
Cache Satellite Distribution Systems:
Modeling and Analysis

Aner Armon Hanoch Levy
School of Computer Science

Tel Aviv University
Tel Aviv, Israel

Abstract—Web caches have become an integral component

contributing to the improvement of the performance observed by
Web clients. Content Distribution Networks (CDN) and Cache
Satellite Distribution Systems (CSDS) have emerged as
technologies for feeding the caches with the information clients
are expected to request, ahead of time. In a Cache Satellite
Distribution System (CSDS), the proxies participating in the
CSDS periodically report to a central station about the requests
they are receiving from their clients. The central station
processes this information and selects a collection of Web
documents (or “Web pages”), which it then "pushes" via a
satellite broadcast to all, or some, of the participating proxies,
hoping most of them will request most documents in the near
future. The result is that upon such request, the documents will
reside in the local cache, and will not need to be fetch.

In this paper* we aim at addressing the issues of how to
operate the CSDS, how to design it, and how to estimate its effect.
Questions of interest are 1) What classes of Web documents
should be transmitted by the central station, and how they are
characterized, and 2) What is the benefit of adding a particular
proxy into a CSDS. We offer a model of this system that accounts
for the request streams addressed to the proxies and which
captures the intricate interaction between the proxy caches.
Unlike models that are based only on the access frequency of the
various documents, this model captures both their frequency and
their locality of reference. We provide an analysis of this system
that is based on the stochastic properties of the traffic streams
that can be derived from HTTP logs. The model and analysis can
serve as a basis for the design and efficient operation of the
system.

Keywords—Web Cache; Content Distribution Network;
Satellite Network; Performance analysis; Performance evaluation.

Methods keywords—System design; Simulations; Stochastic
processes/Queueing theory.

I. INTRODUCTION
Web caches have become an integral component

contributing to the improvement of the performance observed
by Web clients. Content Distribution Networks (CDN) and
Cache Distribution Satellite Systems (CSDS) have emerged as

* This research was supported in part by MAGNET, Chief Scientist

Office, Ministry of Trade and Commerce, Israel.

technologies for feeding the caches with the information
clients are expected to request, ahead of time. A typical Cache
Satellite Distribution System (CSDS), of which a schematic
drawing is given in Fig. 1, consists of a set P of proxy caches,
and one central station. The proxies participating in the CSDS
periodically report to the central station about the requests
they are receiving from their local clients. The central station
processes this information and uses it to predict what
documents will be desired by other proxy caches in the system
in the near future. The central station then selects a collection
of Web documents, which it retrieves, usually from the
terrestrial network, and then "pushes" these documents via a
satellite broadcast link to all, or some, of the participating
proxies. The result is that upon such request, the documents
will reside in the local cache, and will not need to be fetched
using the local terrestrial network.

The advantage of broadcasting a document over CSDS is
that once the document is requested at any participating proxy,
the document is available in all caches. Thus, the user delay is
reduced and the bandwidth cost is saved (assuming that the
cost of broadcasting a document to K destinations is cheaper
than to retrieve it on the terrestrial network K times).
Nonetheless, such benefits do depend on whether the
document will indeed be needed at the receiving proxy. In the
case that the document is not needed, no benefit is gained. In
fact, some damage may be caused, since the unwanted
document "contaminates" the cache by pushing all current
documents residing in the cache, and potentially causing
another document (that may be needed by the proxy) to be
removed from the cache. Thus, broadcasting a document over
CSDS is not always beneficial.

In a similar manner, the benefit for a proxy from
participating in a CSDS may vary, depending on the mutual
properties of the participating proxies. To demonstrate this,
consider two proxies, A and B, which consider sharing a
CSDS. If the proxies have interest in similar documents then it
is likely that they will mutually benefit from a CSDS. For
example, such mutual benefit is expected from two proxies of
commercial ISP's in the same country. On the other hand,
consider proxies A and B located in two different countries
whose audience is interested mainly in their native language
documents. In this case the documents requested by the
proxies are highly disjoint, and the use of a CSDS will only
cause the two proxies to "contaminate " each other.

The aim of this paper is to devise an analytic tool that can
be used in the design decisions involved in the operations of a

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

CSDS. These include issues such as the selection of classes of
Web documents for broadcast in the system and the selection
of proxies to participate in the system. To this end, one must
take into consideration the properties of the various proxies
and the properties of the traffic streams they are exposed to
and to use this data to analyze the system. Two properties are
inherent to streams directed at Web caches (as to other caches
as well). These are the relative request frequencies of the
various documents (some documents are accessed more
frequently and some are less) and the locality of reference (a
document that was requested recently is more likely to be
requested again). Unfortunately, accounting for both
properties is difficult and most common models do not
account for both.

We propose a stochastic model that accounts for both
properties of the request streams directed to a proxy. The
statistics of these properties can be derived from the HTTP log
of the proxy. The model uses these properties to predict the hit
ratio, which is the fraction of the requests made to the cache
and which result with the requested document found at the
cache. Thus, using this analysis one can evaluate the system
performance under various conditions and operations.

The model accounts for the intricate interaction of the
different streams at the different caches and makes use of two
document request distributions: The stack depth distribution,
and the request count distribution. The stack depth distribution
has been used successfully to model the behavior of cache
systems (see, e.g., [5]), and in [8] and [9] it was used to model
and analyze the interaction of database caches. The request
count distribution helps us to estimate the potential gain of
sharing the first miss of every document, among all
participating proxies.

