding a good
broadcast schedule, we can use insights from Sec. II to devise
a broadcast schedule that works well. From Sec. II-B, we know
a (1+ε)−speed, (1+1/ε)-approximate algorithm that uses the
technique of dividing each file into chunks of equal size, and
basing the broadcast schedule on the optimal order of sending
the equal sized chunks (Sec. II-A). Unfortunately, the O(m3)
matching algorithm (Sec. II-A) does not scale. Moreover, in
our preliminary evaluation on smaller data sets, our geometric
scheduler (described below) performed equally well. So, we do
not use this heuristic any further in our experiments. One other
heuristic that works well, when files are uniformly popular, is
to schedule in order of densities (Sec. II-C). We generalize
the density function (popularity/size) to λi

sα
i

and experiment
with different values of α between 0 and 1. We do this
because α = 1 does not seem to be the optimal choice when
the two alternative links have widely different bandwidths8

and capabilities (broadcast vs. unicast). Also, in the presence
of OpCaching, sending popular objects over the broadcast
channel is likely to improve performance by enabling cache
hits, thus strengthening the case for a lower α value.

Specifically, we use:

7Note that the problem of finding the optimal solution here is NP-Hard.
We provide the details in [7].

8Assume a simplistic case, in which 2 files, one of size 900KB (requested
by 900 users), and the other of size 1KB (requested by 2 users) need to be
scheduled. All requests arrive at time t=0. If α = 1, we send the smaller
file first on broadcast channel. Note that the unicast channels in this case
remain idle, since the larger file, even though sent second on the broadcast
link, reaches the user faster than the unicast link (because the unicast link is
extremely slow). If α = 0, the smaller file would be sent over the unicast
links and the total response time could be reduced.
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TABLE II

EVALUATING HEURISTICS: AVG. RESPONSE TIME (NORMALIZED)

Size Naive Geometric Sorted Sorted Naive
(thres=0.55) (α = 0) (α = 0) (α = 1) (thres=1)

5MB 1.00 0.89 0.95 1.20 1.04
10MB 1.00 0.94 0.98 1.18 1.02
20MB 1.00 0.94 0.97 1.15 1.02
50MB 1.00 0.92 0.94 1.14 1.02

Naive Scheduler: This simple heuristic serves files in
first-come, first-serve order. A file’s position in the broadcast
schedule is dependent on the time when it is first requested
by any user.

Sorted Scheduler: This scheduler is based on λi

sα
i

. For
this offline scheduler, we consider λi to be the total number
of requests that arrived for file i during the whole time period.

Geometric Scheduler: This is a refined version of the
above, paying attention to both the request arrival times, and
popularity. Here, we divide the time period into small win-
dows, consider requests for a file arriving in different windows
separately, and take a weighted sum of these numbers9. Also,
note that this offline scheduler has a computational cost of
0(m2). We tune the geometric scheduler’s performance by
experimenting with different window sizes, to get an idea of
the best we could perform, if we had enough computational
resources and access to a perfect predictor (larger window
sizes work better with larger traces). Finally, there seems to
be no easy adaptation of this heuristic to the online scenario
because it requires fine grained predictions. Moreover, this and
Sorted would map to the same online algorithm, if we used a
limited look-ahead.

B. Results

Using the two step process (Sec. III-A), we find the average
response time across all requests, assuming an infinite cache
at each client. Our simulation includes client request queues,
response queues, transmission delays and link latencies (Table
IV).

We evaluate our heuristics on traces from the Polygraph
workload generator (Sec. IV-B). Our traces consist of requests
for variable sized files. We define the size of a trace to be
the total size of all unique objects requested in the trace. We
use traces of size 5MB, 10MB, 20MB, and 50MB for our
evaluation. We run our algorithms on two different traces for
each size, and present the average of the two results in Table
II. We use threshold = 0.55 unless specified.

9Specifically, we calculate a score for each object i at the beginning of
each time window j,

scoreij =

k=j−1∑

k=0

reqij +
k=n∑

k=j

reqij

ratiok−j−1

where reqij is the number of requests received for object i divided by sα
i in

the time window j, and ratio is a number greater than 1 to weigh down the
future requests. Empirically, we found ratio = 1.1 to work well, and use it
for our evaluation.

