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Abstract— There has been considerable work done in the study
of Web reference streams: sequences of requests for Web objects.
In particular, many studies have looked at the locality properties
of such streams, because of the impact of locality on the design
and performance of caching and prefetching systems. However,
a general framework for understanding why reference streams
exhibit given locality properties has not yet emerged. In this paper
we take a first step in this direction. We propose a framework for
describing how reference streams are transformed as they pass
through the Internet, based on three operations: aggregation,
disaggregation, and filtering. We also propose metrics to capture
the temporal locality of reference streams in this framework. We
argue that these metrics (marginal entropy and interreference
coefficient of variation) are more natural and more useful than
previously proposed metrics for temporal locality; and we show
that these metrics provide insight into the nature of reference
stream transformations in the Web.

I. INTRODUCTION

Considerable effort has gone into the study of Web refer-
ence streams. Ever since the very first research on the Web
appeared, a major line of study has focused on the properties of
Web traces. This intense focus has been driven by the practical
importance of understanding the nature of Web workloads,
since it directly affects significant engineering and economic
activity. This research has yielded important characterizations
and insights. For example, the nature of Web request streams
has informed the development of cache replacement policies
[1], [2], inter-cache coordination protocols [3], and prefetching
algorithms [4]. It has even become possible to contemplate the
cost-optimal design of Web caches [5].

Nonetheless, the vast majority of the work so far on Web
reference streams has dealt with individual streams in isola-
tion, overlooking the fact that the Web is a system of clients,
intermediaries, and servers, each of which may simultaneously
emit or consume Web reference streams.

In this work we seek to advance this view of the Web
as a system of agents emitting and consuming reference
streams, moving to the next level of Web characterization
and system design. We propose a shift in perspective, taking
a stream-centric view of the Web which is long overdue.
While performance engineering of individual agents (browsers,
caches, servers) is fairly mature, an understanding of how to
engineer collections of Web agents is almost nonexistent. Typ-
ical questions without good answers are: How should cache
hierarchies be organized (how deep, in what relationship, and

with how much local storage)? How does the choice of cache
replacement policy depend on whether the cache is near to
clients, near to servers, or distant from both? Even more
fundamentally, what properties of Web reference streams are
most useful in beginning to answer these questions?

We focus on how the characteristics of Web reference
streams change as they pass through the Web, identifying three
fundamental transformations that these are subject to: aggre-
gation (merging streams), disaggregation (splitting streams),
and filtering (removing some references from a stream). We
want to develop an understanding of how each of these
transformations affects the properties of Web request streams
that are important for system design. In this paper, we focus on
temporal locality as the first and most important property that
affects the design of most Web agents. Our goal is to make
quantitative statements about how temporal locality is affected
by the processes of aggregation, disaggregation, and filtering
in the Web. Our belief is that achieving this will bring us closer
to an understanding of how to engineer entire collections of
Web agents and answer some of the questions posed above.

We realized the collection of existing metrics for Web
reference characterization was insufficient to this new task.
Previous metrics used to assess temporal locality are tuned to
the problem of studying individual agents in isolation, or are
better suited to generating representative workloads, instead
of explaining what causes the observed characteristics. In
Section II, we introduce and motivate a set of metrics that
effectively and accurately capture temporal locality, and yet
are simple enough to lend themselves to reasoning about the
three kinds of stream transformations. These metrics represent
intrinsic characteristics of the requests streams, as distinct from
those which appear due to the interaction of the stream with a
particular system (e.g., temporal locality is instrinsic, whereas
hit ratio is not). We describe our general framework for the
analysis of Web systems in Section III, and in Section IV we
show that our metrics are effective at capturing the essential
properties of temporal locality in Web reference streams.

Then in Section V we put the pieces all together. Using
a wide collection of traces collected at varying levels in the
Web system, we show how the three transformations affect
temporal locality as captured by our metrics. For example, we
show evidence that the various transformations work together
in the Web to make multilevel caching worthwhile. These
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results suggest that our framework can allow a more principled
understanding of how components of the Web interact, leading
to better insight into the entire Web as a system.

II. BACKGROUND AND RELATED WORK

The notion of temporal locality was first recognized by
Denning [6] in his definition of the working set, which is the
set of unique references contained within some fixed number
of past references. This and other early work was in the domain
of program memory references, as opposed to Web requests.
Throughout this paper we refer simply to object references in
situations where the distinction is not significant, and also use
virtual time(following [7]), meaning that time is discrete and
advances by one unit with each object reference.

Increased temporal locality generally improves cache per-
formance. A demand-driven cache is designed to store some
subset of the objects previously accessed; a good cache has
the property that the objects held in the cache have a higher
likelihood of being accessed in the near future than would a
random collection of objects. When reference streams show
temporal locality, then recency of reference is a useful metric
upon which to base cache management policies.

Despite the extensive studies of temporal locality, it can
sometimes be defined rather loosely, leading to differing
approaches in its analysis. Two competing definitions tend to
appear: (Definition 1) “An object just referenced has a high
probability of being referenced in the near future” (e.g., [8]);
and (Definition 2) “An object just referenced has an increased
probability of being referenced in the near future” (e.g., [9]).
While Definition 2 would seem to more accurately capture
the spirit of temporal locality, Definition 1 better captures the
importance of temporal locality for caching systems. For this
reason, both definitions appear in the literature and the same
term appears applied to both.