Our analysis yields a set of recursive equations whose
computation complexity is))((2αKO , where K is the cache
size, and 1≤α is a modeling parameter that can be chosen to
be quite small as to make the computation very efficient. The
results of the analysis provide expressions for the
improvement in the cache hit-ratio in each of the participating
proxies, as function of the document classes (or streams)
broadcast to participating proxies. Thus, the analysis can be
used for selecting the more effective streams to be broadcast,
as well as for assessing the value of joining a proxy into a
CSDS.

The analysis is supported by numerical results in which we
examine the predictions of the analysis by comparing it to
simulation. We observe good agreement between the
simulation and the analysis especially in predicting the relative
effect of different streams or different proxies on the
performance. As such, the analysis fits well in assisting in
system design and in operational rule design.

The structure of the rest of this paper is as follows: In
Section II we provide the model and the analysis approach. In
Section III we provide the analysis of the system. In Section
IV we discuss how the results can be used for devising
operation rules and designing the system. Numerical results
are provided in Section V. Finally, Section VI summarizes the
paper and its results.

A. Related work
Cache modeling and analysis received attention in the past

in the context of operating systems and databases. For
example, see Coffman and Denning [5]. In the context of
databases, Levy and Morris [8][9] proposed a model and
analysis for evaluating the interaction of various traffic

Proxy Cache

End user End user End user

Proxy Cache

End user End user

Proxy Cache

End user End user

 Central Station

Satellite
Broadcast from satellite

Unicast

Figure 1: A schematic diagram of the system

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

streams in a cache system. More recently, cache modeling on
the World Wide Web received attention as well. For example,
Breslau et al. [3] tested the sufficiency of using Zipf
distribution to describe behavior of web proxies. They
provided a comparison to experimental observations, and
proposed some cache replacement algorithms. Some attention
was also given to properties of different request types on the
web, e.g. Almeida et al. [1], that provided classification and
interpretation of specific proxy logs, based on geographical
characterization.

The work on the modeling and analysis of Cache Satellite
Distribution Systems has been quite limited. Rodriguez and
Biersack [10] provided an analysis of the performance of
Cache Satellite Distribution Systems, but without accounting
for modeling aspects of the cache capacity, the inter-relation
between the document requests and their inter-reference, and
the effects of the different streams on the cache performance.
Hu et al. [7], provided an analytic model based on Poisson
distributed request rate, and a suggestion of client filtering
policy in a cache satellite distribution system based on web
servers visited in previous days. Chang [4] formalized the
Cache Satellite Distribution problem as an optimization
problem, based on the assumption that documents are
distributed according to the Zipf distribution; that paper does
not account for the inter-reference of document requests as
well.

Several references focused on the problem of the selection
of documents to be broadcast, based on very detailed
information dynamically sent to the central station from the
proxies regarding their needs of specifically identified
documents. These include Cohen et al. [6] and Askoy et al.
[2]. These may require a significant amount of data sent from
the proxies to the central server, and they do not deal with the
system design issues.

II. GENERAL MODEL AND ANALYSIS APPROACH

A. System modeling and analysis approach
A Cache Satellite Distribution System can be modeled as

follows: Each cache is subject to a stream of local document
requests, originated by the end users of the proxy. Upon
receiving a local request, the proxy will examine whether the
requested document is in the cache, in which case it will return
the requested document to the user. If the requested document
is not in the cache, the proxy will retrieve it from the
terrestrial network, and will announce the central station that
the document was requested and was not found. The central
station then will decide (typically by identifying the document
as a part of some stream, defined herein) whether to retrieve
the document from the terrestrial network and to broadcast it
to all the participating proxies via the satellite link. Upon
receiving a document from the satellite link, a proxy may
select to either save it in its cache or to discard it.

Remark 1: The notion that not all participating proxies
must accept all broadcast documents and put them in their
cache, can actually split the set of recipients of the satellite
broadcast to several subsets, by common proxy interests. We
will model this behavior by defining subsets of proxies, each
sharing interest in similar document classes, i.e. only a portion

of each document class, originating at each subset, is being
broadcast. Most of our analysis focuses on a single subset, but
is constructed in a way that can handle multiple proxy subsets.

Our aim in the analysis is to examine how the broadcast of a
document or a class of documents (e.g. all the documents of
xyz.com) will affect the performance of the individual caches.
This analysis is to be carried as function of the parameters of
the document class, as to assist us in the decision of which
documents (or classes of documents) should be broadcast and
which not. We assume that the system designer is equipped
with the HTTP logs of the proxies (these are commonly
available), and that the statistical data available in the logs can
be used by the analysis to predict the relative benefit (or
damage) of broadcasting a class. Once this benefit is
computed, it will be used to decide which classes of
documents to broadcast, and which proxies to join to the
system.

Two models that were used to analyze cache systems are the
Inter-reference model (IRM) and the Stack Reference Model
(SRM). Their advantage is in capturing both the locality of
reference of the requests, and their relative frequencies, which
are both important properties for cache modeling. In contrast,
other models, such as the common used Zipf model (see, e.g.
[3]), capture only one of these properties. SRM has been used
successfully in [8] and [9] to model the interaction between
various caches. More specifically, it was used to examine the
performance resulting from merging several disjoint streams
into one cache. Due to the interaction between the caches in
CSDS, it is appealing to attempt modeling CSDS by the SRM
model. That approach however, seems to be hard to apply
since the interaction between the streams in CSDS is much
more complicated than in the problem addressed in [8] and
[9]. This is true since this problem includes interaction of
streams that are not mutually exclusive, and it also includes
cross-cache effects.

