
Physical Topology Discovery for Large
Multi-Subnet Networks

Yigal Bejerano, Yuri Breitbart∗, Minos Garofalakis, Rajeev Rastogi
Bell Labs, Lucent Technologies

600 Mountain Ave., Murray Hill, NJ 07974.
{bej,minos,rastogi}@research.bell-labs.com

Abstract— Knowledge of the up-to-date physical (i.e., layer-2)
topology of an Ethernet network is crucial to a number of critical
network management tasks, including reactive and proactive
resource management, event correlation, and root-cause analysis.
Given the dynamic nature of today’s IP networks, keeping track
of topology information manually is a daunting (if not impossible)
task. Thus, effective algorithms for automatically discovering
physical network topology are necessary. In this paper, we
propose the first complete algorithmic solution for discovering
the physical topology of a large, heterogeneous Ethernet network
comprising multiple subnets as well as (possibly) dumb or un-
cooperative network elements. Our algorithms rely on standard
SNMP MIB information that is widely supported in modern IP
networks and require no modifications to the operating system
software running on elements or hosts. Furthermore, we formally
demonstrate that our solution is complete for the given MIB data;
that is, if the MIB information is sufficient to uniquely identify the
network topology then our algorithm is guaranteed to recover it.
To the best of our knowledge, ours is the first solution to provide
such a strong completeness guarantee.

Index Terms— Layer-2 Topology Discovery, Graph Theory,
Ethernet LAN, Subnets, SNMP MIB, Switches, Hubs.

I. INTRODUCTION

Physical network topology refers to the characterization of
the physical connectivity relationships that exist among entities
in a communication network. Discovering the physical layout
and interconnections of network elements is a prerequisite
to many critical network management tasks, including reac-
tive and proactive resource management, server siting, event
correlation, and root-cause analysis. For example, consider a
fault monitoring and analysis application running on a central
IP network management platform. Typically, a single fault in
the network will cause a flood of alarm signals emanating
from different interrelated network elements. Knowledge of
element interconnections is essential to filter out secondary
alarm signals and correlate primary alarms to pinpoint the
original source of failure in the network [1], [2]. Furthermore,
a full physical map of the network enables a proactive analysis
of the impact of link and device failures.

Despite the critical role of physical topology information in
enhancing the manageability of modern IP networks, obtaining
such information is a very difficult task. The majority of
commercial network-management tools feature an IP mapping
functionality for automatically discovering routers and subnets
and generating a network layer (i.e., ISO layer-3) topol-
ogy showing the router-to-router interconnections and router

∗ Current affiliation: Dept. of Computer Science, Kent State University,
Kent, OH 44242. breitbar@cs.kent.edu

interface-to-subnet relationships. Building a layer-3 topology
is relatively easy because routers must be explicitly aware of
their neighbors in order to perform their basic function. There-
fore, standard routing information is adequate to capture and
represent layer-3 connectivity. Unfortunately, layer-3 topology
covers only a small fraction of the interrelationships in an IP
network, since it fails to capture the complex interconnections
of layer-2 network elements (switches, bridges, and hubs) that
comprise each Ethernet LAN. Hardware providers, like Cisco
and Intel, have designed their own proprietary protocols for
discovering physical interconnections but these tools are of
no use in a heterogeneous, multi-vendor environment. More
recently, the IETF has acknowledged the importance of this
problem by designating a “physical topology” SNMP Man-
agement Information Base (MIB) [3], but the proposal merely
reserves a portion of the MIB space without defining any
protocol or algorithm for obtaining the topology information.
Clearly, as more switches, bridges, and hubs are deployed to
provide more bandwidth through subnet microsegmentation,
the portions of the network infrastructure that are transparent
to current network-management tools will continue to grow.
Under such conditions, it is obvious that the network man-
ager’s ability to troubleshoot end-to-end connectivity or assess
the potential impact of link or device failures in switched
networks will be severely impaired.

Developing effective algorithmic solutions for automatically
discovering the up-to-date physical topology of a large, hetero-
geneous Ethernet network poses several difficult challenges.
More specifically, there are three fundamental sources of
complexity for physical topology discovery.

1) Inherent Transparency of Layer-2 Hardware. Layer-2
network elements (switches, bridges, and hubs) are com-
pletely transparent to endpoints and layer-3 hardware
(routers) in the network. Switches themselves only com-
municate with their neighbors in the limited exchanges
involved in the spanning tree protocol [4], and the
only state maintained is in their Address Forwarding
Tables (AFTs), which are used to direct incoming pack-
ets to the appropriate output port. Fortunately, most
switches/bridges (see (3) below) make this information
available through a standard SNMP MIB [5], [6].

2) Multi-Subnet Organization. Modern switched networks
usually comprise multiple subnets with elements in
the same subnet communicating directly (i.e., without
involving routers) whereas communication between el-
ements in different subnets must traverse through the

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

routers for the respective subnets. Furthermore, elements
of different subnets are often directly connected to
each other. This obviously introduces serious problems
for physical topology discovery, since it means that
an element can be completely transparent to its direct
physical neighbor(s).

3) Transparency of Dumb or Uncooperative Elements. Be-
sides SNMP-enabled bridges and switches that are able
to provide access to their AFTs, a switched network can
also deploy “dumb” elements like hubs to interconnect
switches with other switches or hosts 1. Hubs do not par-
ticipate in switching protocols and, thus, are essentially
transparent to switches and bridges in the network. Sim-
ilarly, the network may contain switches from which no
address-forwarding information can be obtained either
because they do not speak SNMP or because SNMP
access to the switch is disabled. Clearly, inferring the
physical interconnections of hubs and “uncooperative”
switches based on the limited AFT information obtained
from other elements poses a non-trivial algorithmic
challenge.

Related Work. SNMP-based algorithms for automatically
discovering network layer (i.e., layer-3) topology are fea-
tured in many common network management tools, such as
HP’s OpenView (www.openview.hp.com) and IBM’s Tivoli
(www.tivoli.com). Recognizing the importance of layer-2
topology, a number of vendors have recently developed propri-
etary tools and protocols for discovering physical network con-
nectivity. Examples of such systems include Cisco’s Discov-
ery Protocol (www.cisco.com) and Bay Networks’ Optivity
Enterprise (www.baynetworks.com). Such tools, however,
are typically based on vendor-specific extensions to SNMP
MIBs and are not useful on a heterogeneous network com-
prising elements from multiple vendors. Peregrine’s Infratools
software (www.peregrine.com), Riversoft’s NMOS product
(www.riversoft.com), and Micromuse’s Netcool/Precision
application (www.micromuse.com) claim to support layer-2
topology discovery, but these tools are based on proprietary
technology to which we do not have access.

In our recent work [8], we have proposed an algorithm that
relies solely on standard AFT information collected in SNMP
MIBs to discover the physical topology of heterogeneous
networks comprising switches and bridges organized in mul-
tiple subnets. Unfortunately, our algorithm assumes that AFT
information is available from every node in the underlying
network and, thus, cannot cope with hubs or uncooperative
switches. In a follow-up paper, Lowekamp et al. [7] suggest
techniques for inferring network-element connectivity using
incomplete AFT information and also discussed how to han-
dle dumb/uncooperative elements; however, their algorithm
is designed to work only in the much simpler case of a
single subnet and can easily be shown to fail when multiple
subnets are present. Thus, there is really no earlier work
on physical topology discovery that addresses all three key
research challenges outlined earlier in this section.

Our Contributions. In this paper, we propose a novel,

1Even though properly-designed networks would not use hubs to intercon-
nect multiple switches, this is a scenario that can easily arise in practice [7].

practical algorithmic solution for discovering the physical
topology of large, heterogeneous IP networks comprising
multiple subnets as well as (possibly) dumb or uncooperative
elements; thus, our algorithm is essentially the first to ad-
dress the the physical topology discovery problem in its full
generality. Similar to our earlier work [8], the practicality of
the solutions proposed in this paper stems from the fact that
they rely solely on standard information routinely collected
in the SNMP MIBs [5], [6] of elements and they require
no modifications to the operating system software running
on elements or hosts. Unlike [8], however, our algorithm is
designed to infer connectivity information in the presence of
hubs and/or switches not speaking SNMP; in fact, it can be
shown that the algorithms proposed here completely subsume
the solution proposed in our earlier paper.

Abstractly, our topology-discovery algorithm initially em-
ploys the AFT information supplied by SNMP-enabled el-
ements to produce a partial, coarse view of the underlying
network topology as a collection of skeleton paths. Our
skeleton-path mechanism is a generalization of traditional
paths that basically captures whatever partial knowledge we
have accumulated on the actual network topology. Our algo-
rithm then enters an iterative, skeleton-path refinement process
during which constraints inferred from the overall skeleton-
path collection are exploited to refine the topology information
in individual skeleton paths.2 Finally, once all skeleton paths
have been resolved into complete arrangements of network
elements, our algorithm stitches the paths together to infer
the underlying network topology including the connections of
“invisible” hubs and uncooperative switches.

