
Modeling TTL-based Internet Caches
Jaeyeon Jung, Arthur W. Berger and Hari Balakrishnan

MIT Laboratory for Computer Science
Cambridge, MA 01239, USA

E-mail:{jyjung,awberger,hari}@lcs.mit.edu

Abstract— This paper presents a way of modeling the hit
rates of caches that use a time-to-live (TTL)-based consistency
policy. TTL-based consistency, as exemplified by DNS and Web
caches, is a policy in which a data item, once retrieved, remains
valid for a period known as the “time-to-live”. Cache systems
using large TTL periods are known to have high hit rates and
scale well, but the effects of using shorter TTL periods are not
well understood. We model hit rate as a function of request
arrival times and the choice of TTL, enabling us to better
understand cache behavior for shorter TTL periods. Our formula
for the hit rate is closed form and relies upon a simplifying
assumption about the inter-arrival times of requests for the
data item in question: that these requests can be modeled as
a sequence of independent and identically distributed random
variables. Analyzing extensive DNS traces, we find that the results
of the formula match observed statistics surprisingly well; in
particular, the analysis is able to adequately explain the somewhat
counterintuitive empirical finding of Jung et al. [1] that the cache
hit rate for DNS accesses rapidly increases as a function of TTL,
exceeding 80% for a TTL of 15 minutes.

I. INTRODUCTION

Caching is one of the oldest techniques for improving per-
formance in computer systems; by storing information locally,
caches typically enhance performance by reducing access
latency to data source and by reducing bandwidth require-
ments at the data source. Internet systems employ caching in
abundance—the Web and the Domain Name System (DNS) [2]
are two important examples of systems that use caching for
these reasons, and they derive significant benefits from doing
so.

Caching mechanisms in Internet systems are designed to
scale to large numbers of caches. A common way of achieving
scalable caching is to use time-to-live (TTL)-based caches,
which work as follows: for any data item D, the site that
maintains the current, authoritative version of D is called the
origin. If the origin receives a request for D at time t it
returns the current version along with a TTL period, T . The
requestor, which is a cache used by one or more clients or
client caches, is allowed to cache D. Any subsequent requests
at the requestor in the time interval (t, t + T) can instead be
served from the requestor’s cache without contacting the origin
site. However, the first request after time t+T must go to the
origin site, since the TTL has expired for D in the requestor’s
cache.

TTL-based caching scales well because origin sites neither
have to maintain any per-requestor (i.e., per-cache) state, nor
even have to know of the existence of caches. This also enables
“opportunistic caching” by caches across the Internet, since

they don’t need to inform the origin that they are caching data.
The trade-off in TTL-based caching is between consistency
and scalability—because the origin does not invalidate cached
content, clients may occasionally receive outdated data until
the previously advertised TTL expires.

A significant number of cache misses in Internet systems
that employ TTL-based caching occur because of TTL expi-
ration. For DNS caches, essentially all misses occur because
of TTL expiration or first access to a domain name. Capacity
misses are negligible, as storage is ample given the size and
number of DNS cache entries. This is also true for Web data
that change frequently with time (e.g., news headlines, sports
scores, tickers, etc.). We only consider read-only data as this
reflects common workload patterns typical in Web and DNS
accesses. Note that these caches don’t exhibit “conflict” misses
caused by multiple concurrent writes.

In previous work [1], we conducted an extensive trace-
driven study of DNS cache performance driven by large client-
side TCP and DNS traces. We found a surprising result: that
the cache hit rate was over 80% for a TTL of 15 minutes
and that the hit rate improved by only 17% (to 97%) when
the TTL was 24 hours as opposed to 15 minutes! The small
difference in hit rates for the large increase in TTL is rather
counterintuitive since it seems reasonable to expect many
more accesses to any given origin site in 24 hours than in
15 minutes, and since (only) the first access after the TTL
expires actually causes a cache miss. Other researchers have
similarly observed dramatically diminishing marginal returns
from increasing TTLs in a separate but related domain: Web
caching [3], [4], [5], [6], [7].

We speculated that this incremental improvement in cache
hit rates reported in [1] had to do with the nature of accesses to
the origin site from the clients sharing a cache. Motivated by
this observation, we seek to answer the following fundamental
question in this paper: How does the cache hit rate for TTL-
based Internet caches depend on the statistics of data accesses
and TTL of data items?

Somewhat surprisingly, we find little previous research
(except recent work by Cohen et al. [6], [7], discussed in
Section II) devoted to answering this question, despite its
importance in understanding how well Web and DNS caches
work. Building on the observation that the first access after
TTL expiration incurs a cache miss, while all subsequent
accesses until the next expirations hit in the cache, we develop
an analytic model for the cache hit rate based on a renewal
process that answers the above question. We then describe

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

a computationally tractable way to come up with numerical
solutions for the model and show that our model predicts hit
rates remarkably well. An important component of our model
is the inter-arrival distribution of accesses to the cache for
a given, arbitrary data item; we find that among the several
models we considered, a Pareto distribution with a point mass
is a good fit for DNS queries.

In Section II we survey related work. Section III describes
our analytic model and Section IV presents numerical simu-
lations that show that our model predicts observed cache hit
rates for three different datasets accurately. We conclude with
a summary of our findings and suggestions for future work in
Section V.