To overcome the complexity of the problem, we decompose
the problem and its analysis to two parts, in each of which
using suitable modeling tools to focus on capturing the major
factors. The approach is as follows: Consider a document R
that is broadcast by the central station to cache-proxy pC ,
which stores it in the cache. The storing of R in pC affects
the performance of pC in two aspects: a) It affects the hit
ratio of future requests to R. This effect is non-negative (that is
the hit ratio of these requests may only go up due to the
storage of R). b) It affects the hit ratio of future requests to
documents other than R. This effect is non-positive since the
presence of R in pC may push the other documents out of the
cache and decrease their hit-ratio.

We will focus on the change in performance of pC due to
the broadcast, that is, in how the hit ratio changes due to the
broadcast operation. As was previously hinted, we decompose
our analysis to two cases:

1. In the first case we deal with the situation at which
there is at least one request to R by pC . This is either
the request that triggered the broadcast of R, or a later
request. Let BE denote the broadcast event, and let

pE denote the event of the first request to R by pC .

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

At this case the change in performance due to the
broadcast of R (and its storage by pC) is two-fold:

a. A non-negative effect on the hit ratio of
requests to R (these are the requests to R
happening after pE).

b. A non-positive effect on requests to
documents other than R. A more precise
examination shows that this effect is limited
to the period between the events BE and pE .
This limitation applies, since after the epoch
at which pE occurs, R is present in pC
regardless of the broadcast operation BE , and
thus the change in performance, due to BE ,
past the epoch of pE , is zero.

2. In the second case we deal with the situation at which
there is no request to R by pC . In this case, the
broadcast does not affect the hit ratio for requests to R.
However, the broadcast does affect (non-positively) the
hit ratio of documents other than R, since R now
"contaminates" pC .

In our analysis, we will neglect the effects on performance of
Case 1.b above, due to its limited scope (which makes it
negligible compared to the other effects). Our analysis will
therefore focus on the above Case 1.a (section III.A below)
and Case 2 (section III.B below). The reason the effect of Case
1.b is so minor, is because we assume that the probability of R
to be accessed locally is much higher than the probability the
document it replaced in the cache will be requested. The
reason for this assumption to hold, is because of the inherent
property of every stream (that a model such as SRM captures
so naturally), that a page that was just requested has a much
higher probability to be requested again, than a page that was
not requested for a long time (so it is thrown out of the cache).
The assumption of negligibility of Case 1.b tends to be less
accurate, of course, if the cache of pC is very small compared
to its local stack depth distribution, or the rate of R’s class is
much smaller than the rate of the class of the page that was
thrown out.

B. Document Request Modeling and Model Notation
We consider a set P of proxy caches 1C .. ||PC .

Considering the entire incoming requests set for all proxies,
we assume that we can classify this request set as a set S of
disjoint streams, whereas each stream Ss ∈ represents all
requests for a class of documents, i.e. a collection of
documents that share some commonality. For example, a
stream may represent all of the requests to any document of
xyz.com, or alternatively, only to the home page of abc.com.

We further assume that each stream s is associated with a
random variable sN denoting the request count, which is the
number of requests that are made for a specific document

sR ∈ , from the whole set P, until document R expires. Such
expiration may represent document refresh, document removal
from its hosting Web server or expiration of the document at
all proxy caches. In all cases the implication is that after the

document is requested sN times it may never be requested
again or will be considered new and will have to be read again
by at least one of the proxy caches. Let the request count
distribution, which is the distribution of sN , be denoted as

]Pr[)(nNnd s
cnt
s == . We further assume that the association

of a request with a specific proxy PC p ∈ is given by a
Bernoulli process, that is the probability that an arbitrary
request of stream s originates at proxy pC is given by ps,λ ,

where 1, =∑
∈Pp

psλ .

Since we want to construct our model in a way that can
handle multiple proxy groups (see Remark 1 above), we will
assume only a subset of proxies PP ⊆′ needs to participate
in the CSDS. Let ∑

′∈
′ =Λ

Pp
psPs ,, λ denote the probability that

a request of stream s originates at the subset P’.
We assume that the association of a request with a specific

stream Ss ∈ , is also given by a Bernoulli process. For the
clarity of presentation, we can define the combined ratio ps,γ ,
which is the probability that an arbitrary request originates at
stream s and at proxy pC . We can further widen the definition

to stand for any subset *S of streams, and/or for any subset
*P of proxies, yielding

 ∑
∈

=
*

* ,,
Pp

psPs γγ
,
 (1)

 ∑
∈

=
*

* ,,
Ss

pspS γγ
,
 (2)

and

 ∑∑
∈ ∈

=
* *

** ,,
Pp Ss

psPS γγ
.
 (3)

Remark 2: Note that we will never use any γ as a stand
alone value, but only as ratios of γ ’s – so that γ can be
represented in any units – requests per time unit, requests per
log length, etc. As an example, we can give an alternative

definition of ps,λ , as
Ps

ps
ps

,

,
, γ

γ
λ = , and we can immediately

see that the previous summation 1
,

,
, ==∑∑

∈∈ Pp Ps

ps

Pp
ps γ

γ
λ still

holds.

Remark 3: More detailed modeling of the Stack
Reference Model, that is specific for section III.B below, is
given within that section.