It is well known that even complete AFT information from
all network nodes is often insufficient to uniquely identify
the underlying physical network topology; see, e.g., [8] for
examples of different network topologies generating identical
collections of AFTs. We are able, however, to demonstrate
a strong completeness property for the solution proposed in
this paper. More specifically, we formally prove that if the
AFT information is sufficienct to uniquely identify the network
topology then our algorithm is guaranteed to recover it. To the
best of our knowledge, ours is the first SNMP-based topology-
discovery algorithm to provide such a strong completeness
guarantee. Due to space constraints, some theoretical results
in this paper are presented without a complete proof; the
details can be found in the full paper [9]. Our algorithm
is currently under implementation for Lucent’s NetInventory
topology-discovery tool.

II. DEFINITIONS AND SYSTEM MODEL

In this section, we present necessary background informa-
tion and the system model that we adopt for the physical
topology discovery problem. We refer to the domain over
which topology discovery is to be performed as a switched do-
main, which essentially comprises a maximal set S of switches
such that there is a path between every pair of switches
involving only switches in S. (Switches are essentially bridges
with many ports, so the terms “switch” and “bridge” can be

2To the best of our knowledge, existing constraint-solving tools cannot
handle or solve the type of constraints considered here in order to identify
the underlying network topology.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

used interchangeably; we will primarily use “switch” in the
remainder of this paper.) More specifically, we model the
target switched domain as an undirected tree G = (V,E),
where each node in V represents a network element and
each edge in E represents a physical connection between
two element ports. The set V comprises both labeled and
unlabeled nodes. Labeled nodes basically represent switches,
routers, and hosts that have a unique identifying MAC address
and can provide AFT information through SNMP queries to
the appropriate parts of their MIB; unlabeled nodes, on the
other hand, represent both “dumb” hub devices or switching
elements with no SNMP support3. To simplify the discussion,
we refer to labeled and unlabeled nodes simply as switches
and hubs (respectively) in the remainder of the paper.

Note that the graph G essentially captures the (tree) topol-
ogy of unique active forwarding paths for elements within a
switched domain as determined by the spanning tree proto-
col [4]. Our topology discovery algorithm is based on using
the MAC addresses learned through backward learning on
ports that are part of the switched-domain spanning tree (and
stored at the port AFTs of labeled network nodes). We use the
notation (v, k) to identify the kth port of node v ∈ V , and Fv,k

to denote the set AFT entries at port (v, k) (i.e., the set of MAC
addresses that have been seen as source addresses on frames
received at (v, k)). (To simplify notation, we will often omit
the parentheses and comma from our port-id notation when
referring to a specific port of v, e.g., v1, v2, and so on.) Since
G is a tree, we obviously have a unique path in G between
every pair of nodes s, t ∈ V , and we use the symbol Ps,t to
identify the set of port-ids along the path from s to t (also
referred to as the “s− t path”). We also use the notation v(u)
to denote the port of node v that (the address of) node u is
found off of (i.e., the port of v leading to u in G). Table I
summarizes the key notation used throughout the paper with
a brief description of its semantics. Additional notation will
be introduced when necessary.

Symbol Semantics
G = (V, E) Switched-domain network graph (tree)
(v, k) kth port of node v ∈ V (v1, v2, ...)
Fv,k AFT entries at (i.e., nodes reachable from) (v, k)
v(u) Port of node v leading to node u in G
Nv Subnets in G containing v in their spanning subtree
Ps,t Set of switch ports along the path from s to t in G

Qs,t Skeleton path from s to t in G

Is,t
x,z Set of ports at the intersection of Ps,t and Px,z

Qs,t
x,z Projection of path Qx,z onto path Qs,t

TABLE I

NOTATION.

Every labeled node in our switched domain G is associated
with one or more subnets. A subnet is a maximal set of
network elements N ⊆ V such that any two elements in N
can communicate directly with each other without involving
a router, while communication across different subnets must
go through a router. Thus, a packet from node s to node t
in the same subnet N will traverse exactly along the set of

3Note that end-hosts and routers in the network are represented as leaf
nodes in G, and are practically indistinguishable for the purposes of layer-2
topology discovery.

ports Ps,t in G. Typically, every network element within a
switched domain is identified with a single IP address and a
subnet mask that defines the IP address space corresponding
to the element’s subnet. For example, IP address 135.104.46.1
along with mask 255.255.255.0 identifies a subnet of network
elements with IP addresses of the form 135.104.46.x, where
x is any integer between 1 and 254. Let N be the collection
of subnets of the graph G. Every subnet N ∈ N defines a
connecting subtree in G; that is, a tree subgraph of G that is
essentially spanned by the nodes in subnet N , and contains
all nodes and edges of G that lie on paths between any pair
of nodes in N . Let Nv ⊆ N denote the collection of subnets
containing node v ∈ V in their connecting subtrees; clearly,
the AFTs at the ports of node v contain node-reachability
information only for the subnets in Nv . We say that the AFT
Fv,k of v is complete if, for all N ∈ Nv , Fv,k contains the
MAC addresses of all nodes in N that are reachable by port
(v, k).

Similar to [8], our physical topology discovery algorithms
rely on the assumption that the AFT information obtained from
labeled nodes in the network is complete. This completeness
requirement can be enforced using techniques similar to those
in [8] (e.g., using “spoofed” ICMP-echo packets to force
switch communication). A second possibility (also proposed
in [8]) is to relax this completeness requirement and allow our
schemes to make “approximate” decisions while working with
only partial AFT information.

III. OVERVIEW OF OUR TOPOLOGY DISCOVERY

ALGORITHM

The goal of our proposed algorithm is to discover the
physical topology of the underlying multi-subnet network
represented by the switched domain graph G = (V,E)
as accurately as possible using only the AFT information
provided by labeled nodes in G. Thus, our topology-discovery
algorithm uses the AFT information provided to (1) discover
the direct physical connections between labeled element (i.e.,
switch) ports, and (2) infer the existence of unlabeled nodes
(i.e., hubs) in G as well as the set of switch ports that
are connected to each hub. A key concept in our topology
discovery algorithm is the concept of skeleton paths defined
formally below.

Definition 3.1: A skeleton path from node s to node t in
G is defined as a sequence Qs,t =< U1, U2, . . . , UK > of
non-empty port-id sets U1, . . . , UK forming a partition of Ps,t

(Ui ∩ Uj = φ, ∪iUi = Ps,t) such that: (1) Each Uj contains
the port-ids of a contiguous segment of the s − t path; and,
(2) For each i < j, all the port-ids in Ui precede those in Uj

on the s − t path.
Intuitively, an s − t skeleton path describes some partial

knowledge (i.e., port ordering information) that we have about
the actual s − t path in the network graph G. This partial
knowledge basically describes subsets of ports Uj that we
know to be contiguous in the path from s to t in G, as well
as the ordering of these subsets as we traverse G from s to
t. Thus, the “coarsest” s− t skeleton path comprises a single
large subset Ui between nodes s and t with essentially no port-
ordering information, whereas in the “finest” s − t skeleton
path each Ui is a singleton (a single port-id) and the complete
ordering of the ports on the s − t path is specified.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

a b c1 2 1 2 1 2

1

1

1

1

f

d1 2

2

1

e
2

1 2 21

1
3

1

The set of initial skeleton-paths

c - switch - hub

v

u w x y

m

n

Fig. 1. Example network graph and its decomposition in skeleton paths.

Note that determining the set of switch port-ids to be
included in an s − t skeleton path using AFT information is
fairly straightforward when s and t belong to the same subnet.
The key observation is that a node v is on the path from s
to t in G if and only if there are two distinct ports v(s) and
v(t) of v such that v “sees” node s (t) at port v(s) (resp.,
v(t)) (i.e., s ∈ Fv,v(s) and t ∈ Fv,v(t)). Also note that, since
our skeleton-path definition assumes that the path is oriented
from s to t, port v(s) will always precede port v(t) on the
s − t path; thus, we will always denote v(s) before v(t) in
the skeleton path Qs,t (even when these ports are in the same
Ui subset). Obviously, this simple port-ordering rule for each
node is easily obtained from the AFT information at v.