We make the following observations:

1) The Geometric scheduler is better than Sorted (α = 0),
which in turn is better than Naive (Table II). This is in
line with our expectations, based on the complexity and
requirement of each heuristic.
We believe that the reason Naive performs only about
8% worse is because the popularity of files does not
change very rapidly either in real-life workloads, or in
our traces.

2) The response time of any heuristic varies in a paraboloid
fashion, as the threshold is increased from 0 (unicast
links not being used) to 1 (greedy choice), with a
minima close to threshold = 0.55. We present the
comparative performance for only the Naive algorithm
(threshold = 1 and threshold = 0.55 in Table II). This
means that a heuristic which tries to balance the load
on the unicast and broadcast links is likely to perform
well. A more popular object, instead of being sent by
unicast (unless it is substantially faster), should be sent
via broadcast, so that it can later result in cache hits,
and so as to reduce load on the unicast links. Our GPop
scheduler (Sec. IV-A) considers both the popularity and
the greediness for determining how and when to send
an object.

3) For Sorted, the response time decreases with decreasing
α, and we obtain the best result for α = 0. As a result,
we do not consider the size of objects in any of the
online algorithms in the next section.

IV. SIMULATION

In this section we evaluate the ability of several online
heuristic schedulers to improve mean response time for web
access. We first describe the proposed schedulers. Next, we
detail our evaluation methodology. We then present our ex-
perimental results.

A. Practical Schedulers

We consider three scheduling heuristics: Greedy, Sorted,
and GPop. Greedy and Sorted represent online adaptations of
the Naive and Sorted offline schedulers respectively. GPop is
a hybrid. We omit the Geometric scheduler of Sec. III as it
has no online equivalent.

Like the Naive scheduler, Greedy ignores popularity and
defaults to servicing requests via broadcast. Because an online
scheduler cannot employ the two-step process of Sec. III,
Greedy employs an alternate method of shifting replies to
the unicast links. On receiving a request, Greedy estimates
the service time over both links by assuming fair sharing of
links by all requests enqueued on the link, and computing
size×queuelength/bandwidth. If the satellite is sufficiently
congested that the modem link is faster, Greedy sends the reply
via modem.

The online form of Sorted sends every reply via unicast.
Sorted maintains popularity information using a counter ro for
each object o. Initially, ro = 0 ∀o. Each time o is served via
unicast, ro is incremented. Any time o is served via broadcast,
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TABLE III

TYPICAL WORKLOAD CHARACTERISTICS

Parameter Value

Simulation length 8 hours
Warmup period 4 hours

Mean request rate 0.4/client/sec
Mean requested file size 7KB
Max requested file size 2MB

# of users 1000

ro is reset to zero. Periodically, Sorted pushes the most popular
objects to users via the broadcast link, in order of popularity.
Through simulations, we have found that a period of one
second gives the best results.

GPop embodies the lessons learned in Sec. III by incorporat-
ing popularity, and attempting to avoid overusing any link. In
deciding whether to service a request via broadcast or unicast,
GPop considers the service time on both links, as in Greedy. To
incorporate popularity, GPop maintains popularity in the same
manner as Sorted. GPop serves a request over the broadcast
link if timebcast ≤ timeucast × satpref × ro. The satpref
parameter enables us to tune the behavior of GPop. We have
found 0.06 to be a good value for satpref 10.

B. Methodology

We simulate the performance of the system running against
synthetic web workloads. In order to properly model client
access patterns across web sites, we focus on proxy workloads
rather than server workloads. The simulations are conducted
with an extended version of the ns-2 [13] network simulator
which incorporates portions of the Polygraph [14] proxy
benchmarking tool. The Polygraph benchmark was developed
for the annual Cache-off s [15].