III. ANALYSIS

A. The effect of broadcasting document R on the
performance of requests to R

In this section, we aim at evaluating the potential
performance improvement resulting from broadcasting stream

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

s to a subset of proxies PP ⊆′ . We will consider a tagged
document sR ∈ , whose number of requests is given by the
random variable sN , as noted in section II.B. In addition to
the modeling assumptions given in section II, we further
assume that all proxies has large enough caches to hold the
document from the first request until the last local request to
the proxy is made. This assumption is reasonable for capturing
the behavior of document R.

Consider first a system without CSDS. Under this system,
for every document under every proxy, the first request for the
document will result with a cache miss (since the document is
not in the cache yet). All later requests from that proxy to that
document will result with a hit since the document will be
present in the cache. Focusing on cache pC and conditioning
on nN s = , the probability that pC will experience a (single)
miss on R is given by the probability that out of the n requests
made to R, it will be requested at least once at pC :

n
pssp CSDSnonNCatmissdocumenta ,1],|Pr[λ−== (4)

where)1(: ,, psps λλ −= .

Let psF , be the total document fault ratio of stream s at pC
with no CSDS, defined to be the expected number of misses
per document encountered at pC . Using (4) we can derive:

n

ps
n

cnt
s

n
ps

n

cnt
sps ndndF ,

1
,

1
,)(1)1)((λλ ∑∑

∞

=

∞

=

−=−=
.
 (5)

Let psM , be the total request miss ratio of stream s at pC
with no CSDS, defined to be the expected number of misses
per request, and which equals to the ratio between the number
of misses and the expected number of requests made at pC .
Using (4) again, we can derive:

pss

n
ps

n

cnt
s

ps
n

cnt
s

n
ps

n

cnt
s

ps NE

nd

nnd

nd
M

,

,
1

,
1

,
1

,][

)(1

)(

)1)((

λ

λ

λ

λ ∑

∑

∑
∞

=
∞

=

∞

=

−

=

−

=
.
 (6)

Now consider the system with CSDS, in which when the
document is requested by the first proxy to request it, the
document is broadcast to all other proxies in its subset P’. In
this case, the first proxy in P’ will experience a single miss
while none of the other proxies in P’ will experience any miss.

Under this case, pC experiences a miss on the tagged
document, only if there is at least one request to the document
that originates from a proxy in P’, and the first such request
was issued by pC . This event is given by:

)1(],|Pr[,
,

, n
Ps

Ps

ps
sp CSDSwithnNCatmissdocument ′

′
Λ−

Λ
==

λ

.
(7)

Let)(
,

PCSDS
psF ′ and)(

,
PCSDS

psM ′ be, respectively, the
document fault ratio and the request miss ratio of stream s at

pC using a CSDS system connecting the subset of proxies P’,
defined similarly to psF , and psM , . Their values are given
by:











Λ−

Λ
=










Λ−

Λ
= ∑∑

∞

=
′

′

∞

=
′

′

′

1
,

,

,

1
,

,

,)(
,)(1)1()(

n

n
Ps

cnt
s

Ps

ps

n

n
Ps

Ps

pscnt
s

PCSDS
ps ndndF

λλ

,
(8)

and

Pss

n

n
Ps

cnt
s

ps
n

cnt
s

n

n
Ps

Ps

pscnt
s

PCSDS
ps NE

nd

nnd

nd
M

′

∞

=
′

∞

=

∞

=
′

′′

Λ






 Λ−

=










Λ−

Λ
=

∑

∑

∑
,

1
,

,
1

1
,

,

,

)(
,][

)(1

)(

)1()(

λ

λ

.
(9)

Remark 4: Note the similarity in form of (9) to that of (6).
The only difference is that while (6) is dependent on ps,λ , (9)
is dependent on Ps ′Λ , . The explanation is that from a hit/miss
point of view, under CSDS the collection of participating
proxies behaves as one large proxy, since they all share the
same single miss per document. Note also that under CSDS,
the miss ratio is independent of ps,λ and of p, and is the same
for every participating proxy.

Let us define)(
,

PCSDS
psG ′ , the hit ratio gain of pC due to

using CSDS on stream s, which is simply

)(
,,

)(
,

PCSDS
psps

PCSDS
ps MMG ′′ −= . (10)

Now we can calculate)(PCSDS
pG ′ , the total hit ratio gain of

pC from using CSDS on all streams in S. This is done using

the terms
pS

ps

,

,

γ
γ

, which are the probabilities that a request of

proxy pC belongs to stream s:

pS

Ss

PCSDS
psps

Ss

PCSDS
ps

pS

psPCSDS
p

G
GG

,

)(
,,

)(
,

,

,)(

γ

γ

γ
γ ∑

∑ ∈

′

∈

′′ ==
.
 (11)

Remark 5: Note that for every stream s that is not
requested by pC , 0, =psγ , and for all streams that are not

broadcast, by definition 0)(
, =′PCSDS
psG . Practically, we can

therefore define a subset of streams SS ⊆' of broadcast
streams, and to sum)(

,
PCSDS

psG ′ only on S’ (S’ will be used in
section IV below).