Example 3.1: Consider the network depicted in Figure 1,
where the numbers near the links represent the port-ids. Nodes
u, v, w, x, y are in one subnet, nodes m,n in another subnet,
and every one of the nodes a, b, c, d, e, f defines a separate
subnet (with only one node). One possible skeleton path from
node u to node x is: Qu,x = < {u1}, {a1, a2, b1, b2}, {w1},
{w2}, {c1}, {c2}, {x1} >. Clearly, this skeleton path only
provides partial information on the the topology of the true
u − x path in G. More specifically, Qu,x specifies that the
ports x1 and c2 are directly connected or they are connected
to the same hub. Similarly, Qu,x also indicates that port w1 is
connected (either directly or through a hub) to one of a2 or
b2. (Note that, since port a1 (b1) precedes a2 (resp., b2) on
the u − x path and w1 succeeds nodes a and b in Qu,x, w1
can only be connected to a2 or b2.)

At a high level, our proposed topology-discovery algorithm
(depicted in Figure 2) represents the underlying network by
a collection of skeleton paths, Q, between pairs of nodes
belonging to the same subnet, and proceeds by iteratively
refining Q to provide more accurate topology information
for G. The initial input to our algorithm is the collection of
subnets N in the network G as well as the AFT information
from all labeled nodes (switches) in G. As a first step, our
algorithm computes an initial collection of skeleton paths
Q that, essentially, captures the given AFT information by
identifying the set of port-ids between selected pairs of nodes
that “cover” all paths in G (procedure INITSKELETONPATHS).
Our algorithm then enters an iterative skeleton-path refinement
process, that tries to determine a complete port order for each
skeleton path in Q. The key idea here is to use the aggregate
information in Q to further divide the internal Ui subsets
of each skeleton-path Qs,t ∈ Q into smaller subsets, until
either a complete order is obtained or no further refinement
is possible. This path-refinement task for skeleton path Qs,t

is accomplished with the help of two key procedures. First,
procedure COMPUTECONSTRAINTS exploits the information
in Q (more specifically, the intersections of Qs,t with other
skeleton paths in Q) to obtain a collection S of additional
constraints (termed path constraints) on the port order in Qs,t.
Second, procedure REFINEPATH uses the discovered set of
path constraints S to further refine Qs,t. When no further
skeleton-path refinements are possible, our algorithm invokes
a FINDCONNECTIONS procedure that uses the refined paths
to output the switch and hub connections discovered in G.

procedure TOPOLOGYDISCOVERY(N , AFTs)
1. Q = INITSKELETONPATHS(N , AFT)
2. do
3. done = true
4. for each Qs,t ∈ Q do
5. Ps,t =

⋃
Uk∈Qs,t

Uk

6. S =COMPUTECONSTRAINTS(Qs,t, Q)
7. Qnew

s,t = REFINEPATH(Ps,t, S)
8. if (Qnew

s,t �= Qs,t) then
9. replace Qs,t by Qnew

s,t in Q
10. done = false
11. endif
12. endfor
13. while (not done)
14. FINDCONNECTIONS(Q)

Fig. 2. Our Topology Discovery Algorithm.

One of the main challenges in our work lies in determining
the most complete set of path constraints for each skeleton path
Qs,t, so that we maximize the amount of port-ordering knowl-
edge incorporated in Qs,t during future iterative-refinement
steps. As we show later in this paper, such path constraints can
result from rather complicated intersection patterns of several
skeleton paths in Q. Thus, it is very hard to directly obtain
the “full” set of path constraints that would allow us to refine
an initial Qs,t skeleton path into a complete port order in a
single step. However, even partial-order information obtained
through a subset of the constraints imposed on Qs,t can be
used to further refine other skeleton paths in Q during future
iterations. Thus, our topology-discovery algorithm may require
several iterative-refinement steps, during which skeleton paths
in Q are further refined from iteration to iteration, until the
algorithm eventually converges to the maximal possible port-
ordering information for each path in G for the given set of
inputs. We discuss the key algorithmic components of our
topology-discovery algorithm in detail in the sections that
follow.

IV. THE INITIAL SKELETON-PATH COLLECTION

The first task faced by our algorithm is to “translate” the
input AFT and subnet information into an initial collection of
skeleton paths. The key observation here (already discussed in
Section III) is that, for nodes s and t belonging to the same
subnet, we can easily use the AFT information to determine
the set of switch ports Ps,t on the s − t path in G: if, for
a node v �= s, t, there exist two distinct ports v(s) �= v(t)
such that s ∈ Fv,v(s) and t ∈ Fv,v(t) then v(s), v(t) ∈ Ps,t;
otherwise, v cannot be on the s − t path in G. (Of course,
the source and destination ports on nodes s and t can also be
simply determined from their AFT information.)

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Thus, a simple solution to the initial skeleton-path con-
struction problem is to build a skeleton path Qs,t for each
pair s, t of distinct nodes belonging to the same subnet,
for each of the underlying subnets. The problem with such
a simplistic approach is that it results in very significant
overlap between the resulting paths in Q; this, in turn, implies
that our algorithm may need to compute the port order for
the same path segment several times, resulting in significant
computation-time overheads. Instead, our solution relies on
constructing a concise collection of skeleton paths for each
subnet N such that paths between nodes of N in Q: (a) are
not contained in other paths between N ’s nodes, and (b) cannot
be broken into smaller paths between N ’s nodes. Intuitively,
the resulting skeleton paths for subnet N “minimally” cover
all nodes of N using the smallest possible segments between
such nodes. Our INITSKELETONPATHS procedure (depicted in
Figure 3) builds this concise collection by simply considering,
for each subnet N , all possible s− t paths with s, t ∈ N and
adding an initial Qs,t skeleton path to Q only if the collection
of intermediate nodes on the s − t path (denoted by X in
Figure 3) does not contain another N node. As an example,
Figure 1 depicts the six initial skeleton paths in Q for the
network in Example 3.1.

procedure INITSKELETONPATHS(N , AFTs)
1. Q = ∅
2. for each N ∈ N do
3. for each {s, t} ∈ N do
4. X = {v|v ∈ V − {s, t} ∧ ∃v(s) �= v(t),

such that s ∈ Fv,v(s) ∧ t ∈ Fv,v(t)}
5. if (X ∩ N = φ) then
6. Qs,t =< {s(t)}, {v(s), v(t)|v ∈ X}, {t(s)} >
7. Q = Q ∪ {Qs,t}.
8. endif
9. endfor
10. endfor
11. return(Q)

Fig. 3. The INITSKELETONPATHS Procedure.

V. COMPUTING SKELETON-PATH CONSTRAINTS

In this section, we address the problem of discovering a
collection of constraints that will allow our algorithm to refine
the port order for a given skeleton path Qs,t ∈ Q. Abstractly,
these constraints follow (either explicitly or implicitly) from
the intersections of Qs,t with other skeleton paths in the Q
collection. We begin by presenting some useful definitions and
notational conventions.

A. Skeleton-Path Constraints: Definitions and Notation

We say that a skeleton path Qx,z ∈ Q intersects Qs,t

if Ps,t

⋂
Px,z �= φ. Our skeleton-path collection Q can be

partitioned into two subsets Q = QI
s,t ∪ QNI

s,t , where QI
s,t

(QNI
s,t) contains all the paths in Q that intersect (resp., do not

intersect) path Qs,t. (Note that, trivially, Qs,t ∈ QI
s,t.) For

any skeleton path Qx,z ∈ QI
s,t, let Is,t

x,z denote the collection
of port-ids in the intersection of the s − t and x − z skeleton
paths, i.e., Is,t

x,z = Ps,t

⋂
Px,z . To simplify the exposition, we

assume that all paths Qx,z ∈ QI
s,t have the same orientation

as Qs,t; that is, any port in their intersection Is,t
x,z faces either

s and x, or t and z (the starting and ending points of the
paths are on the same “side” of the network graph). Of course,
either Qx,z or Qz,x must have the same orientation as Qs,t,
and this can be easily resolved from the AFTs of ports in
Is,t
x,z . Constraints on the port order in Qs,t can result from the

projection of another path Qx,z ∈ QI
s,t onto Qs,t, which is

formally defined below.
Definition 5.1: The projection of Qx,z ∈ QI

s,t onto Qs,t,
denoted by Qs,t

x,z , is the skeleton path that results by taking
the intersection of every subset Uk ∈ Qx,z with the set Ps,t

and omitting empty sets; that is, Qs,t
x,z =< U1∩Ps,t, . . . , UK ∩

Ps,t|Ui ∈ Qx,z and Ui ∩ Ps,t �= φ >.
Clearly, any path projection onto Qs,t is essentially a valid

skeleton representation for a segment of the true s− t path in
G and, as such, can enforce additional constraints on the port
order in Qs,t. Such constraints can be broadly classified into
two types: (1) Contiguity constraints forcing a given subset
S ⊂ Ps,t of port-ids to define a contiguous segment of the s−t
path (e.g., any S = Ui ∩ Ps,t �= φ in Definition 5.1); and, (2)
Order constraints forcing all port-ids in a subset S1 ⊂ Ps,t to
precede those of another subset S2 ⊂ Ps,t (e.g., S1 = Ui∩Ps,t

and S2 = Ui+1 ∩ Ps,t in Definition 5.1). We give a generic
definition of path constraints that captures both contiguity and
order constraints.