To the extent possible, we use the stock polymix-4 workload
from the Polygraph package. The aim of the workload is to
gauge how well the system performs under typical peak daily
loads. One significant modification is that we omit the multi-
phase schedule of Polygraph for a shorter schedule. As we
take our measurements after the system has warmed up, we
expect that the altered phase schedule does not significantly
alter the results.

We give characteristics of a typical Polygraph run in Table
III. Individual runs deviate slightly from these nominal values.
Table IV gives the nominal characteristics of the modem and
satellite links. Links are scheduled with fair sharing11. Based
on the analysis of [16], we choose the satellite bandwidth for
our 1000 user system to be 2.25 Mb/sec.

Our simulations omit Internet and server delays. The client
nodes enter every broadcast object into their caches, and
employ an LRU eviction policy.

C. OpCaching Benefits

We first consider the benefits of OpCaching. To isolate
the benefits of OpCaching from the benefits of using the

10 [7] provides details on tuning satpref .
11The exception to this is that the Sorted scheduler sends objects on the

broadcast link in strict priority order.

TABLE IV

LINK CHARACTERISTICS

One-way Latency Bandwidth

Satellite 125ms 2.25 Mbits/sec
Modem 50ms 56 Kbits/sec

TABLE V

OPCACHING BENEFITS

Cache BW Mean Mean Resp Mean Xfer
(Mb/sec) Queue (sec) (sec)

none 20 3825 158.34 158.34
none 21 55.3 0.95 0.95
none 22 22.6 0.88 0.88
none 35 2.4 0.85 0.85

12GB 12 3918 68.00 148.22
12GB 13 268.5 1.00 2.11
12GB 14 17.8 0.36 0.76
12GB 22 2.4 0.33 0.69

downlink channel of the modem links, we examine the set-
ting where only the satellite downlink is used. We measure
the reduction in minimum bandwidth required to meet user
demand both with and without OpCaching. To determine
the minimum bandwidth, we run simulations with varying
satellite bandwidth. We start with a high bandwidth setting and
progressively reduce bandwidth until the system is saturated,
as indicated by a large queue on the satellite link. This
procedure is run both with and without caching at the client
nodes. Table V summarizes the results. The “Mean Resp”
column gives the response time averaged over all requests,
with the time for a cache hit being zero. The “Mean Xfer”
column gives the average response time for cache misses
only. Boldfaced entries denote configurations where the system
failed to complete all client requests.

We find that, without OpCaching, the system requires a min-
imum bandwidth of 21 Mb/s to meet user demand. Increasing
bandwidth beyond this point does not improve response time
significantly, as overheads such as the time to send the request
comprise a large fraction of the response time in this setting.
With OpCaching, we can reduce bandwidth by 33%, to 14
Mb/s, while improving mean response time by 62%, from
0.95s to 0.36s.

D. Heuristic Evaluation

Herein, we compare the performance of the proposed heuris-
tic schedulers using the environment described in Tables III
and IV. Hereafter, we use 4GB caches at the client nodes.
Table VI summarizes the results. The “Modem Frac” column
reports the fraction of requests which are served by modem.
“Mean Sat” gives the response time for requests served via
satellite.

We find that the Sorted scheduler performs quite poorly.
It is outperformed by both GPop, and by Greedy, which
uses no popularity information at all. At first glance, this is
surprising, given that Sorted has the highest hit rate of the three
schedulers. Examining the Modem Frac column, however, we
see that the Sorted scheduler has a larger fraction of requests
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TABLE VI

HEURISTIC PERFORMANCE

Heuristic Mean
Resp

Hit
Rate

Modem
Frac

Mean
Sat

Greedy 1.72 0.36 0.517 2.86
Sorted 2.29 0.47 0.530 N/A
GPop 1.33 0.45 0.415 1.01
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BROADCAST OBJECT UTILITY

serviced via the modem link than the other schedulers. The
key factor is that, whereas the Greedy and GPop schedulers
can service a cache miss via either the satellite link or the
modem link, Sorted only services misses via the modem link.
Thus, Sorted realizes worse performance overall.