B. The effect of broadcasting document R to a proxy that
will not request R

In the previous section, we assumed that every proxy cache
is of sufficient size - so it can contain all local accessed
documents, as well as additional CSDS broadcast documents,
as many as we choose to broadcast. Under that assumption,
and if broadcast costs or constraints are not accounted for, it is
clearly optimal to broadcast all streams to all proxies, because
there is no constraint on the proxy cache capacity, nor on the
broadcast capacity.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

To properly model the negative effects of document R on
other documents, one needs to model a limited capacity proxy
cache. In this more realistic situation the broadcast of an un-
needed document may have adverse effects, since it may
occupy space in the cache and preclude more needed
documents from the cache. Thus, the modeling of a finite size
cache should allow one to account for the negative effects of a
broadcast document. These effects can be termed as "cache
contamination", namely a document that is kept in the cache
while it is not needed can be considered to contaminate the
cache. Wrong broadcast policy (e.g., one that broadcasts
"everything") may contaminate the cache to a high degree,
thus preventing it from serving the locally wanted documents.

A broadcast document is called a waste document in cache
pC , if it will not have any request directed to it at pC . For a

given proxy PC p ′∈ , and a document whose number of
requests is N, the document is a waste at pC if it has at least
one request by P’ and no request by pC . The probability of
this event is given by:

n

Ps
n

ps

n

ps

Psn
ps

p nNCatwasteissstreamofdocument

′
′ Λ−=





























 Λ
−

==

,,
,

,
, 1

]|Pr[

λ
λ

λ .
 (12)

Now we can calculate the fraction of documents in s which
end up being a waste at pC :

∑

∞

=
′ 










 Λ−

=

1
,,)(

]Pr[

n

n
Ps

n
ps

cnt
s

p

nd

Catwasteissstreamofdocument

λ .
 (13)

In a similar manner to what we did in (4)-(6), let psW , be
the total request waste ratio of stream s at proxy pC , defined
to be the ratio between the expected number of waste
documents and the expected number of requests for document
of stream s. Using,

.
(13), we can derive:

][

)(
1

,,

, NE

nd
W n

n
Ps

n
ps

cnt
s

ps

∑
∞

=
′ 



 





 Λ−

=
λ

.
 (14)

Since the different broadcast streams are disjoint, and each
broadcast document is different, we can simply total the waste
for all incoming streams, after normalizing it by the relative

stream rate
PS

Ps

,

,

γ
γ

. Thus, we get

 ∑
∈

=
Ss

ps
PS

Ps
pS WW ,

,

,
, γ

γ

.
 (15)

To end our definitions, we will further define the proxy's

total request ratio
PS

pS
pL

,

,

γ
γ

= .

To model the interaction of the waste streams with the other
streams on the cache assume that the streams are having stack

depth distributions. When a stream is said to have a stack
depth distribution it means that when the stream is applied to a
LRU-managed cache, the probability that the current reference
finds the element that it references at depth n (n=1 is the most
recently used element in the cache) is d(n). Given the above
distribution we can define a matching cumulative distribution

∑
=

=
k

n

ndkD
1

)()(, which is actually the stream hit ratio for

cache size k, i.e. the probability that the element will be found
at depth smaller or equal to k. Note that d(n) is a ``defective''
distribution in that it may not sum to unity: elements that have
never previously been accessed will be assumed to be found at
an infinite stack depth.

We will assume that each of the streams (the waste stream
and the stream consisting of the other requests) obey the Stack
Reference Model (SRM), that is, they are stochastic processes
which choose their next reference according to independent
samplings of the stack depth distribution. Such processes are
called stack depth processes, and their hit ratio curves as a
function of cache size coincide with their cumulative stack
depth distributions. This is one of several simple models for
reference streams, and it has been reported, for example in [5],
that this model tends to be quite successful in capturing
temporal locality of references within a trace, and is superior
to the so called Independent Reference Model (IRM).

Given the stack depth distribution of proxy pC ,)(nd p ,

and the corresponding cumulative distribution)(nDp , we will
calculate the effect of the waste stream on the stack depth
distribution. To this end, we will use a methodology similar to
the one developed in [8], [9] and we will track a tagged local
document R through its journey through the local cache at
which both the local documents and the waste documents
accumulate. This will allow us to derive the distribution of
total depth (consisting of local and waste pages) at which R is
requested, which will form the depth distribution of the
combined cache.

Let Ln denote the number of local documents (non-waste
documents) residing "above" (that is, at a lower depth) R in
the cache, and let Wn denote the number of waste documents
residing above R in the cache. Then, at any time in the
journey, the position of R in the cache is described by the state

),(WL nn . To track the behavior of this cache we will focus
only on the events where there is access to this cache, either
by the waste documents or by the local requests. The
probabilities that an event is a waste document arrival or a
local access are given by

)/(: ,, ppSpS
W
p LWWx += (16)

and

)/(: , ppSp
L
p LWLx += (17)

respectively.
Since these probabilities are fixed and do not depend on the

other events, the state),(WL nn is sufficient to predict the
future of R. To track the behavior of R in the cache, recall that
the cache operates under the LRU policy. This means that

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

when any document R’ is requested, the document is placed at
the top position (whose depth is 1) of the cache. This causes
all the documents which have been prior to the operation
above R’ to be pushed one position downward (deeper). In the
event that R’ was not in the cache prior to the request, this
should cause the deepest document in the cache to be pushed
out.