Definition 5.2: A path constraint Si =< S1
i , S

2
i > for

skeleton path Qs,t is an ordered pair of two disjoint subsets
of port-ids S1

i , S
2
i ⊆ Ps,t such that: (1) S1

i , S2
i , and S1

i ∪ S2
i

define contiguous segments of ports on the s− t path, and (2)
the ports in S1

i precede those in S2
i in the path from s to t in

G.
Note that a simple contiguity constraint S can be simply
represented as < S, φ >.

B. Computing Skeleton Path Constraints

We now turn to our algorithm for computing a collection of
path constraints S on the skeleton path Qs,t using other paths
in Q (i.e., procedure COMPUTECONSTRAINTS in Figure 2).
We first consider the discovery of explicit path constraints,
i.e., constraints that can be inferred directly from the AFT
information and the projections of other skeleton paths in QI

s,t

onto Qs,t. We then discuss the more subtle case of implicit
path constraints.

Explicit Path Constraints. Consider any switch v on the
Qs,t skeleton path. Using the AFT information from v we
can readily define the path constraint < {v(s)}, {v(t)} >,
basically stating that the two ports of v on the path from s to
t must be contiguous and the port facing s must precede that
facing t. We add these constraints to S for all nodes v �= s, t
on the Qs,t path.

Further, consider any (intersecting) skeleton path Qx,z ∈
QI

s,t and its projection Qs,t
x,z onto Qs,t. As mentioned earlier,

such a projection defines a valid skeleton representation for a
segment of the true s−t path in G and, thus, defines additional
contiguity and order constraints on Qs,t. More specifically, for
all projections Qs,t

x,z = {U1, U2, · · · , UK}, we augment S by
adding the path constraints < Ui, Ui+1 > for all i = 1, . . . ,K
(where, we assume UK+1 = φ to cover the case K = 1).

Implicit Path Constraints. Abstractly, implicit path con-
straints on Qs,t are obtained through the intersection of two

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

or more paths with Qs,t as well as other parts of the network
graph G. More specifically, consider the subgraph of G that
is obtained by removing all ports in Ps,t from our network.
Since G is a tree, it is easy to see that this subgraph is
essentially a collection of subtrees Ts,t of G such that each
T ∈ Ts,t is attached to a single connection point (i.e., switch or
hub) on the Qs,t skeleton path. Implicit path constraints result
from the intersection of paths in QI

s,t with a given subtree
T ∈ Ts,t taking advantage of the above “single-connection-
point” observation.

Of course, a problem here is that our algorithm needs
to employ some knowledge about the set of port-ids within
different subtrees in Ts,t without knowing their exact topology.
Our algorithm collects this knowledge using a port-aggregation
technique that partitions the ports not included in Ps,t into a
collection B of maximal, disjoint “bins”, such that the ports
in each bin B ∈ B are guaranteed to be included in a single
subtree of T ∈ Ts,t of G. Note that this is only a sufficient
condition, so that port-ids belonging to the same subtree in
Ts,t can in fact end up in different bins of B in our algorithm.
Nevertheless, this condition still (conservatively) guarantees
that paths in QI

s,t intersecting with the same bin B ∈ B
share a single connection point on Qs,t and, therefore, can
enforce implicit path constraints on Qs,t. Our technique for
aggregating ports into bins relies on the following property,
which follows directly from the fact that our network graph
G is a tree.

Property 5.1: Any pair of paths Qx,z , Qu,v not intersecting
Qs,t (i.e., Qx,z, Qu,v ∈ QNI

s,t) with Px,z ∩Pu,v �= φ belong to
the same subtree T ∈ Ts,t.

Thus, all ports on any two intersecting paths in QNI
s,t can be

safely placed in the same bin in B. Our algorithm works by ini-
tially defining: (1) for every node v �∈ Ps,t, a bin Bv containing
all of v’s ports, i.e., Bv = {(v, k)|(v, k) is a port of v};
and, (2) for every path Qu,v ∈ QNI

s,t , a bin Bu,v = Pu,v .
The algorithm then forms the final collection of bins B by
iteratively merging any two bins whose intersection is non-
empty until all bins are disjoint (based on Property 5.1).

Given that the port bins B computed above are guaranteed
to connect to a single point of the Qs,t skeleton path, we
can use them in a manner equivalent to subtrees in Ts,t for
computing implicit path constraints on Qs,t . Consider two
(intersecting) paths Qx,z, Qu,v ∈ QI

s,t that also intersect with a
single bin B ∈ B, and let Is,t

x,z and Is,t
u,v denote their respective

intersections with Ps,t. Since B has a single connection point
to Qs,t, the segments of Ps,t defined by Is,t

x,z and Is,t
u,v have a

common end-point (switch or hub) on the Qs,t path. If Is,t
x,z

and Is,t
u,v are disjoint then they are on opposite sides of the

common connection point (Figure 4(a)), so their union Is,t
x,z ∪

Is,t
u,v , defines a contiguity constraint on Qs,t. If, on the other

hand, Is,t
x,z and Is,t

u,v intersect, then they are on the same side
of their common end-point (Figure 4(b)), and one of them
contains the other. Suppose that Is,t

x,z ⊃ Is,t
u,v; then, clearly,

Is,t
x,z − Is,t

u,v also defines a contiguity constraint on Qs,t. In
general, given Qx,z, Qu,v ∈ QI

s,t intersecting with a single
port bin B ∈ B, all the implicit contiguity constraints added to
our path constraint set S are: Is,t

x,z∪Is,t
u,v , Is,t

x,z∩Is,t
u,v , Is,t

x,z−Is,t
u,v ,

and Is,t
u,v − Is,t

x,z (where, of course, empty sets are ignored).
The computed port bins and the single connection point

s t

u
vx

z

B

I
s,t
x,z I

s,t
u,v

(a)

s t

u v
x

z

B

I
s,t
x,z

I
s,t
u,v

(b)

Fig. 4. Computing implicit path constraints using bin B.

property can also be exploited to infer order constraints on
the Qs,t skeleton path. Consider two paths Qx,z, Qu,v ∈ QI

s,t

intersecting with bin B ∈ B, and assume that Is,t
x,z and Is,t

u,v are
disjoint (Figure 4(a)) (the case of intersecting Is,t

x,z , Is,t
u,v can be

handled similarly). The key to determining the order of Is,t
x,z

and Is,t
u,v on the s− t path lies in discovering if one of the two

path segments precedes or succeeds the connection point of the
B bin. To describe the two scenarios succinctly, we define the
functions FIRST(Q,S) and LAST(Q,S) that receive as input a
skeleton path Q and a set of ports S, and return the index j of
the first and last (respectively) subset Uj ∈ Q that intersects
S. It is easy to see that if FIRST(Qx,z, I

s,t
x,z) < LAST(Qx,z, B),

then (since the s−t and x−z paths have the same orientation)
the segment Is,t

x,z precedes the connecting point of bin B and
we can conclude the path constraint < Is,t

x,z, I
s,t
u,v >. Otherwise,

if LAST(Qx,z, I
s,t
x,z) > FIRST(Qx,z, B), then the segment Is,t

x,z

succeeds the connecting point of B, giving the path constraint
< Is,t

u,v, I
s,t
x,z >. (Note that at most one of the above conditions

can hold since, by definition, B∩Is,t
x,z = φ.) If both conditions

are false, then we also check the corresponding FIRST/LAST

conditions for Qu,v to see if they can determine an ordering
for the two path segments.

Example 5.1: Consider the network depicted in Figure 5(a),
where hosts (i.e., leaf nodes) comprise four different subnets,
{u, v}, {s, t}, {x, z}, and {r, q}, and each switch (i.e., internal
node) comprises a single-element subnet. The complete ele-
ment AFTs are given in Figure 5(b) and the initial collection
of skeleton paths, Q, is shown in Figure 5(c). Consider
the path constraints imposed by Q on the Qu,v path. From
the AFT information, we directly conclude the constraints
< {d3}, {d1} > and < {c1}, {c2} >. Also, Pu,v intersects
both Ps,t and Px,z with Iu,v

x,z = {d1} and Iu,v
s,t = {c1, c2}.