II. RELATED WORK

A. Modeling Cache Hit Rates

There has been a good deal of research attention on
determining cache hit rates as a function of various cache
replacement policies, such as least recently used (LRU) and
first in first out (FIFO) [8], [9].

In contrast, there has been relatively little work on hit rates
as a function of the time-to-live period and the distribution
of request arrival times. Focusing on the impact of aging on
caching performance, Cohen and Kaplan developed a simple
cache hit model for three specific inter-request time distribu-
tions — fixed-frequency, Poisson, and Pareto, and derived the
miss rates under different cache configurations. In their work,
a cache may retrieve a data item from other caches as well as
from the origin site. The age of a cached copy is defined as the
elapsed time since fetched from the origin and it is deducted
from its origin TTL when the cached copy is passed over to
other caches [6].

In the subsequent work [7], Cohen et al. further explored
the aging issue and demonstrated the relation of the miss rate
at a client cache to the distribution of TTL across data sources.
They presented analytic results of the miss rate for a Poisson
and fixed-frequency inter-request time distribution.

We do not consider a multi-level cache structure in this
paper. Rather we consider a single cache in which a data
item is always fetched from the origin, and focus on analytic
models. In comparison with Cohen et al., our model provides
a cache hit probability for any arbitrary inter-request time
distribution.

B. Modeling TCP Connection Inter-Arrival Times

In this study, we infer the presence of a DNS lookup from
the presence of the opening of a TCP connection. This ap-
proach assumes that the vast majority of connections are made
by machine name, and thus the opening of each connection is
preceded by a DNS lookup. This approach was first introduced
in [1] in trace-driven simulations of DNS cache behavior based
on the observation that TCP was a major driving application
of DNS lookups. This method allows us to estimate DNS
cache hit rate when varying the TTL and the degree of cache
sharing using empirical distributions for the inter-query times.
The possible causes of errors that may result from using

TCP connections instead of real DNS lookup traces are also
addressed in [1]. In the same paper, the authors made an initial
attempt to explain an asymptotic behavior of DNS hit rate with
a renewal assumption and showed that a heavy-tailed Pareto
distribution closely fitted the distribution for TCP connection
inter-arrivals. Extending that work, we include a Weibull
distribution to seek a good fit, as suggested by Feldmann [10].
Feldmann studied the TCP connection arrival process for an
aggregation across all destinations and calculated maximum
likelihood estimators for the parameters of fitted distributions.
In contrast, we focus on a TCP connection arrival process
for a given, arbitrary destination. We use the fminsearch
function in matlab [11], which finds a good fit using an
unconstrained nonlinear optimization [12].

III. ANALYTIC MODELS

In this section we present a simple analytic model for the
cache query process in order to obtain a closed-form formula
for the hit rate as a function of the TTL period. We then show
how the equation can be transformed to use the available trace
data. The resulting formula is then used to compute the hit rate
from those traces and from a model of request arrivals derived
from trace data. This section concludes with a discussion of
the numerical computation of the hit rate from the trace-driven
simulations.

A. Cache Assumptions

We develop a model for the cache hit rates that uses time-
to-live (TTL) to control consistency as discussed in Section I.
Specifically, we assume that for a given data item, the TTL
value is always the same independent of where and when the
data item is fetched by the cache. In other words, our model
doesn’t apply to a cache in which the TTL is dynamically
assigned to a data item and hence could have a different value
at different instances when the data item is fetched by the
cache. However, if the TTL varies over some range, our model
provides an upper bound on the cache hit rate, assuming the
maximum value of the TTL is used. Our model also assumes
that data items are only purged from the cache after the TTL
expires.

B. Renewal Model for Query Process

The model considers a given, arbitrary data item (e.g., a
DNS name or a Web object) and the sequence of queries to a
cache for that data item. We make the simplifying assumption
that the sequence of inter-arrival times of queries for the
given data item can be modeled as a sequence of independent
and identically distributed (i.i.d.) random variables. The i.i.d.
assumption is equivalent to assuming that the inter-query
times are a renewal process (i.i.d. assumption and renewal
assumption may be used interchangeably herein). Reality is
more complicated. One might expect that the process of
inter-query times is bursty, and has positive autocorrelation.
Thus, heuristically one would expect that the true hit rate
should be higher than that predicted by a model based on
an i.i.d. assumption. That is, one would expect that the i.i.d.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

assumption is conservative, possibly very conservative, in
predicting the hit rate. However, we will see in Section IV-
C, that the resulting model predicts the hit rate quite well,
despite of the simplification. In particular, Paxson and Floyd
pointed out that i.i.d. Pareto interarrivals were useful as
approximations to particular finite processes arising in wide-
area network traffic [13]. Feldmann also observed that the i.i.d.
Weibull model captured well the burstiness of Web connection
interarrivals [10]. Both cases show that the i.i.d. assumption
for the inter-query times closely approximates the underlying
query arrival process of Internet caches, even if it is not
statistically exact.

Let Xi be the time interval between the i − 1th query
for the given data item and the ith query. Assume Xi is
a proper random variable: Xi has a distribution function
F (x) ≡ Pr(Xi ≤ x), where limx→∞ F (x) = 1 (as opposed
to a value less than 1). Let time t = 0 be chosen at the arrival
of a query to the cache for which the data item is not cached,
or the TTL has expired (i.e. the time of a cache miss).

X0 = 0 and Xi’s are proper, non-negative, i.i.d. random
variables, Xi may have infinite mean.