Now, to track the journey of the tagged document R along
the cache, assume that R is in state),(WL nn just after the i-th
request (“time i“) and examine the transition or R due to the
i+1st request. R will encounter one of the following events:

1. R remains at),(WL nn . This occurs if a request is made
for a local document of depth smaller than or equal to Ln .
Thus, the probability of this event is given by

)(Lp
L
p nDx . (18)

2. R moves to),1(WL nn + . This occurs if a request is made
for a local document of depth greater than 1+Ln . Thus, the
probability of this event is given by

)1(+Lp
L
p nDx . (19)

3. R moves to)1,(+WL nn . This occurs if a request is made
for any waste document. Thus, the probability of this event is
given by

 W
px . (20)

4. R finishes its journey. This occurs if a request is made for
a local document of depth 1+Ln . Thus, the probability of this
event is given by

)1(+Lp
L
p ndx . (21)

The list of the states to which R moves given that it leaves
),(WL nn , and the corresponding transition probabilities, are

(Note that the probabilities below are independent of Wn .):

1. R moves to),1(WL nn + . The probability of this event is

 W
pLp

L
p

Lp
L
p

xnDx

nDx

+

+

)(

)1(

.
 (22)

2. R moves to)1,(+WL nn . The probability of this event is

 W
pLp

L
p

W
p

xnDx

x

+)(.
 (23)

3. R finishes its journey. The probability of this event is

 W
pLp

L
p

Lp
L
p

xnDx

ndx

+

+

)(

)1(

.
 (24)

Now let),(WL nnq denote the probability that R will
eventually reach the state),(WL nn in its journey, assuming

that the journey starts at the top of the stack, that is defined as
state (0,0). Thus, we clearly have q(0,0)=1, and),(WL nnq
can be calculated recursively as follows:

W
pLp

L
p

W
p

WLW
pLp

L
p

Lp
L
p

WL

WL

xnDx

x
nnq

xnDx

nDx
nnq

nnq

+
−+

+−
−

=

)(
)1,(

)1(

)(
),1(

),(

.
 (25)

Now, let),(WL nne denote the probability that R will finish
its journey at),(WL nn . This value is given by the probability
that R will reach),(WL nn , and then it will be called at pC :

 W
pLp

L
p

Lp
L
p

WLWL
xnDx

ndx
nnqnne

+

+
=

)(

)1(
),(),(

.
 (26)

Now we can compute the depth distribution of a local
document in proxy pC ,)(, nd Lp :

 ∑
−

=

−−=
1

0
,)1,()(

n

n
LLLp

L

nnnend
.
 (27)

Since all requests originating at proxy pC are for local
documents, this depth distribution is the distribution of an
arbitrary document in the merged cache in proxy pC .

Finally, the hit rate in this cache, when its size is K, is given
by:

 ∑
=

=
K

k
LpLp kdKD

1
,,)()(

.
 (28)

C. The Net Hit Ratio Gain: Accounting for Gain and Loss
Following the analysis in sections III.A and III.B, we can

derive the net hit ratio gain on proxy pC , with cache size

pK . This is done by subtracting the loss (Section III.B above)
from the gain (Section III.A above), to get the net hit ratio
gain)(_ PNETCSDS

pG ′ , using (11) and (28):

 ())()(,
)()(_

pLppp
PCSDS

p
PNETCSDS

p KDKDGG −−= ′′ . (29)

Finally, let us define)(PCSDSG ′ , as the total hit ratio gain
over all proxies PC p ′∈ . Just like in deriving (11), we need
to take caution in selecting the normalizing factor, which is

now
PS

pS

′,

,

γ
γ

, i.e. the probability that an arbitrary request

originated at proxy pC , given it originated at one of the
proxies participating in CSDS. Thus, we get:

 ∑
′∈

′

′

′ =
Pp

PNETCSDS
p

PS

pSPCSDS GG)(_

,

,)(

γ
γ

.
 (30)

D. Computational complexity
Equations (25)-(28) can be computed in a recursive manner

(starting from the low indices and going upwards). Thus, the

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

computation complexity per proxy is)(2JO where J is the
number of entries in the stack depth distribution. In a
straightforward approach, one would take J to be the cache
size (K), in which case the complexity is)(2KO . However, if
one is interested in reducing the complexity, one can represent
the distribution by KJ α= values, where 1<α . In this case
the complexity is)(22 KO α . Proper selection of α (small
value) can lead to a drastic reduction in the complexity
without significantly affecting the accuracy.

IV. OPERATIONAL RULES AND EFFICIENT DESIGN
The model and analysis provided in this paper form a tool

that can be used in the design and operations of a CSDS. An
important question that needs to be addressed by the operator
of the CSDS is the stream assignment problem, i.e. which
classes (or streams) of documents should be broadcast in the
system. Intuitively, it is expected that the operator should
decide to broadcast classes of documents of “common
interest” to the various proxies. The results provided in this
analysis, namely in (29), represent the net hit gain on pC due
to broadcasting a set S’ of streams (as introduced in Remark 5
above). Thus, to answer the question of which streams to
broadcast the operator can compute (29) for various sets of
streams, and derive the relative benefits to the systems as the
result of broadcasting alternative sets of streams. For example,
suppose that set S’ is broadcast, and the operator would like to
extend the set to sS ∪' where s could be any of J alternative
streams Jss ,...,1 . The operator can then evaluate (29) for

JisS i ,...,1,' =∪ , and use it to rank the streams is ,i=1,…,J,
and to decide which of them will be broadcast. Having
selected the stream is , a new set is now formed, isS ∪' . The
process may now repeat on how to extend isS ∪' .

Another important design question is the proxy assignment
problem, i.e. which proxies should participate in a system. A
simpler question can be whether to add a proxy pC to an
existing system where the participating proxies are the set P’.
The value of adding pC to the system can again be evaluated
by applying (29) to the set P’ and to the set pCP ∪′ .

These questions and other relevant questions, and a more
detailed analysis of them, are a topic of current ongoing
research.