Further, since both Ps,t and Px,z intersect with the bin Br,q =
{r1, a1, a2, b1, b2, q1} (resulting from Pr,q ∈ QNI

u,v), we have
the implicit contiguity constraint < {d3, c1, c2}, φ >. It is easy
to see that the only u−v path arrangement satisfying the above
constraints is Qu,v =< {u1}, {d3}, {d1}, {c1}, {c2}, {v1} >.

Now, consider path Qs,t. Through the intersection of Ps,t

and Pr,q , we conclude the (explicit) contiguity constraint
< {a1, a2, b1, b2}, φ >. Also, through the intersection of Pu,v

and Px,z with both Ps,t and the bin Bd = {d1, d2, d3}, we in-
fer the (implicit) contiguity constraint < {b1, b2, c1, c2}, φ >.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

s t
a b c

d

u

v
x

z

r

q

1 2 1 2 1 2

1

2

1

1

11

1

1

1

1

Fa1={r,s} Fa2={q,t}

Fb1={s,x} Fb2={t,z}

Fc1={s,u} Fc2={t,v}

Fd1={x,v} Fd2={z}

Fd3={u}

Fs1={t} Ft1={s}
Fx1={z} Fz1={x}

Fu1={v} Fv1={u}

Fr1={q} Fq1={r}

(a) The considered network. (b) The complete AFTs.

3

T'

a1,a2,b1,b2,c1,c2

b1,b2,d1,d2

c1,c2,d3,d1

a1,a2,b1,b2

(c) The initial
skeleton-paths.

Qu,v:

(d) The refined skeleton-paths
Qu,v and Qs,t.

d1d3

c1 c2

c1 c2

b1 b2a1 a2Qs,t:

Qx,z:

Qr,q:

Qu,v:

Qs,t:

Qx,z:

Qr,q:

u1

s1

x1

r1

v1

t1

z1

q1

u1

s1

x1

r1

v1

t1

z1

q1

Fig. 5. An example of implicit contiguity and order constraints.

These two constraints are not sufficient to define the port order
on Ps,t since both s − a − b − c − t and s − c − b − a − t
satisfy them. However, with the knowledge of the complete
u − v path (above) we can infer an additional implicit order
constraint; specifically, since Is,t

u,v and Is,t
x,z are disjoint and

LAST(Qu,v, I
s,t
u,v) = 5 > FIRST(Qu,v, Bd) = 2, the connection

point of Bd must precede the c node on the s − t path. This
implies the constraint < Is,t

x,z, I
s,t
u,v > = < {b1, b2}, {c1, c2} >

which, in turn, uniquely identifies the underlying s− t path as
s − a − b − c − t.

The detailed pseudo-code for our COMPUTECONSTRAINTS

procedure is depicted in Figure 6. As is also clear from the
discussion in Example 5.1, it may be impossible to use our
path constraints to infer the complete path topology for a
given skeleton path in Q unless some other path(s) in Q have
been appropriately refined (e.g., consider Qs,t and Qu,v in
our example). A key problem here stems from our partial
knowledge of the ports that lie in the “single-connection-point”
bins used to infer implicit constraints. Thus, our solution
(Figure 2) needs to employ iterative-refinement passes over
all skeleton-paths in Q until no further path refinements are
possible.

VI. THE SKELETON-PATH REFINEMENT ALGORITHM

Once our topology-discovery algorithm has computed the
set of path constraints S imposed on the Qs,t skeleton path,
it invokes the REFINEPATH procedure (Step 7 in Figure 2)
to “refine” the ordering of the port-ids in the Ps,t set using
the newly-discovered constraints. Our REFINEPATH algorithm
(described in detail in this section) is a recursive procedure
that receives as input the collection of port-ids P along the
network path being considered, as well as a collection of path
constraints S on the arrangement of those ports. Its output is
a skeleton path Q =< U1, U2, . . . , UK > over the ports in
P that satisfies all the constraints in S. Furthermore, as we
demonstrate analytically later in this section, if the constraint
collection S uniquely defines the port order for P then every
subset Ui in the output path Q comprises a single port in

procedure COMPUTECONSTRAINTS(Qs,t, Q)
1. QI

s,t = {Qx,z|Qx,z ∈ Q and Px,z ∩ Ps,t �= φ}
2. QNI

s,t = Q − QI
s,t

3. S = {< {v(s)}, {v(t)} > |∀v �= s, t on the s − t path}
4. for each Qx,z ∈ QI

s,t do // Note that Qs,t ∈ QI
s,t

5. Compute the projection Qs,t
x,z = {U1, · · · , UK}

6. S = S ∪ {< U1, φ >}
7. for j = 2 to K do
8. S = S ∪ {< Uj−1, Uj >}
9. endfor
10. // Compute the port-bin collection B
11. B = {{Pu,v}|Qu,v ∈ QNI

s,t } ∪
{{ all ports (v, k)}|v ∈ V − Ps,t}

12. while there are B1, B2 ∈ B s.t. (B1 ∩ B2 �= φ) do
13. B = B − {B1, B2} ∪ {{B1 ∪ B2}}
14. // Discover implicit path constraints on Qs,t

15. for each Qx,z, Qu,v ∈ QI
s,t and B ∈ B s.t. [(Is,t

x,y �= Is,t
u,v)

and (Px,y ∩ B �= φ) and (Pu,v ∩ B �= φ)] do
16. S = S ∪ {< Is,t

x,z ∪ Is,t
u,v, φ >,< Is,t

x,z ∩ Is,t
u,v, φ >,

< Is,t
x,z − Is,t

u,v, φ >,< Is,t
u,v − Is,t

x,z, φ >}
17. if (Is,t

x,z ∩ Is,t
u,v = φ) then

18. if [FIRST(Qx,z, I
s,t
x,z) < LAST(Qx,z, B) or

LAST(Qu,v, I
s,t
u,v) > FIRST(Qu,v, B)] then

19. S = S ∪ {< Is,t
x,z, I

s,t
u,v >}

20. else if [FIRST(Qu,v, I
s,t
u,v) < LAST(Qu,v, B) or

LAST(Qx,z, I
s,t
u,v) > FIRST(Qx,z, B)] then

21. S = S ∪ {< Is,t
u,v, I

s,t
x,z >}

22. endif
23. else // i.e., Is,t

x,y ∩ Is,t
u,v �= φ, assume Is,t

x,y ⊃ Is,t
u,v

24. if [FIRST(Qx,z, I
s,t
x,z) < LAST(Qx,z, B) or

FIRST(Qu,v, I
s,t
u,v) < LAST(Qu,v, B)] then

25. S = S ∪ {< (Is,t
x,z − Is,t

u,v), Is,t
u,v >}

26. else if [LAST(Qx,z, I
s,t
x,z) > FIRST(Qx,z, B) or

LAST(Qu,v, I
s,t
u,v) > FIRST(Qu,v, B)] then

27. S = S ∪ {< Is,t
u,v, (Is,t

x,z − Is,t
u,v) >}

28. endif
29. endif
30. endfor
31. return S

Fig. 6. The COMPUTECONSTRAINTS Procedure.

P (i.e., Q defines the complete port order for the considered
network path).

Abstractly, our REFINEPATH algorithm consists of three
key steps: (1) Mapping the path-constraint collection S to a
collection of contiguity constraints R; (2) Using R and S to
construct an auxiliary skeleton path L; and, (3) Recursing the
refinement process on each subset of the auxiliary skeleton
path L to obtain the output skeleton path Q. Intuitively,
the set of contiguity constraints R enable us to identify
segments of port-ids on the target path that are “connected”
through the given set of constraints; these are basically the
only (sub)paths for which we stand a chance to recover a
complete port order (using the given constraints). The subsets
in the auxiliary skeleton path L are then constructed using the
derived contiguity constraints R: the goal here is to ensure
that our refinement algorithm can safely recurse within each
individual subset of L while only considering the constraints
“local” to this subset. Further, the path constraints in S are
used to determine the order of subsets in L. Finally, we recurse
on each subset of L and concatenate the skeleton (sub)paths
returned to obtain the final skeleton path Q.

In the remainder of this section, we first describe the con-

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

struction of the contiguity constraint set R and the auxiliary
skeleton path L. Then, we discuss our overall REFINEPATH

algorithm in detail.

The Contiguity Constraint Set R and Connected Port
Groups. The set of contiguity constraints R essentially con-
tains all the contiguity constraints that can be directly inferred
from the input set of path constraints S. (To simplify the
exposition, we will treat R as a set of port-id sets, i.e., each
R ∈ R is a set of ports.) To ensure that R covers all ports
in P we add singleton constraints for each port in P ; we also
exclude from R the “trivial” contiguity constraints P and φ.
Thus, we define:

R = {S1
i , S

2
i , S

1
i ∪ S2

i |∀ < S1
i , S

2
i >∈ S} ∪

{{k}|∀k ∈ P} − {P, φ}.