Let N(t) equal the number of queries for the given data
item in the interval (0, t]. N(t) is called the renewal counting
process. Note that the event at t = 0 is excluded. Let Sn =
X1 + X2 + · · · + Xn (S0 = 0), and

Pr(Sn ≤ t) = Pr(X1 + X2 + · · · + Xn ≤ t)
= F (n)(t), (1)

where F (n)(t) denotes the nth-fold convolution of the distri-
bution function F (x) with itself.

Let the value of the time-to-live (TTL) parameter be T .
Key observation: The renewal counting process evaluated

at time equal to the TTL, N(t) |t=T , models the number of
cache hits per cache miss, for the given data item.

Figure 1 illustrates the idea. At time t = 0, there is a cache
miss. Subsequently, three queries occur, at times S1, S2, S3,
before the TTL expires at time t = T . These three queries are
cache hits. The subsequent, fourth query at time S4 occurs
after t = T and is a cache miss. Thus in Figure 1, N(T) = 3
and the number of cache hits per miss is 3. Note that one could
reset the time origin to S4 and the resulting process would be
stochastically equivalent to the first.

X1 X3X2 X4

MM H H H

S2 S3 T0 S1 S4 t

N(T) = 3

Fig. 1. Time line diagram of queries to a given data item, and associated
model random variables.

In summary, using a renewal assumption, we obtain a
renewal counting process, which when evaluated over the time-
to-live models the number of cache hits per miss. This random
variable can be used to compute other quantities of interest,
such as hit and miss rates.

Selection of inter-query time distribution: Given the
renewal assumption, the remaining free attribute of the model
is the distribution of the inter-query time, F (x). One natural
choice is the empirical distribution obtained from the collected
data. As the model is based on the viewpoint of picking a
given, randomly selected data item, conceptually, one com-
putes the empirical distribution for each data item of interest
(say each of the data items in the data set) and then takes a
weighted average of the distributions, where the weights are
the fraction of queries for a given data item. An equivalent and
more straightforward, calculation is to compute the relative
frequency of the inter-query times for all of the data items
of interest. Another natural choice for the distribution is an
analytic one, such as Pareto or Weibull. Section IV considers
both empirical and analytic distributions.

C. Formula for Hit and Miss Rates

In this section we derive an expression for the long-term
hit and miss rates as a function of the TTL, T . Define a cycle
as the sequence of a cache miss followed by cache hits (if
any) before the TTL, T , expires, for a given data item. The
cycle starts at the cache miss. The length of a cycle is defined
as the time interval from the start of the cycle until the start
of the next cycle. Figure 1 illustrates a cycle in which there
are three cache hits, and whose length is S4. Over the time
interval (0, u], one can calculate the hit rate, H(u : T) as
the summation of the number of hits in each cycle divided by
that of the number of queries, for a given data item. Let H(T)
denote the limiting hit rate as u → ∞ and given the TTL is
T . The limiting miss rate, denoted M(T), is analogous, where
“cache hit” is replaced with “cache miss.”

Theorem 1: If the inter-query times Xi’s to a given data
item are proper, non-negative, independent and identically
distributed random variables, whose mean may be infinite, then

H(T) =
E[N(T)]

E[N(T)] + 1
and

M(T) =
1

E[N(T)] + 1
with probability one. (2)

Remark: For any finite time u, the hit and miss rates have
a complicated distribution. However, due to the strong law
of large numbers, in the limit as u → ∞, the distribution
simplifies to a single point mass.

Equation (2) is heuristically appealing: the hit rate equals the
mean number of hits per miss divided by the same quantity
plus the one cache miss. Equivalently, if one thinks of an
episode, or a cycle, then Equation (2) says that the hit rate
equals the mean number of hits in a cycle divided by the
mean number of queries (one miss plus hits).

The proof of the theorem is standard, with a few subtle
points, and is given in the appendix.

D. Calculation of Hit Rates

The following two sections show how to calculate the hit
rate in the renewal model and the trace-driven simulation,
respectively. The equations derived herein are used to compute
the numerical results in Section IV-C.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

1) Calculation of Hit Rate in Renewal Model: The com-
putation of the hit rate over the interval (0, T] in the renewal
model, Equation (2), requires the computation of the mean
number of queries, E[N(T)]. The expectation of the renewal
counting process is a common entity of interest in renewal
theory and is called the renewal function: m(t) ≡ E[N(t)].

m(t) can be expressed as

m(t) =
∞∑

n=0

F (n)(t), t ≥ 0

As a result, the hit rate, H(T) from Equation (2), can be
written as a function of F (n)(t):

H(T) =
∑∞

n=0 Fn(T)∑∞
n=0 Fn(T) + 1

(3)

Although Equation (3) is of conceptual interest as it expresses
the hit rate in terms of the inter-arrival distribution, F (x), it
is not a convenient form for numerical computation.

The renewal function, m(t), satisfies the renewal equation:

m(t) = F (t) +
∫ t

0
m(t − x)dF (x) (4)

Discretizing Equation (4) yields a numerically convenient
iteration for m(t); see [14] for details.

2) Calculation of Hit Rate in a Trace-Driven Simulation:
In a trace-driven simulation, the computation of the hit rate is
straightforward: simply count the number of queries and the
number that are cache hits. However, this requires repeating
the counting process for all data items in the trace, which is
not computationally efficient, especially when it takes a long
time to scan through a data trace. To avoid this, one can also
compute the hit rate in a way that mirrors the renewal model
and provides sample path realizations for the entities that the
stochastic model attempts to describe. We describe this latter
calculation in this section.