V. NUMERICAL RESULTS
In this section we aim to examine the quality of the model

and analysis. We will first describe the system we generated,
and then test our analytic models against simulations.

We consider a system composed of four proxy caches,
receiving requests on five Zipf distributed SRM streams. Any
other distribution might be used1, but the Zipf distribution
might emulate real life the best. The relative request rate for
each proxy and stream, used to generate the ps,γ matrix, is

1 We tested the system on various distributions, including handpicked

distributions and geometric distributions, and received similar accuracy.

given in Table 1. Stream 1 is requested mainly (90%) by
Proxy 1, and the rest of the requests are divided uniformly
across the rest of the proxies. Stream 2 is requested mainly
(80%) by Proxy 2, and the rest of the requests are divided
uniformly across the rest of the proxies. Streams 3 and 4 are
divided uniformly across all proxies. Stream 5 is divided
uniformly across all proxies except Proxy 4. All streams have
the same total request share, except for Stream 4, whose
request volume is 5 times lower than the volume of each of the
other streams.

The results are generated as follows: We start by generating
a simulative request log, composed of 5,000,000 (five million)
requests, based on the relative request rate matrix and the
global streams’ SRM stack depth distributions, classifying
each request to arrive from a stream and a proxy. Then we can
simulate any broadcast scenario. In addition, we generate from
the log the request count distribution)(nd cnt

s for every global
stream, and the local stack depth distribution)(nd p for every
proxy. The generated cumulative local stack depth distribution
(across all streams) for each proxy, which is equal to the local
hit ratio of every proxy without using CSDS, is given in Fig.
2. Now, for every broadcast scenario we need to run the
analysis of section III.C above and the simulation, and
compare the total net gain for the given scenario.

 Proxy1 Proxy2 Proxy3 Proxy4 Total/St.

Stream1 900 33 33 34 1000

Stream2 66 800 67 67 1000

Stream3 250 250 250 250 1000

Stream4 50 50 50 50 200

Stream5 333 333 333 1 1000

Total/Pr 1599 1466 733 402 4200

Table 1: The matrix of relative proxy & stream ratios

Figure 2: Calculated cumulative local stack depth distribution
(local hit ratio)

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0 2000 4000 6000

Depth (n)

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty
 (D

p(
n)

)

Proxy1

Proxy2

Proxy3

Proxy4

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

First, we examine the effect of broadcasting each of the
various streams on every proxy. We consider a cache size of
4,000 documents2, which is on the order of the saturation point
of our distribution (the point at which increasing the cache
size does not increase the local hit rate), and run separate
CSDS, each broadcasting one stream. The results are reported
in Fig. 3. First, we notice the good correlation between the
analytic results and the simulation results, for the entire test
scenario. We observe that the most beneficial stream to
broadcast is, as expected, the high-volume, evenly-distributed
stream 3. We see a difference of its contribution for different
proxies, since its relative presence in Proxy 3, is the highest.
Observe that Stream 5 actually reduces the hit rate of proxy 4,
because broadcasting it only contaminates proxy 4’s cache,
but does not contribute any hits. For the other proxies it
contributes quite a lot, because, again, it is distributed evenly
across those proxies. Stream 1 is not distributed uniformly:
Proxy 1 receives most requests, and thus it will broadcast a
high amount of documents to the other proxies. Now, if the
receiving proxy has a low amount of other requests (like
Proxy 4), receiving Stream 1 will not degrade the local hit rate
by a substantial amount. For “loaded” proxies, Proxy 2, the
benefit we observe is small, because the arriving documents
throw out other important documents. Stream 3 is evenly
distributed, but due to its low volume, it does not contribute
much gain.

We then repeat the experiment for a much smaller sized
cache, of 1000 documents. The results are reported in Fig. 4.
We notice our analytic results are still very well correlated to
the experimental results, although the differences are more
noticeable. Notice also that now the gains are smaller (since
the contamination has a higher impact), especially on proxies
with low correlation with the broadcast stream (e.g. stream 2
on proxy 1, or stream 1 on proxy 2).

As a comparison, we give in Fig. 5 a partial broadcast set
scenario, of streams 3, 4, and 5, for a 4,000 documents sized
cache, and a full broadcast set scenario, of streams 1-5 for the
same cache size. We notice, again, the good correlation
between the analytic results and the simulation results. We can
also see the high gain of Proxy 3 and Proxy 4, which are
relatively small proxies.

We can also check our main source of inaccuracy – misses
that are not “first access” misses. Such misses appear when
the cache sizes are small in a considerable measure than their
stack depth distribution, so they can not hold even sufficient
local requests. As already mentioned, this is not a common
case in real life, and in our model we assumed it could be
neglected. In Fig. 6 the effect of decreasing cache sizes on a
CSDS that broadcasts only the uniformly distributed stream 3
can be seen. Since we mostly care about the relative error in
the gain calculation, we plot the difference of the error in
calculating each proxy’s gain, from the weighted average error
of the entire system. In Fig. 7 we repeat the experiment for a
CSDS that broadcasts only stream 5, which is not distributed
uniformly. First, notice in both cases the error diverges for
very small caches. Of course as the cache is smaller it diverges
faster (so we notice Cache 4 diverges the fastest). For all
caches larger than 700 documents, we get in both cases a

2 We repeated the numerical tests for cache sizes of 400 and 40,000 (with
proper caches and distributions) as well, and received similar accuracy.

reasonable error divergence (less than 1 percent apart). Caches
smaller than 700 documents are not likely to be practical (see
their very low hit ratio at Fig. 2).