We say that two sets R,R′ ∈ R are connected in R if
there exists a sequence of sets R1 = R,R2, · · · , Rk = R′

in R such that Rj−1 intersects Rj for every j = 2, . . . , k.
A sub-collection C ⊆ R is called a connected group in R if
every pair R,R′ ∈ C is connected in C and any R ∈ C is not
connected with any set in R−C. We also define C =

⋃
R∈C R,

i.e., the union set of the collection C. It is easy to see that the
union sets of all connected groups of R are disjoint and form
a partition of P . The following lemma uses the concept of
connected port groups to describe a necessary condition for
the given set of path constraints to define a unique port order
over P .

Lemma 6.1: If the path constraints S uniquely determine
the arrangement of ports in P then the derived contiguity
constraints R satisfy one of the following two conditions: (a)
R comprises a single connected group; or, (b) R contains
two connected groups C1, C2 ⊂ R and S contains the path
constraint < C1, C2 > or < C2, C1 >, where Ci is the union
set for group Ci.

Intuitively, the above theorem states that, in order for S
to determine a unique arrangement of P , the contiguity and
order constraints in S should span the entire set of ports in
P ; otherwise, there would certainly be segments of the path
where the port arrangement cannot be determined based on
the constraints. Note that Case (b) in Theorem 6.1 could only
arise when C1 ∪C2 = P , since we have excluded the (trivial)
contiguity constraint P from R.

The Auxiliary Skeleton Path L. Consider a connected group
C in R, and let C ⊆ P denote its union set. Our goal is
to construct a valid port arrangement for the ports in C using
the given set of path constraints. Intuitively, our algorithm will
accomplish this by building a (coarse) auxiliary skeleton path
L =< U1, . . . , U|L| > and then recursing on each subset Ui

of L, concatenating the results of the recursive calls. However,
to be able to recurse independently on each Ui subset using
only its “local” set of path constraints, this auxiliary skeleton
path L needs to be constructed carefully. Our construction is
based on the concept of Intersecting, Non-Containing (INC)
port sets that we formally define here.

Definition 6.1: Two port sets Ri, Rj ⊂ P are said to
be Intersecting, Non-Containing (INC) if and only if they
intersect and neither one of them contains the other, i.e.,
Ri ∩ Rj �= φ, Ri �⊆ Rj , and Rj �⊆ Ri.

It is easy to see that having a contiguity constraint R in C
that is INC with one of the subsets Ui in our skeleton path
L essentially means that we cannot independently recurse on
that Ui subset. The problem, of course, is that R would also
intersect neighbors of Ui in L and the ports in these sets inter-
sected by R cannot be arranged independently since that would
not guarantee that R is satisfied in the final (concatenated)
arrangement. On the other hand, recursing on Ui is simple if
R is fully contained in or contains Ui: in the former case,
R is simply passed as an argument to the recursive call and
in the latter R has no effect on the arrangement of Ui since
Ui is already required to be contiguous (by the skeleton path
definition). Thus, we would like to build an auxiliary path L
that is INC-free for C as defined below.

Definition 6.2: We say that the skeleton path L =<
U1, . . . , U|L| > is INC-free for C if and only if for every
contiguity constraint R ∈ C either (a) R is contained in a single
Uj ∈ L (i.e., R ⊆ Uj for some j); or, (b) R is equal to the
union of a (sub)sequence of subsets in L (i.e., R =

⋃k2
j=k1

Uj

for some 1 ≤ k1 ≤ k2 ≤ |L|).
The method we use for building a skeleton path L that is

INC-free for C is as follows. Initially, we find the largest port
set Ri ∈ C and any set Rj ∈ R that is INC with Ri. (Note
that two such sets must exist since C is a single connected
group and the trivial contiguity constraint C is ignored.) From
these two sets, we construct an initial skeleton path with three
subsets L =< Ri − Rj , Ri ∩ Rj , Rj − Ri >. (At this point,
the orientation of the L path is arbitrary; it is resolved using
the given path constraints S after the whole INC-free path has
been built.) Let L =< U1, . . . , U|L| > denote the current state
of our skeleton path and let PL be the set of all ports in L.
While there exists a set R ∈ C that is INC with PL or one of
the subsets Uj ∈ L (e.g., Figure 7(a)) our algorithm performs
the following operations. First, every Uj ∈ L that is INC with
R is replaced by the two subsets Uj −R and Uj ∩R. The order
of these two subsets in L is determined as follows. If j < |L|
and R intersects Uj+1, or j = |L| and R does not intersect
Uj−1, then Uj −R precedes Uj ∩R in L (e.g., the split of U2
into U ′

2 and U ′
3 in Figure 7); otherwise, the two subsets are

inserted in the opposite order in L. Second, suppose that R
and PL are INC; this implies that R contains nodes that are
not included in the current skeleton path L. After the above
splitting of Uj’s based on R, it is easy to see that R must
completely contain either the first or the last subset of L. If
U1 ⊂ R then we insert the set R−PL as the first set of L, i.e.,
L =< R−PL > ◦L (where “◦” denotes path concatenation);
otherwise, we set L = L◦ < R − PL > (e.g., attaching U ′

5 to
L in Figure 7). Finally, we update the set PL = PL ∪ R, and
return to select a new contiguity constraint R.

Lemma 6.2: Given a single connected group of contiguity
constraints C ⊆ R, the above-described procedure constructs
a skeleton path for C that is INC-free for C.

Remember that we built the INC-free path L without paying
attention to its orientation. Thus, at this point, either L or
REVERSE(L) is the correct skeleton path for C (where the
REVERSE function simply reverses the subset order in a given
skeleton path). As will become clear in the description of our
refinement algorithm, we resolve the orientation for L using

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

s t
L=< U1 , U2 , U3 >

contiguity constraint R

s t

L=< U'1 , U'2, U'3 , U'4 , U'5 >

(a)

(b)

Fig. 7. Building an INC-free auxiliary skeleton path L.

the input set of path constraints S.

The REFINEPATH Algorithm. The detailed pseudo-code for
our REFINEPATH procedure is depicted in Figure 8. In its
first phase (Steps 2-6), REFINEPATH builds the collection
of inferred contiguity constraints R on P and the resulting
connected port groups, and applies Lemma 6.1 to decide if S
can define a unique port arrangement for P . If we discover
more than 2 connected groups then, by Theorem 6.1, our
algorithm cannot hope to build a skeleton path with ordered
subsets of P so it simply returns the trivial skeleton path
L =< P >. If we find exactly two connected groups (with
union sets C1 and C2) in R then procedure ORIENTPATH

(described in detail below) is invoked to determine the correct
ordering of C1 and C2 in the skeleton path using S; then,
in Steps 30-37 our algorithm recurses on the two union sets
C1 and C2 to determine their internal port arrangements and
appropriately concatenates the resulting subpaths. Finally, if
R comprises a single connected port group then REFINEPATH

builds the auxiliary INC-free skeleton path L as described
earlier in this section (Steps 11-26) and uses the ORIENTPATH

procedure to determine the correct orientation for L; then,
again using Steps 30-37, REFINEPATH recurses on each (non-
singleton) subset Uj in the L path using only the constraints
local to that subset (i.e., constraints < S1

i , S
2
i >∈ S such that

S1
i ∪ S2

i ⊆ Uj) and concatenates the results of the recursive
calls to build the final output path Q.

The ancillary ORIENTPATH procedure (shown in Figure 9)
uses the original set of path constraints S in order to identify
the correct direction for an input skeleton path L. ORIENT-
PATH relies on the two functions FIRST(L, S) and LAST(L, S)
introduced in Section V for identifying the index of the
first/last occurrence of an element of S in the L path. More
specifically, consider a path constraint < S1

i , S
2
i >∈ S

such that FIRST(L, S1
i) < LAST(L, S2

i); then, clearly, since
the constraints in S characterize a true network path, the
ports in S1

i should precede those in S2
i and, thus, L is the

correct skeleton path. Similarly, if there is a path constraint
< S1

i , S
2
i >∈ S such that FIRST(L, S2

i) < LAST(L, S1
i), then

the correct path is REVERSE(L). Otherwise, if no constraint in
S can determine the direction of the L path then ORIENTPATH

simply returns a trivial single-set skeleton path.
The following theorem establishes the correctness of our al-

gorithm, demonstrating analytically that REFINEPATH always
recovers the correct topology for the input ports P as long
as it can be identified uniquely from the given set of path
constraints S.