With the same definition of cycle in the Section III-C, let
C be the number of such cycles in the simulation run1. Every
query is in exactly one of these cycles.

Let fn be the number of cycles in the simulation run in
which there were n cache hits (n = 0, 1, 2, ...). Since every
cycle contains one cache miss, fn also equals the number of
cycles in the simulation run in which there were n+1 queries.
Thus, the total number of cache hits in the simulation can be
expressed as

∑∞
n=0 n·fn and the total number of cache queries

(hits + misses) can be expressed as
∑∞

n=0(n + 1) · fn.
Note that there is an edge effect at the end of the simulation:

multiple cycles are likely to be in progress. One could view
this as negligible noise if the simulation runs over a period
of time much longer than the TTLs. Alternatively, one could
omit the in-progress cycles at the end of the simulation from
the counters, fns and C.

The hit rate is defined to be the number of cache hits divided
by the number of cache queries in the simulation run. So, the

1Note at a given point in time, multiple cycles can be in progress

hit rate can be expressed as:

H =
∑∞

n=0 n · fn∑∞
n=0(n + 1) · fn

(5)

From the definitions,

fn

C
= fraction of cycles in which there are n

cache hits

= fraction of cycles in which there are

n + 1 queries
∞∑

n=0

fn

C
= 1.

The above quantities provide sample path estimates for the
modeled renewal counting process, where we evaluate N(t)
at t = T . Recall that N(T) is a random variable representing
the number of cache hits in a randomly chosen cycle for a
random data item, given the TTL is T . Based on the trace-
driven simulation:

Pr(N(T) = n) = fn

C

The sample mean of N(T), denoted N(T), is

N(T) =
∞∑

n=0

n · fn

C
. (6)

The hit rate, Equation (5), can be expressed in terms of
N(T). Dividing the numerator and denominator of (5) by C
and substituting in (6) yields:

H =
∑∞

n=0 n · fn

C∑∞
n=0

(
n · fn

C + fn

C

) =
N(T)

N(T) + 1
(7)

In summary, for computing the hit rate in the trace-driven
simulation one can directly count the number of queries and
the number of cache hits. A numerically equivalent calculation
is to use Equation (5), which in turn is equivalent to (7).
None of these calculations makes any i.i.d. assumptions about
random variables.

One can then compare these results with a calculation
that does make the i.i.d. assumption: calculate the empirical
distribution for the inter-query time F (x) and apply the
iteration of Equation (4) and substitute into Equation (2). One
can also use Equations (4) and (2) to compute the hit rate
for candidate analytic inter-query time distributions. The next
section discusses these calculations.

IV. NUMERICAL RESULTS

The previous section described an analytic model of the
hit rates for TTL-based Internet caches. This section begins
with a discussion on the analytic models of a TCP connection
arrival process which generates DNS queries, thus providing
a useful estimator for F (x) in Section III-B. Using DNS as
an example system, we then present the hit rates calculated in
three different ways: using trace-driven simulation, using the
renewal assumption with the empirical distribution of F (x)

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

obtained from the data set, and using the renewal assumption
with an analytic distribution. Finally, we evaluate our analytic
model developed in Section III by comparing the above
hit rates and exploring the gap resulting from the renewal
assumption and an approximate model of F (x).

A. The Data

We use three separate traces collected at the border gateway
of MIT’s Laboratory for Computer Science (LCS) and Arti-
ficial Intelligence Laboratory (AI) and at a link that connects
Korea Advanced Institute of Science and Technology (KAIST)
to the rest of the Internet. The first trace, mit-jan00 was
collected from 3 January to 10 January 2000; the second,
mit-dec00 was collected from 4 December to 11 December
2000. Both were collected at the same point in MIT. The third
set, kaist-may01 was collected at KAIST from 18 May to
24 May 2001. Each data trace recorded over 3 million TCP
outgoing connections generated from over 900 clients for over
30 thousand different destinations. A detailed description of
the traces is available in [1].

With the same data sets, Jung et al. [1] estimated the DNS
cache hit rates inside the traced networks by trace-driven
simulations. Assuming that TCP was a major application that
drove DNS lookup sequences, they used TCP connections to
model cache references, and conducted simulations showing
the impact of a time-to-live parameter on the DNS cache
hit rate. In this section, we evaluate our renewal model by
calculating a hit rate using the methodology discussed in
Section III-D.1 and compare it with the one from the trace-
driven simulations where the hit rate is simply the number of
cache hits divided by the number of queries. Computing the
hit rate via Equations (4) and (2) requires the inter-query time
distribution, F (x), which can be obtained either empirically
or analytically from a given data trace.

To deduce the distribution of the inter-query time at a cache
from the real traffic, we calculate the time difference between
two consecutive connection arrivals for a given destination IP
address, denoted as x, and count the frequency of x across
all pairs of such occurrences. For all three traces, x spans 9
orders of magnitude, ranging from 10−3 to 106 seconds. It
is also noticeable that there is a jump at time 1 ms which
suggests that there are a number of connections back-to-back
in very close succession.