We also see that GPop outperforms Greedy. GPop wins over
Greedy for two reasons. First, by employing popularity in its
decision, GPop achieves a higher hit rate. Second, Greedy
sends objects via broadcast whenever broadcast is faster than
unicast. When user demand is greater than broadcast capacity,
Greedy effectively slows the broadcast link to the same speed
as the unicast links. Thus, as in seen in the Mean Sat column,
requests serviced via satellite with Greedy do poorly compared
to their counterparts under GPop.

As another measure of the efficiency of the schedulers,
we consider the utility of the objects sent over the broadcast
link. Specifically, we ask how many requests are served by
each object transmitted over the broadcast link. For the Sorted
scheduler, this is exactly the number of cache hits for the
object. For the Greedy and GPop schedulers, this is the number
of cache hits plus one, as the initial transmission of an object
satisfies an outstanding user request. Fig. 2 plots the inverse
CDF of object utility. From this graph, we see that fewer than
40% of the objects that are sent over the satellite with the
Sorted scheduler are ever used. This suggests a counterpoint to
Sec. IV-C. While OpCaching is beneficial, using the broadcast
channel for prefetching only hurts performance because many
of the pushed objects are never used.

E. Performance Under Varied Loads

Thus far, we have focused on performance under high loads.
We now consider performance under fixed bandwidth, but with
varied loads. We fix the bandwidth to be 2.25 Mb/sec and scale
load by adjusting the mean request rate. This enables us to
assess performance under both low and high load conditions.
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SYSTEM CAPACITY

We compare against a simple system (“SatOnly”) that employs
OpCaching but does not use the modem downlink channels.
An ideal system will perform as well as SatOnly under light
loads, where the satellite link alone has sufficient capacity,
while exhibiting better performance under high loads, where
the satellite becomes overloaded. We include ModemOnly, a
configuration in which only the modem links are used, for
completeness.

In the SatOnly system, as the satellite link becomes over-
loaded, queue lengths grow to infinity, and response times
grow arbitrarily large. In practice, however, users are likely
to adapt their behavior to the performance of the system.
For example, when the system is sluggish, users may abort
their requests. As a simple approximation of this behavior, we
implement a per-user limit on the number of outstanding and
queued requests. Briefly, a given user may have four requests
outstanding (issued to the server) at any given time. When
more than four requests are outstanding, further requests are
queued. The queue depth is itself limited to four requests.
When the queue fills, any further requests generated by the
user are discarded.

Fig. 3 presents the fraction of completed requests for
SatOnly, Greedy, GPop, and ModemOnly. We find that the
capacity of the SatOnly system is 0.07 requests/client/sec.
Beyond this point, SatOnly fails to complete a significant
fraction of requests. When the system is configured to use
modems, in contrast, the system maintains a stable request
completion rate. This is as expected, because the modems
alone have sufficient capacity to meet user demand.

Fig. 4 presents mean response time for the same scenarios.
The most dramatic feature of response time performance is
that SatOnly is essentially unusable beyond an offered load of
0.06 requests/client/sec. We note that both GPop and Greedy
behave in the manner that we would like. At low loads,
they perform comparably to SatOnly. As load increases, their
performance degrades gracefully. As explained in Sec. IV-D,
GPop outperforms Greedy at high loads.

F. Large Object Performance

Subscribers to high-speed Internet services, are unlikely to
be satisfied with fast loading of web pages alone. A large
draw of broadband Internet access is the ability to quickly
access large files such as music or movie trailers. A danger
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LARGE OBJECT PERFORMANCE WITH GPOP

of focusing on mean response time is that we may neglect
the performance of retrieving these large objects. Specifically,
in typical web workloads, large objects account for only a
small fraction of the number of requests [17]. Thus, it may be
possible to achieve good overall performance, as measured by
mean response time, while doing poorly for large objects.

We examine GPop’s performance on large objects in Fig. 5.
The graph shows performance for the configuration described
in Tables III and IV. “Expected Modem Time” gives the
expected service time over a modem link, accounting for
contention from other requests. “Achieved” gives the actual
performance of GPop in simulation. “Expected Satellite Time”
is analogous to Expected Modem Time. Ideally, the slope of
the Achieved line would be close to the slope of Expected
Satellite Time. The conclusion that we draw from Fig. 5 is
that large requests do in fact suffer poor performance with the
GPop scheduler12.