Thus, we observe that for all reasonable cache sizes that
estimation error of the analysis is limited and the model will
yield good results, especially for optimization and operational
rules.

VI. SUMMARY
In this work we dealt with the Cache Satellite Distribution

System and aimed at providing a framework for the analysis
and efficient operation of this system. We proposed a model
that accounts for the intrinsic behavior of caches and request
streams and which captures both the locality of reference
experienced in these streams and their relative frequencies.
Using the model we provided an analysis that predicts the hit
ratio gain for each stream and each proxy as function of the
stream properties. We presented how these predictions, whose
computational complexity is relatively low, can be used
directly in solving the operational and design questions.
Numerical examination versus simulation indicates that the
analysis indeed captures the relative effect of various streams
on various proxies and thus will predict well the relative
merits of alternative operational rules.

REFERENCES

[1] V.F. Almeida, M.G. Cesario, R.C. Fonseca, W. Meira Jr., and C.D.
Murta, "Analyzing the Behavior of a Proxy Server in Light of Regional
and Cultural Issues", 3rd International WWW Caching Workshop, June
1998

[2] D. Askoy, M. Franklin, and S. Zodnik, “Data Staging for on-demand
broadcast,” in Proceedings of the 27’th VLDB Conference, 2001.

[3] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenkar, "On the
Implications of Zipf's Law for Web Caching", Proceedings of the 3rd
International WWW Caching Workshop, June 1998

[4] S.-G. Chang, "Caching Strategy and Service Policy Optimization in a
Cache-Satellite Distribution Service", Fifth INFORMS
Telecommunications Conference, March 2000.

[5] E. G. Coffman and P. J. Denning, "Operating System Theory," Prentice-
Hall, 1973.

[6] R. Cohen, L. Kazir, and D. Raz, "Scheduling Algorithms for a Cache
Pre-Filling Content Distribution Network", Infocom 2000, New York,
June 2002.

[7] X.-Y. Hu, P. Rodriguez, and E.W. Biersack, "Performance Study of
Satellite-linked Web Caches and Filtering Policies", Networking 2000,
Paris, May 2000, 580-595.

[8] H. Levy and R.J.T. Morris, "Exact Analysis of Bernoulli Superposition
of Streams into a Least Recently Used Cache", IEEE Trans. On
Software Eng. 21:8, 1995, 682-688.

[9] H. Levy and R.J.T. Morris, "Should Caches be split or combined?
Analysis using the superposition of bursty stack depth processes,"
Performance Evaluation, 27 & 28 (1996), pp. 175-188.

[10] P. Rodriguez and E.W. Biersack, "Bringing the Web to the Network
Edge: Large Caches and Satellite Distribution", Mobile Networks and
Applications, 7(1):67-78, January 2002.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Figure 3: Simulative and analytic gain for a single stream
broadcast, for cache size = 4,000 documents

stream1

0

5

10

15

20

25

1 2 3 4Proxy

G
ai

n(
Pe

rc
en

t)

eval

simul

stream2

0

5

10

15

20

25

1 2 3 4Proxy

G
ai

n(
Pe

rc
en

t)

eval

simul

stream3

0

5

10

15

20

25

1 2 3 4Proxy

G
ai

n(
Pe

rc
en

t)

eval

simul

stream4

0

5

10

15

20

25

1 2 3 4Proxy

G
ai

n(
Pe

rc
en

t)

eval

simul

stream5

-5

0

5

10

15

20

25

1 2 3 4Proxy

G
ai

n(
Pe

rc
en

t)

eval

simul

Figure 4: Simulative and analytic gain for a single stream
broadcast, for cache size = 1,000 documents

stream1

-5

0

5

10

15

20

25

1 2 3 4Proxy

G
ai

n(
Pe

rc
en

t)

eval

simul

stream2

-5

0

5

10

15

20

25

1 2 3 4Proxy
G

ai
n(

Pe
rc

en
t)

eval

simul

stream3

0

5

10

15

20

25

1 2 3 4Proxy

G
ai

n(
Pe

rc
en

t)

eval

simul

stream4

0

5

10

15

20

25

1 2 3 4Proxy

G
ai

n(
Pe

rc
en

t)

eval

simul

stream5

-5

0

5

10

15

20

25

1 2 3 4Proxy

G
ai

n(
Pe

rc
en

t)

eval

simul

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

streams
345

0
5

10
15
20
25
30
35

1 2 3 4Proxy

G
ai

n(
Pe

rc
en

t)

eval

simul

streams
12345

0
5

10
15
20
25
30
35

1 2 3 4Proxy

G
ai

n(
Pe

rc
en

t)

eval

simul

Figure 5: Simulative and analytic gain for multiple streams
broadcast, for cache size = 4,000 documents.

Stream 3

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 2000 4000 6000 8000

Cache size

Er
ro

r d
iv

er
ga

nc
e

(p
er

ce
nt

)

Proxy1
Proxy2
Proxy3
Proxy4

Stream 5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 2000 4000 6000 8000

Cache size

Er
ro

r d
iv

er
ga

nc
e

(p
er

ce
nt

)
Proxy1
Proxy2
Proxy3
Proxy4

Figure 6: Difference of stream 3 per-proxy error ratio from the
total error expected value.

Figure 7: Difference of stream 5 per-proxy error ratio from the
total error expected value.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

	INFOCOM 2003
	Return to Main Menu