Table I lists the statistics of each data set including the
median, the mean, E[x], the 95th-percentile, and the standard
deviation, σx. Due to a heavy tail, E[x] and σx are skewed by
large values. For instance, E[x] is more than 400 times larger
than the median. To reduce the scale, we transform data using a
natural log, and the corresponding mean, E[ln x] and standard
deviation, σln x, are listed in Table I.2

B. Analytic Models of TCP Connection Inter-start Time

In this section we derive analytic models describing the
distributions for TCP connection inter-start time for three data

2x is measured in a granularity of millisecond and the smallest value is 1
(ms) for the log transformation.

TABLE I

STATISTICS FOR TCP CONNECTION INTER-START TIMES FOR A GIVEN

DESTINATION

mit- mit- kaist-
jan00 dec00 may01

Median 4 (sec) 7 (sec) 1 (sec)
E[x] 1977 (sec) 2814 (sec) 325 (sec)
95th-
percentile

3913 (sec) 5932 (sec) 173 (sec)

σx 14348 (sec) 19587 (sec) 5024 (sec)
E[ln x] 9.0 (msec) 9.1 (msec) 6.7 (msec)
σln x 3.9 (msec) 3.8 (msec) 3.3 (msec)

sets, which is a good approximation for and can substitute
for the analytic inter-query time distribution, F (x), defined in
Section III-B.

A number of well-known probability distributions were
considered as candidates for the distribution function F (x) for
each data trace, including an exponential, a Normal, a Pareto,
a Weibull, a log Normal, a log Pareto, a Pareto with a point
mass, and a Weibull with a point mass. For the sake of brevity,
we report the results for the three best performing choices — a
Weibull, a Pareto, and a Pareto distribution with a point mass,
all of which capture a heavy tail feature of the TCP connection
inter-start time distribution.

Parameter estimation is done with matlab using an un-
constrained nonlinear optimization [11]. Figure 2 illustrates
the fitted distributions and estimated parameters along with
the empirical cumulative distribution, shown as square dots.

The fitted Weibull, W (x), captures a spike at t = 0.001
(sec) while the fitted Pareto, P (x), fits well starting from
t = 0.1 (sec). The fitted Pareto, however, estimates a heavy tail
better than the Weibull, whose distribution has a decreasing ex-
ponential term. As a result, the Weibull distribution approaches
1 faster than the empirical distribution. With a point mass at
t = 0.001 (sec), the second fitted Pareto, P̃ (x), results in
a better fit both for the beginning and the tail as shown in
Figure 2.

This observation can be confirmed using the discrepancy
measure, λ̂2 [15] [16]. λ̂2 is a modified chi-squared test that
enables us to compare discrepancies for different values of the
number of bins. Paxson [16] uses the result of Scott [17] in
modeling wide-area connection inter-arrival. With fixed-sized
bins the mean-square error is minimized with a bin width given
by w = 3.49σxn−1/3, where n is the number of samples. Both
n and the corresponding w are listed in Table II.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1 10 100 1000 100001000001e+06

C
D

F

Interarrival time (sec)

mit-jan00
Weibull
Pareto

Pareto w/ pm

(a) mit-jan00 (Weibull: d = 39227, c =
0.27; Pareto: a = 0.23, k = 223; Pareto
w/ pm: a = 0.24, k = 274, w = 0.023)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1 10 100 1000 100001000001e+06

C
D

F

Interarrival time (sec)

mit-dec00
Weibull
Pareto

Pareto w/ pm

(b) mit-dec00 (Weibull: d = 36306, c =
0.31; Pareto: a = 0.28, k = 540; Pareto
w/ pm: a = 0.29, k = 735, w = 0.033)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1 10 100 1000 100001000001e+06

C
D

F

Interarrival time (sec)

kaist-may01
Weibull
Pareto

Pareto w/ pm

(c) kaist-may01 (Weibull: d = 2729, c =
0.36; Pareto: a = 0.34, k = 92; Pareto
w/ pm: a = 0.37, k = 153, w = 0.056)

Fig. 2. Fitted Weibull W (x) = (1 − e−
x
d

c
), Pareto P (x) =(

1 −
(

k
x+k

)a)
, and Pareto distribution with a point mass P̃ (x) = w +

(1 − w) ×
(
1 −

(
k

x+k

)a)
for TCP connections inter-arrivals

TABLE II

BIN-WIDTH w TO MINIMIZE ERROR IN APPROXIMATING A DISTRIBUTION

USING FIXED-SIZED BINS

mit- mit- kaist-
jan00 dec00 may01

n 3571746 4483468 6304553
w 0.089 0.080 0.062

Table III shows the goodness-of-fits for three different
fitted distributions with fixed-size bins where a bin size is
determined as shown in Table II. Lower values indicate a better
fit.3 For all data sets, the fitted Pareto with a point mass yields
a better match to the empirical distribution than the other two
distributions.

Complementing the plots of the distribution functions and
the numerical goodness-of-fit results, Figure 3 provides a
visual comparison via a histogram of the data sets along
with a histogram calculated from the three fitted analytic
distributions. First, we transform the x value into a log scale
and count the number of samples falling into each range of size
w from the empirical data. For an interval (x1, x2], a histogram
is calculated using the cumulative distribution’s values at x2
and x1. Frequent spikes and the shape of humps existing in
the empirical data make it hard to yield a good fit over the
entire range.