To explain why large requests do poorly, we review the
GPop algorithm. As explained in Sec. IV-A, GPop serves
a request using the satellite link timebcast ≤ timeucast ×
satpref × r. When satpref ≤ 1, as in our simulations,
an object must have seen multiple requests, or the expected
service time on the satellite link must be lower than the

12Greedy exhibits similarly poor performance on large objects. We omit
further discussion due to space.
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LARGE OBJECT PERFORMANCE WITH GPOPLARGE. THE INSET GRAPH

FOCUSES ON SMALL OBJECTS.

expected modem service, for the request to be served via
satellite. In particular, with a low satpref , an object must
be very popular, or the expected satellite service time much
lower than the expected modem service time. The latter is
infrequently true because the shared nature of the broadcast
link. Thus, large objects, which are generally unpopular [14],
are unlikely to be sent on the satellite link.

To address this deficiency, we consider a simple revision
of GPop, which we call GPopLarge. We set a threshold size
slarge for large objects. Objects larger than slarge are sent
via the satellite link if they would have been sent via satellite
under GPop, or if the expected service time via satellite is less
than the expected service time via modem. Given the typical
satellite queue lengths in our configuration, the latter is the
typical case.

In Fig. 6 we see that this simple approach can signifi-
cantly improve performance for large objects. A 3MB file,
for example, achieves a speedup of 3.79 with slarge=100KB
as compared with GPop. For slarge=500KB, the speedup
increases to 6. Thus, even under high loads, large objects can
achieve reasonable performance with GPopLarge.

The inset in Fig. 6 shows that the improvements come at
the cost of slightly worse performance for small objects. Table
VII quantifies the impact of GPopLarge on mean performance.
For slarge=100KB and slarge=500KB mean response time
increases by 31% and 11% respectively. Although the gains
in large object performance are not free, they are likely to
outweigh the losses. In plain terms, a user is less likely to be
concerned about small differences in page load times for small
web pages than the ability to access large files, such as music
and video, quickly.

The ability to accelerate the retrieval of large objects
necessarily depends on the workload. At the extreme, if
the workload consists of nothing but requests for large and
unpopular documents, then accelerating large objects will be
infeasible. For this reason, we evaluate the performance for
large objects on heavier tailed workloads than PolyMix-4.
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TABLE VII

OVERALL PERFORMANCE WITH GPOPLARGE

Scheduler Mean Resp Std Dev

GPop 1.31s 3.40
slarge=100KB 1.72 2.74
slarge=250KB 1.56 2.58
slarge=500KB 1.46 2.70
slarge=750KB 1.42 2.96
slarge=1000KB 1.38 3.00
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LARGE OBJECT LOAD

For this purpose, we configure Polygraph to generate file
sizes according to the hybrid Lognormal-Pareto models re-
ported in [17]. The reported models are based on traces of web
users at the Boston University Computer Science Department.
Fig. 7 shows the load attributable to large objects in the
resulting workloads. The BU worklods clearly show heavier
tails than PolyMix-4. In simulations based on the BU 95
model, the size of the largest file varies from 27MB to 949MB.
For the BU 98 model, the largest file ranges from 8MB to
30MB.

We omit graphs of the BU 95 and BU 98 results due to
space constraints. For both BU 95 and BU 98, we find that
setting slarge < 500KB achieves little improvement. For BU
95, slarge = 500KB improves large object response time
by a factor of 2.8, with a 20% slowdown on overall mean
response time. GPopLarge performs better on the BU98, where
it achieves a factor 8 speedup for large files, with only a 4.3%
slowdown on overall mean response time.

Thus, although the ability to accelerate access to large ob-
jects is workload-dependent, GPopLarge achieves significant
improvement for typical workloads.

V. RELATED WORK

There is a large body of work on optimizing data retrieval in
networks with broadcast or multicast capabilities. We describe
the most relevant theoretical and system design work below.