Theorem 6.1: The REFINEPATH algorithm returns a fea-
sible skeleton path for the port collection P . Further, if
S uniquely defines the port arrangement in P , then the

procedure REFINEPATH(P , S)
1. L =< P >
2. R = {S1

i , S
2
i , S

1
i ∪ S2

i |∀ < S1
i , S

2
i >∈ S}

∪{{k}|∀k ∈ P} − {P, φ}
3. C = R
4. while there exist Ri �= Rj ∈ C s.t. Ri ∩ Rj �= φ do
5. C = C − {Ri, Rj} ∪ {Ri ∪ Rj}
6. endwhile
7. if |C| > 2 then return(L)
8. else if (C = {C1, C2}) then
9. L = ORIENTPATH(< C1, C2 >, S)
10. else // R comprises a single connected group
11. Ri = the largest set in R
12. Rj = set in R that is INC with Ri.
13. L = < Ri − Rj , Ri

⋂
Rj , Rj − Ri >; PL = Ri

⋃
Rj

14. while there exist R ∈ R s.t. [(R and PL are INC) or
(R and some Uj ∈ L are INC)] do

15. for each Uj ∈ L that is INC with R do
16. if [(j < |L| and Uj+1 ∩ R �= φ) or

(j = |L| and Uj−1 ∩ R = φ)] then
17. replace Uj with < Uj − R,Uj ∩ R >.
18. else replace Uj with < Uj ∩ R,Uj − R >.
19. endif
20. endfor
21. if R and PL are INC then
22. PL = PL ∪ R
23. if (U1 ⊂ R) then L = < R − PL > ◦L
24. else L = L◦ < R − PL >
25. endif
26. endwhile
27. L = ORIENTPATH(L, S)
28. endif
29. if |L| = 1 then return(< P >)
30. Q = ε // the empty path
31. for j = 1 to |L| do
32. if (|Uj | = 1) then Q = Q◦ < Uj >
33. else
34. Sj = {< S1

i , S
2
i >∈ S such that S1

i ∪ S2
i ⊆ Uj}

35. Q = Q◦ REFINEPATH(Uj ,Sj)
36. endif
37. endfor
38. return(Q)

Fig. 8. The REFINEPATH Procedure.

REFINEPATH algorithm is guaranteed to return the (unique)
correct path topology.

VII. INFERRING THE NETWORK TOPOLOGY

The final step of our topology-discovery algorithm is to use
the data in the resolved skeleton paths in order to infer the con-
nectivity information for switches and hubs in the underlying
network (procedure FINDCONNECTIONS in Figure 2). Given a
set of resolved skeleton paths (i.e., path for which a complete
port arrangement has been determined), the procedure for
inferring element connectivities is fairly straightforward: Ports
that are adjacent on some path are directly connected; and, if a
port has more than one neighbor in the resolved paths, then a
hub is placed to interconnect that port with all its neighboring
ports (as well as all other ports connected to ports already on
the hub).

The following theorem identifies a strong completeness
property of our proposed topology-discovery algorithm and
is the main theoretical result of this paper. Due to space
constraints, a sketch of the proof can be found in the appendix;
the complete details can be found in the full version of this

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

procedure ORIENTPATH(L,S)
1. for each < S1

i , S
2
i >∈ S do

2. if (FIRST(L,S1
i) < LAST(L,S2

i)) then return(L)
3. else if (FIRST(L,S2

i) < LAST(L,S1
i)) then

4. return(REVERSE(L))
5. endif
6. endfor
7. return(<

⋃
Uj∈L

Uj >)

Fig. 9. The ORIENTPATH Procedure.

s1 a1,a2,b1,b2,c1,c2,d1,d2 t1

x1 b1,b2,c1,c2,e2,e1 y1

u1 b1,b2,c1,c2,d1,d2,e3,e1 v1

r1 a1,a2,b1,b2 q1

(b) The initial skeleton-paths.

s1 t1

x1 b1,b2,c1,c2 y1

u1 b1,b2,c1,c2 v1

r1 a1,a2,b1,b2 q1

(d) The skeleton-paths after
the second iteration.

e2 e1

e2 e1 d1 d2

a1 a2 b1 b2 c1 c2 d1 d2

r1
a1

s1

e1

b1a2

q1

c1b2

y1

d1c2
u1

d2
t1

e2 x1

e3 u1

(f) The resulting connections
from the skeleton-paths.

s1 a1,a2,b1,b2,c1,c2,d1,d2 t1

x1 b1,b2,c1,c2 y1

u1
b1,b2,
c1,c2

v1

r1 a1,a2,b1,b2 q1

(c) The skeleton-paths after
the first iteration.

e2 e1

e2 e1 d1 d2

s1 t1

x1 y1

u1 v1

r1 q1

(e) The skeleton-paths after
the third iteration.

e2 e1

e2 e1 d1 d2

a1 a2 b1 b2 c1 c2 d1 d2

b1 b2 c1 c2

b1 b2 c1 c2

a1 a2 b1 b2

s t
a b

e

u

v

x

r

q

1 2 1 2 1 2

1

2

1

1

11

11

1

1

3

d1 2c

y

(a) The true network topology.

Fig. 10. An example execution of our algorithm.

paper [9]. To the best of our knowledge, this is the first result
of this type in the area of SNMP-based physical topology
discovery.

Theorem 7.1: Our topology-discovery algorithm (depicted
in Figure 2) runs in time that is polynomial in the number
of network nodes and is complete for the given AFT and
subnet information. That is, if the input SNMP and subnet
data is sufficient to uniquely identify the physical topology of
the underlying network, then our algorithm is guaranteed to
recover that (unique) topology.

VIII. AN EXAMPLE EXECUTION

In this section, we present some key steps of our topology-
discovery algorithm in inferring the topology of the example
network depicted in Figure 10(a), where we assume that the
hosts comprise four different subnets {s, t}, {x, y}, {u, v}
and {r, q}, and each switch a, b, c, d, e belongs to a
different subnet. Our goal is to demonstrate how our algorithm
accumulates partial topology information during skeleton-path
refinement iterations until the complete network topology is
recovered. Let Qi denote the skeleton-path collection at the
end of the i-th iteration (Q0 is the initial set). To simplify
our discussion, we assume that refinements during the i-th
iteration only use skeleton paths in Qi−1.

The initial skeleton path collection Q0 = { Q0
s,t, Q0

x,y,
Q0

u,v, Q
0
r,q} is shown in Figure 10(b). Suppose that our paths

are refined in the order Ps,t, Px,y, Pu,v , and Pr,q . For Q0
s,t

we compute the collection of path constraints S1
s,t:

S1
s,t =






S1 =<{s1}, {a1, a2, b1, b2, c1, c2, d1, d2}>,
S2 =<{a1, a2, b1, b2, c1, c2, d1, d2}, {t1}>,

S3 =<{b1, b2, c1, c2, d1, d2}, φ>,
S4 =<{b1, b2, c1, c2}, φ>,
S5 =<{a1, a2, b1, b2}, φ>,

S6 =<{a1}, {a2}>,S7 =<{b1}, {b2}>,
S8 =<{c1}, {c2}>,S9 =<{d1}, {d2}>






,

where S1−S5 follow from the intersections of Qs,t with paths
in Q0 (including Qs,t itself), and S6 −S9 come from the AFT
information at intermediate nodes.

To refine Ps,t, we use S1
s,t to compute the INC-free

auxiliary path Ls,t = < {s1}, {a1, a2, b1, b2, c1, c2, d1, d2},
{t1} > which has the correct orientation (by con-
straints S1, S2). We then recurse on the subset U2 =
{a1, a2, b1, b2, c1, c2, d1, d2} ∈ L, and use the constraints
“local” to U2 (i.e., S3 − S5) to compute the subpath L′ =<
{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2} >. Unfortunately, at this
point, ORIENTPATH cannot use the input constraints to deter-
mine the correct direction for L′, so it siply returns the set U2,
which means that the skeleton path returned by REFINEPATH

is exactly the same as Q0
s,t.

Next, for Q0
x,y , we compute the path constraints S1

x,y:

S1
x,y =






S1 =<{x1}, {b1, b2, c1, c2, d1, d2, e2, e1}>,
S2 =<{b1, b2, c1, c2, d1, d2, e2, e1}, {y1}>,

S3 =<{b1, b2, c1, c2, d1, d2}, φ>,
S4 =<{b1, b2, c1, c2, e1}, φ>,

S5 =<{b1, b2}, φ>,
S6 =<{b1}, {b2}>,S7 =<{c1}, {c2}>,
S8 =<{d1}, {d2}>,S9 =<{e2}, {e1}>






.