TABLE III

INTERVAL [(λ̂2 − σλ), (λ̂2 + σλ)] FOR THE FITTED MODELS WHERE w IS

THE WIDTH OF THE BINS

mit- mit- kaist-
jan00 dec00 may01

Weibull 0.945 - 0.952 33.142 - 364569724 -
34.674 393066504

Pareto 1.088 - 1.096 2.968 - 2.991 1.262 - 1.269
Pareto
w/ point 0.689 - 0.693 1.283 - 1.295 0.790 - 0.796
mass

TABLE IV

INTERVAL [(λ̂2 − σλ), (λ̂2 + σλ)] FOR THE FITTED MODELS WHERE BIN

SIZE IS DETERMINED BY FIXED Y INTERVAL (WIDTH = 0.005)

mit- mit- kaist-
jan00 dec00 may01

Weibull 0.742 - 0.746 6.250 - 6.366 14248- 14568
Pareto 0.928 - 0.936 2.396 - 2.418 0.842 - 0.847
Pareto
w/ point 0.498 - 0.494 0.326 - 0.328 0.162 - 0.163
mass

3We use <σ operator as described in [16]

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

0

0.01

0.02

0.03

0.04

0.05

0.06

0 50 100 150 200 250

P
ro

ba
bi

lit
y

Bin

empirical
Pareto

Pareto w/ pm

Weibull

empirical
Pareto

Pareto w/ pm
Weibull

(a) mit-jan00

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 50 100 150 200 250 300

P
ro

ba
bi

lit
y

Bin

empirical

Pareto

Pareto w/ pm

Weibull

empirical
Pareto

Pareto w/ pm
Weibull

(b) mit-dec00

0

0.01

0.02

0.03

0.04

0.05

0.06

0 50 100 150 200 250 300 350

P
ro

ba
bi

lit
y

Bin

empirical

Pareto

Pareto w/ pm

Weibull

empirical
Pareto

Pareto w/ pm
Weibull

(c) kaist-may01

Fig. 3. A histogram of the data sets vs. a histogram of the numerical
goodness-of-fit results (width = w)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 20 40 60 80 100 120 140 160

P
ro

ba
bi

lit
y

Bin

empirical

Pareto

Pareto w/ pm
Weibull

empirical
Pareto

Pareto w/ pm
Weibull

(a) mit-jan00

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 20 40 60 80 100 120 140 160

P
ro

ba
bi

lit
y

Bin

empirical

Pareto

Pareto w/ pm

Weibull

empirical
Pareto

Pareto w/ pm
Weibull

(b) mit-dec00

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 20 40 60 80 100 120 140

P
ro

ba
bi

lit
y

Bin

empirical

Pareto

Pareto w/ pm

Weibull

empirical
Pareto

Pareto w/ pm
Weibull

(c) kaist-may01

Fig. 4. A histogram of the data sets vs. a histogram of the numerical
goodness-of-fit results (fixed y width = 0.005). Note that the number of bin
with non-zero sample points is less than 1/0.005 = 200 for all three cases.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

In particular, as the fitted Weibull distribution approaches
1 faster than the empirical distribution, for the larger values
of x the difference in the cumulative distribution’s values is
small; and consequently a very small denominator of the λ̂2

results in a huge discrepancy for kaist-may01 trace.
Instead of dividing the x range into equal-sized bins, we

use an alternate approach that uses an equal-sized bin over
the cumulative distribution (CDF) range. From the empirical
distribution, we seek the largest CDF value of each bin and
keep track of the corresponding x values.

Note that at jumps in the empirical distribution, a bin may
have no sample points, and therefore can’t contribute the
associated x value; in this case, the bin is merged with the
next adjacent one until there appears a bin with some sample
points. The histogram, is then the difference of the CDF values
calculated from the two adjacent x values picked from the
previous scanning process.

Figure 4 compares the histograms of the empirical and
analytic distributions when the CDF range is partitioned
into 200 equal-sized bins. With bins having roughly equal
probability mass, the goodness-of-fit gets smaller for all cases
(See Table III and Table IV for comparison). Figure 4 also
confirms that the fitted Pareto distribution with a point mass
yields the best fit of all three distributions. However, note that
the parameters of the fitted Pareto differ markedly for the
different data sets (Figure 2). Thus, there is no Pareto with
fixed, selected parameters that uniformly fits well across our
data sets.

C. Comparison of Hit Rates

Figure 5 compares cache hit rates as a function of TTL
obtained by three different methodologies. A solid line plots
the hit rate, Hsim, from trace-driven simulations, and Hsim

is calculated exactly in the same way described in [1]. A
dotted line with a square represents the hit rate, Hemp, in
Equation (2) calculated using the empirical distribution of the
inter-query time, F (x), from each trace. Lastly, a dotted line
shows the hit rate, Hana in Equation (2) calculated using the
fitted Pareto distribution with a point mass, which describes
an inter-query process with the smallest discrepancy of three
candidate models, as shown in Tables III and IV.

Comparing Hsim and Hemp, we found that the renewal
model worked surprisingly well. The renewal model closely
follows the simulation results and the difference is less than
2% for TTL values up to 86400 (sec). This suggests the
inaccuracy of the i.i.d. simplifying assumption is remarkably
small with regard to the DNS query process itself. The
following example shows how the renewal model explains the
empirical findings observed in [1].

Note that for a TTL of 15 minutes (900 seconds), the hit
rate is relatively high — over 80% for mit-jan00 and mit-
dec00, and over 94% for kaist-may01. This leaves room
for only modest increase in the hit rate for larger TTLs. For
example, for a TTL of 24 hours (86400 seconds), the hit rates
are 97% for mit-jan00, 94% for mit-dec00, 98% for
kaist-may01, respectively.