Many different variants of the broadcast scheduling problem
have been theoretically evaluated in the past. An early study
of broadcast scheduling by Acharya and Muthukrishnan [18]
provides a nice introduction to the problem. Finding a broad-
cast schedule which minimizes the maximum response time is
considered in [19]. Recently, the problem of minimizing the
total response time has been shown to be NP-Hard, even if all
the files have unit sizes [20]. This result is interesting as there

are very few hardness results for scheduling problems where
jobs have the same size. All current results to minimize total
response time are limited to using resource augmentation [6]
and unit size jobs. Kalyanasundaram et al. [21] give a 1

ε speed,
1

1−2ε approximation for this problem and Gandhi et. al. [22]
give an improved 1

ε speed, 1
1−ε approximation algorithm.

In Sec. II-B, we showed that for the case when the file sizes
are variable and they have release times, our problem is a more
general case of the classic and hard problem of minimizing
the weighted response time on a single machine. Becchetti et
al. [23] give a (1 + ε)-speed, (1 + 1

ε ) competitive algorithm
for the problem of weighted response. Hence, our result (with
the same performance guarantee) generalizes their result.

Some past studies consider scenarios closer to our own.
For example, [24] shows that there is no o(

√
n) competitive

algorithm for sending variable sized objects over the broadcast
channel, with no caching. [25] considers a system in which
the clients have a cache. However, their focus is on the various
memory management policies for the cache and they do not
consider the scheduling of the broadcast channel at all.

In summary, while this theoretical problem has received
much attention recently, past efforts differ in various funda-
mental ways from our approach. First, none of the previous
works deal with scenarios where the clients have a cache.
Secondly, none of them looks at the general problem where
there are both unicast and broadcast channels. Thirdly, all of
them assume that files have a fixed unit size. These differences
play an important role. For example, while the no-cache
version is NP-hard even for the unit file size case, our problem
can be solved exactly in polynomial time in the case of unit
size files.

Several system designs also consider the use of broadcast
or multicast to deliver files. [26] employs IP multicast to
increase the capacity of a single web server. [27] and [28]
explore a design in which a sender periodically transmits
objects from a fixed library across a broadcast channel. In
this system, the periodicity of a particular object is governed
by its popularity. Other work extends this basic design by
incorporating client “pull” requests for objects [29], [30], [18],
[31], object dependence relationships (to model embedded
objects in web pages) [32] and the use of multiple downlink
channels [33], [34].

A few systems explicitly consider the use of satellite chan-
nels. [35] proposes an architecture for employing satellites to
distribute web content to caches. DirecPC service includes a
“webcast” [36] feature, which automatically broadcasts pop-
ular websites to users. However, technical details about this
service are unavailable.

The prior work in system design differs from our own in
three significant ways. First, previous work either considers
only a single downlink, or assumes a small number of unicast
downlink channels of the same speed as the broadcast channel.
Second, most prior work ignores the ability to cache objects
requested by other users. Third, we consider a web-like
workload of millions of data items while prior work considers
smaller workloads of at most ten thousand objects.
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VI. CONCLUSIONS AND FUTURE WORK

We have considered the problem of optimizing response
time in a network comprised of broadcast and unicast links,
where caching is inexpensive. A driving force behind our
approach is the idea that we can improve performance by
exploiting the fundamental properties of system elements.

From a theoretical perspective, we find that both the general
problem, and several simplifications, are NP-Hard. Where
possible, we give approximation algorithms. Despite the hard-
ness of the problem, we find that heuristic approaches can
effectively leverage system elements to improve performance.
They provide similar performance to existing systems at low
loads, and dramatic improvements in capacity and response
time at high loads.

An interesting area of future work is to consider where
else basic system properties can be exploited. One example
is that broadcast networks enable lightweight invalidation-
based consistency management. Without broadcast capability,
providing such consistency requires tracking all the users who
hold a data item. We need to know both if we need to send
an invalidation, and where to send it. With broadcast, we need
only determine if an invalidation is required. A mechanism
such as leasing [37] might provide a lightweight answer to
this question.
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