To refine Px,y , REFINEPATH computes the INC-free aux-
iliary path Lx,y =< {x1}, {b1, b2, c1, c2, d1, d2, e2, e1},
{y1} >, and recurses to refine its second subset U2 =
{b1, b2, c1, c2, d1, d2, e2, e1} ∈ Lx,y . Using constraints
S3, S4, S5 and S9, it computes the subpath L′ = < {d1, d2},
{b1, b2, c1, c2}, {e1}, {e2} >. Then, by constraint S9, ORI-
ENTPATH concludes the reverse direction for L′, returning
the final subpath < {e2}, {e1}, {b1, b2, c1, c2}, {d1, d2} >.
Additional recursive calls resolve the port order for sub-
set {d1, d2} but not for subset {b1, b2, c1, c2}; thus,
the final x − y skeleton path returned is Q1

x,y = <
{e2}, {e1}, {b1, b2, c1, c2}, {d1}, {d2} >. The other two re-
fined skeleton paths Q1

u,v and Q1
r,q are computed similarly,

and the path collection Q1 is shown in Figure 10(c).
Note that, after the first refinement iteration, none of the

paths in Q1 specifies a complete arrangement. However, as
we now show, the refined path Q1

x,y ∈ Q1 allows us to
refine Qs,t in the second iteration of our algorithm. Consider
the set of path constraints S2

s,t computed for Qs,t during the
second iteration. This set is identical to S1

s,t, with the excep-
tion of constraint S3 (resulting from the projection of Qx,y

onto Qs,t); more specifically, constraint S3 for this second
iteration over Qs,t is S3 =< {{b1, b2, c1, c2}, {d1, d2} >.
Thus, after REFINEPATH recomputes the subpath L′ =
< {a1, a2}, {b1, b2}, {c1, c2}, {d1, d2} >, constraint S3
can now be used by ORIENTPATH to determine the cor-
rect direction for L′, and the resulting s − t skele-

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

ton path returned is Q2
s,t = < {s1}, {a1}, {a2},

{b1}, {b2}, {c1}, {c2}, {d1}, {d2}, {t1} > (Figure 10(d)).
In its third iteration, our topology-discovery algorithm ac-

tually recovers the complete port arrangement for all skeleton
paths as shown in Figure 10(e). Finally, the FINDCONNEC-
TIONS procedure uses the resolved paths to discover the
element connectivities depicted in Figure 10(f). It is easy to
see that the connections discovered specify exactly the true
network topology shown in Figure 10(a).

IX. CONCLUSIONS

Automatic discovery of physical topology information plays
a crucial role in enhancing the manageability of modern IP
networks. In this paper, we have proposed the first complete
algorithmic solution for discovering the physical topology of
a large, heterogeneous Ethernet network comprising multiple
subnets as well as (possibly) dumb or uncooperative network
elements. Our proposed algorithm relies on standard SNMP
MIB information that is widely supported in modern IP
networks and is the first SNMP-based topology-discovery tool
to offer strong completeness guarantees for recovering the true
network topology from the given MIB data.

REFERENCES

[1] I. Katzela and M. Schwarz, “Schemes for Fault Identification in Com-
munication Networks”, IEEE/ACM Transactions on Networking, vol. 3,
no. 6, pp. 753–764, Dec. 1995.

[2] S. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie, “High Speed
& Robust Event Correlation”, IEEE Communications, May 1996.

[3] A. Bierman and K. Jones, “Physical Topology MIB”, Sept. 2000, Internet
RFC-2922 (available from http://www.ietf.org/rfc/).

[4] S. Keshav, “An Engineering Approach to Computer Networking”.
Addison-Wesley Professional Computing Series, 1997.

[5] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A Simple Network
Management Protocol (SNMP)”, May 1990, Internet RFC-1157 (available
from http://www.ietf.org/rfc/).

[6] W. Stallings, “SNMP, SNMPv2, SNMPv3, and RMON 1 and 2”.
Addison-Wesley Longman, Inc., 1999, (Third Edition).

[7] B. Lowekamp, D. R. O’Hallaron, and T. R. Gross, “Topology Discovery
for Large Ethernet Networks”, in Proceedings of ACM SIGCOMM, San
Diego, California, Aug. 2001.

[8] Y. Breitbart, M. Garofalakis, C. Martin, R. Rastogi, S. Seshadri, and
A. Silberschatz, “Topology Discovery in Heterogeneous IP Networks”,
in Proceedings of IEEE INFOCOM’2000, Tel Aviv, Israel, Mar. 2000.

[9] Y. Bejerano, Y. Breitbart, M. Garofalakis, and R. Rastogi, “Physical
Topology Discovery for Large Multi-Subnet Networks”, July 2002, Bell
Labs Tech. Memorandum.

APPENDIX

Proof Sketch for Theorem 7.1. Let Q0 be the initial collec-
tion of skeleton-paths calculated by the INITSKELETONPATHS

procedure and let Qi, i > 0, be the skeleton-path collection
at the end of the i-th iteration. Initially, we prove that the
skeleton-path collection Qi, for every i ≥ 0, comprises all
the AFT information. We consider the connecting tree TN

of every subnet N and we construct an iterative algorithm
that computes the complete AFTs for subnet N of every node
v ∈ TN . The algorithm first populates the AFTs of node v
with the end-points of the skeleton-paths comprising v. Then,
iteratively, it finds which port of v leads to the nodes of the
other skeleton-paths in TN . As a result, any topology that
satisfies the skeleton-path constraints also satisfies the network
AFT information.

Next, we consider our REFINEPATH procedure and we
prove that if the constraint collection S uniquely defines
the port order of the path P̂ , then this procedure returns
the correct and complete path topology. This theorem results
from the recursive behavior of the REFINEPATH procedure.
The procedure constructs an auxiliary skeleton path L =<
U1, . . . , U|L| > by using only the contiguity constraints in
S, such that every pair of Ui, Uj ∈ L, i �= j are INC-
free. Thus, the internal arrangement of the ports in every
set Ui ∈ L does not affect the port order of any other set
Uj ∈ L. This enables the procedure to recursively refine any
set Ui ∈ L until sets with single port-ids are obtained. At this
point, either L or REVERSE(L) is the correct skeleton path
for P̂ . By employing the order constraints in S, the ancillary
ORIENTPATH procedure identifies the correct direction of L
at the end of each invocation of the REFINEPATH procedure.

For completing the proof, we only have to show that our
COMPUTECONSTRAINTS procedure computes all the contigu-
ity and order constraints that are essential for determining the
network topology. We consider first the contiguity constraints.
Since such constraints essentially result from path-intersection
operations, we show that all the contiguity constraints can be
deduced directly from the initial skeleton paths, Q0.

Identifying all the required order constraints in more chal-
lenging task. Recall that the order of a skeleton path L1 may
be enforced by the order of another skeleton path L2 as a result
of an implicit order constraint (even when the two paths do not
have any port-id in common). In such cases, we can determine
the required order constraints of L1 only after refining the
skeleton-path L2. We resolve this problem as follows. For
simplicity, we assume that all the skeleton-paths are computed
in advance without determining their directions and let L
denote the collection of computed skeleton-paths. Then, we
divide L into disjoint sets {L1,L2, . . . ,LM} such that: (a) for
every pair L1, L2 ∈ Lk, k ∈ [1, . . . ,M], the orderings of paths
L1 and L2 are dependent (i.e., ordering one path determines
the order of the other); and, (b) for any pair L1 ∈ Lk,
L2 ∈ Lk′ , k �= k′, paths L1 and L2 are order-independent. We
prove that each such set Lk has the following two properties:
(a) Every Lk induces a connected component; in other words,
for every L′, L′′ ∈ Lk there is a sequence {L1 = L′, L2,
. . . , Ll = L′′} such, that for every i ∈ [1, . . . , (l − 1)], paths
Li and Li+1 intersect; and, (b) If S defines a unique network
topology then every Lk contains at least one explicit order
constraint. By using these two properties, we can show that
the do-while loop of our TOPOLOGYDISCOVERY algorithm
ensures the inference of all explicit order constraints for each
skeleton-path. Finally, we tie all our deductions together and
conclude that if the AFTs define unique network then our
TOPOLOGYDISCOVERY algorithm will identify it.

Our running-time analysis is based on the observation that
the number of skeleton-paths and path constraints that our
TOPOLOGYDISCOVERY algorithm computes are O(n2) and
O(n3), respectively. The algorithm contains several finite
loops, where set operations are performed on the skeleton-
paths or the constraints. Therefore, our algorithm’s running
time is polynomial and, in fact, it is comparable to that of
existing techniques for layer-2 topology discovery [8], [7].

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

	INFOCOM 2003
	Return to Main Menu