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000 35000 40000

H
it

ra
te

 (
%

)

TTL (sec)

trace-driven simulation, H_sim

renewal assumption / empirical distribution, H_emp

renewal assumption / analytic distribution, H_ana

(a) mit-jan00

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000 35000 40000

H
it

ra
te

 (
%

)

TTL (sec)

trace-driven simulation, H_sim

renewal assumption / empirical distribution, H_emp

renewal assumption / analytic distribution, H_ana

(b) mit-dec00

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000 35000 40000

H
it

ra
te

 (
%

)

TTL (sec)

trace-driven simulation, H_sim

renewal assumption / empirical distribution, H_emp

renewal assumption / analytic distribution, H_ana

(c) kaist-may01

Fig. 5. Comparing DNS hit rates obtained by three different methods

From Equation (2), the hit rate will be 80% when the mean

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

number of cache hits per miss, E[N(T)], is 4. A nominal
sample path would be 4 inter-query times before the TTL
expires. However, note that the mean for just one inter-query
time is greater than 15 minutes, for the MIT traces (Table I).
It is the high variability of the inter-query times that enables
E[N(T)] to be as big as 4 (and the hit rate as high at 80%).

If, in contrast, the inter-query times were rather regular
(they would be deterministic in the limit), but, had the same
mean, then for T = 15 minutes, E[N(T)] would be less
than 1, and the corresponding hit rate would be less than
50%, and decreasing to 0% for the case of deterministic
inter-query times. For instance, if the inter-query times were
exponentially distributed (i.e., a Poisson process) with mean
of 2,000 seconds (corresponding to the MIT traces), then for
a TTL of 15 minutes, E[N(T)] = 900/2000 = 0.45, and the
hit rate would be only 31%.

However, when an approximate analytic model of F (x)
replaces the empirical distribution of the inter-query time, the
resulting hit rate, Hana, is less accurate. The inaccuracies are
due to the complicated structure of the real inter-query time
distribution, which cannot be described by the fitted model
(Figures 3 and 4). But, for all three data sets, Hana by the
fitted Pareto with a point mass predicts the hit rate better than
the two other distributions discussed in Section IV-B.

V. CONCLUSION

This paper has presented analytic models for the hit rate
for TTL-based Internet caches in terms of the statistics of
data accesses and the TTL value set by the data origin. We
developed a closed-form formula for the hit rate based on
a renewal assumption wherein the sequence of inter-arrival
times of the queries for a given data item can be modeled as
a sequence of independent and identically distributed random
variables.

Analyzing extensive DNS traces, we find that our model
predicts observed statistics remarkably well. In particular, it’s
able to adequately explain the somewhat surprising empirical
finding of Jung et al. [1] that for DNS accesses, the cache hit
rate rapidly increases as a function of TTL, quickly reaches
over 80% for the 15 minute TTL, leaving room for only a
modest increase in the hit rate for larger TTLs. The prediction
is best when we use the observed, empirical distribution of
the inter-arrival times of DNS queries. We also find that if
the inter-arrival times are modeled according to an analytic
distribution, a Pareto distribution is a better fit than a Weibull
distribution.

In this paper, we considered a single cache shared by entire
clients but our model can be easily extended to the multi-level
cache structure in which the TTL of a data item is drawn from
a certain distribution. In ongoing work, we are investigating
the renewal-model prediction of hit rates varying the degree
of client sharing as opposed to all sharing a cache. Also, in
light of the good fit of the hit rate function, we are examining
the inaccuracy of the i.i.d. simplifying assumption with regard
to the query process itself.

ACKNOWLEDGMENTS

The authors thank Nick Feamster, Stuart Schechter, Michael
Walfish and Emre Koksal for their useful comments that
improved the paper.

REFERENCES

[1] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “DNS Performance and
the Effectiveness of Caching,” IEEE/ACM Transactions on Networking,
Oct. 2002.

[2] P. Mockapetris and K. Dunlap, “Development of the Domain Name
System,” in Proc. ACM SIGCOMM, Stanford, CA, 1988, pp. 123–133.

[3] S. Williams, M. Abrams, C. R. Standridge, G. Abdulla, and
E. A. Fox, “Removal Policies in Network Caches for World-
Wide Web Documents,” in Procedings of the ACM SIGCOMM
’96 Conference, Stanford University, CA, 1996. [Online]. Available:
citeseer.nj.nec.com/williams96removal.html

[4] M. Arlitt, R. Friedrich, and T. Jin, “Performance Evaluation of Web
Proxy Cache Replacement Policies,” in Performance Tools ’98, 1998.
[Online]. Available: citeseer.nj.nec.com/arlitt98performance.html

[5] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web Caching
and Zipf-like Distributions: Evidence and Implications,” in Proceedings
of the INFOCOM ’99 conference, Mar. 1999. [Online]. Available:
http://www.cs.wisc.edu/˜cao/papers/zipf-like.ps.gz

[6] E. Cohen and H. Kaplan, “Aging Through Cascaded Caches: Perfor-
mance Issues in the Distribution of Web Content,” in Proceedings of
the ACM SIGCOMM 2001 Conference (SIGCOMM-01), ser. Computer
Communication Review, R. Guerin, Ed., vol. 31, 4. New York: ACM
Press, Aug. 27–31 2001, pp. 41–54.

[7] E. Cohen, E. Halperin, and H. Kaplan, “Performance Aspects of
Distributed Caches Using TTL-Based Consistency,” in Proceedings of
ICALP’01 conference, 2001. [Online]. Available: citeseer.nj.nec.com/
cohen00performance.html

[8] W. King, “Analysis of Demand Paging Algorithms,” Information Pro-
cessing, pp. 485–490, 1971.

[9] A. Dan and D. Towsley, “An Approximate Analysis of the LRU
and FIFO Buffer Replacement Schemes,” in Proceedings of the ACM
SIGMETRICS, Denver, CO, 1990.

[10] A. Feldmann, “Characteristics of TCP Connection Arrivals,” 1998,
technical report, AT&T Labs Research. [Online]. Available: citeseer.nj.
nec.com/feldmann98characteristics.html

[11] “fminsearch (matlab function reference),” http://www.
mathworks.com/access/helpdesk/help/techdoc/ref/
fminsearch.shtml, 2001.

[12] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright,
“Convergence properties of the Nelder-Mead simplex algorithm in low
dimensions,” SIAM Journal on Optimization, vol. 9, pp. 112–147, 1998.
[Online]. Available: citeseer.nj.nec.com/lagarias96convergence.html

[13] V. Paxson and S. Floyd, “Wide area traffic: the failure of
Poisson modeling,” IEEE/ACM Transactions on Networking, vol. 3,
no. 3, pp. 226–244, 1995. [Online]. Available: citeseer.nj.nec.com/
paxson95widearea.html

[14] D. Heyman and M. Sobel, Stochastic Models in Operation Research.
McGraw Hill, 1983, vol. 1.

[15] S. Pederson and M. Johnson, “Estimating Model Discrepancy,” Techno-
metrics, vol. 32, no. 3, pp. 305–314, 1990.

[16] V. Paxson, “Empirically derived analytic models of wide-area TCP
connections,” IEEE/ACM Transactions on Networking, vol. 2, no. 4,
pp. 316–336, 1994. [Online]. Available: citeseer.nj.nec.com/article/
paxson94empiricallyderived.html

[17] D. Scott, “On Optimal and Data-based Histograms,” Biometrika, vol. 66,
no. 3, pp. 605–610, 1979.

[18] S. Ross, Stochastic Processes. New York: John Wiley & Sons, 1996,
vol. 1.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

APPENDIX

This section provides a proof of the theorem in Section III-
C.

Let u = 0 be the start time of the first cycle, and index
the cycles i = 1, 2, 3, Let C(u;T) denoted the number of
cycles to have completed over the interval (0, u], given that
the TTL is T . Since the inter-query times, Xi’s, are assumed
to be a proper random variable, and the property of “proper”
is preserved under convolution, the inter-start times of cycles
are a proper random variable. Hence the associated renewal
counting process, C(u;T) for any finite T has the limit [18]:

As u → ∞, C(u : T) → ∞ with probability one. (8)

Equation (8) holds even when the mean inter-query time,
E[Xi], is infinite.

Let Ni(T) denote the number of cache hits in cycle i, given
that the TTL is T . Note that Ni(T) has the same distribution
as the number of cache hits in cycle 1, which in the notation
of the inter-query renewal process is N(t) |t=T , In particular,
the expectations are equal:

E[Ni(T)] = E[N(T)] (9)

From the definitions,

The number of queries (hits plus misses) in the cycle i

= Ni(T) + 1
The number of queries in cycles completed over (0, u]

=
C(u;T)∑

i=1

(Ni(T) + 1)

=
C(u;T)∑

i=1

Ni(T) + C(u;T)

Let

H(u;T) = hit rate for cycles completed over

the interval (0, u], given the TTL is T

M(u;T) = miss rate for cycles completed over

the interval (0, u], given the TTL is T

From the definitions,

H(u;T) =
∑C(u;T)

i=1 Ni(T)
∑C(u;T)

i=1 Ni(T) + C(u;T)
(10)

M(u;T) =
C(u;T)

∑C(u;T)
i=1 Ni(T) + C(u;T)

(11)

H(u;T) + M(u;T) = 1 (12)

Let

H(T) = limiting hit rate, lim
u→∞

H(u;T)

M(T) = limiting miss rate, lim
u→∞

M(u;T)

From Equation (10)

H(T) ≡ lim
u→∞

H(u;T) (13)

= lim
u→∞

∑C(u;T)
i=1 Ni(T)

∑C(u;T)
i=1 Ni(T) + C(u;T)

= lim
u→∞

1
C(u;T)

∑C(u;T)
i=1 Ni(T)

1
C(u;T)

∑C(u;T)
i=1 Ni(T) + 1

=
E[N(T)]

E[N(T)] + 1
with probability one, (14)

where the last equality is the result reported in the theorem
and follows from applying the strong law of large numbers to
1
n

∑n
i=1 Ni(T), and recalling Equations (8) and (9) and noting

that the function f(x) ≡ x
x+1 is continuous for x > 0.

Note that for any finite u, H(u;T) is a random variable
(that is a function of various random variables), with a not-
easily-determined distribution, while the limit is a constant.
All probability is in a single point mass.

The derivation for the limiting miss rate M(T) is analogous.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

	INFOCOM 2003
	Return to Main Menu