To make the distinction more precise, we will use a spe-
cific formalization for temporal locality. Consider a reference
stream over a set of objects I , with |I| = n. We will use
pi(k) to denote the probability that, following a reference
to object i, the next reference to object i occurs within k
references. We say that a particular object shows temporal
locality of reference if there exists a k > 0 such that pi(k) >
1−(1−1/n)k. That is, object i shows temporal locality if there
is some distance k over which two references to i are more
likely than if references to i were independent with probability
1/n.1

This formalization helps us see that temporal locality can
arise in two ways: First, it can exist because an object is simply
more popular than its peers, as when pi(k) > 1 − (1 − 1/n)k

for all k. Second, it can exist when an object’s references occur
in a correlated manner, as when pi(k) > 1 − (1 − 1/n)k for
only certain k.

Recently, a number of authors have focused on these two
ways in which temporal locality can arise. The separation of

1This formalizes the notion of Definition 1; in contrast, Definition 2 can
be formalized (as discussed in [9]) as the property of decreasing probability
of reference to an object with increasing time since its last reference.

temporal locality into these two effects was first suggested by
Jin and Bestavros [10] and by Mahanti, Eager, and Williamson
[9]. Jin and Bestavros termed these two effects popularity and
temporal locality, while Mahanti, Eager, and Williamson use
the term concentration instead of popularity; in this paper we
consider them to be two kinds of temporal locality which we
distinguish as popularity and correlation.

Probably the best-known characteristic of Web reference
streams is their highly skewed popularity distributions, which
are usually characterized by the term Zipf’s Law [11]–[14].
Zipf’s Law states that the popularity of the nth most popular
object is proportional to 1/n. More generally, “Zipf-like”
distributions have been found to approximate many Web
reference streams well. In such a distribution:

P [On] ∝ n−α

in which P [On] is the probability of a reference to the nth

most popular object; typically, α ≤ 1.
The practical implication of Zipf-like distributions for ref-

erence streams is that most references are concentrated among
a small fraction of all of the objects referenced. Returning to
our definition of temporal locality above, this implies that for
a small subset of objects, pi(k) � 1 − (1 − 1/n)k for all k.
That is, Zipf’s Law results in strong temporal locality because
the probability of referencing certain objects is much greater
than 1/n.

Based on the near-ubiquity of Zipf-like distributions in the
Web, many authors have used the value of α as a metric
for capturing popularity skew [10], [14], [15]. However, for
a number of reasons, we take a different approach. First, note
that what is important in terms of temporal locality is the
deviation of pi from 1/n for some values of i, which is not
directly captured by the Zipf exponent α. Rather, a direct
measure of such deviation is available: entropy. The entropy
of a random variable X taking on n possible values with
probability pi is simply:

H(X) = −
n∑

i=1

pi log2 pi. (1)

The properties of H(X) are exactly what we desire: it
measures the deviation of X’s distribution from the uniform
distribution. It takes on its maximum value (log2(n)) in the
case where all realizations of X are equally likely (i.e., pi =
1/n, i = 1, . . . , n.) It takes on its minimum value (zero) in
the case where only one observation can occur, that is, when
the outcome is deterministic.

The second reason for preferring entropy over the Zipf
exponent α is that real data often does not fit a Zipf-like
distribution perfectly. As a result, measurement of the Zipf
exponent can be subjective, as we will show in Section IV-A.
The strength of the entropy metric is that it requires no un-
derlying modeling assumption about the data, and so captures
popularity skew equally well whether the trace adheres to a
Zipf-like distribution or not.
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Having identified an appropriate metric for capturing pop-
ularity, it remains to develop a metric for the correlation
component of temporal locality.

Attempts to characterize correlation focus on the way in
which references to a given object are separated by references
to other objects. A widely used approach is the stack distance
model [16]. For any given reference to object i, the corre-
sponding stack distance is the number of unique references
since the last reference to i (the first reference to i has unde-
fined stack distance). The motivation for this metric derives
from its relationship to the behavior of a cache managed
with an LRU replacement policy, and also because it can
be directly used to generate synthetic workloads [15]. Many
studies have used stack distance to capture and characterize
temporal locality in Web request streams [9], [13], [17], [18]
and other authors have used the stack distance transformation
as a tool for cache sizing [5] and workload generation.

However, stack distance does not fit our needs because it
cannot distinguish the causes of temporal locality directly.
As already noted, the authors in [9] consider both popularity
and correlation, and capture the difference between these two
kinds of temporal locality using a modified stack distance
model. They propose that stack distance be normalized to
factor out the effects of long-term popularity, allowing it to be
characterized separately. Cherkasova and Ciardo [17] propose
a similar approach based on normalizing stack distance.

The approach we take in this paper is to characterize
correlation more directly, using a simpler and more intuitive
metric than stack distance. Our approach starts from a simpler
metric: the inter-reference distance. Instead of considering
unique intervening references between two references to object
i, we consider the total number of intervening references
including those that appear multiple times. The advantage
of this metric is that it does not intermingle the two kinds
of temporal locality in the way that stack distance does.
To see this, consider a sequence of symbols from a fixed
alphabet. If we change the popularity of a symbol by replacing
all occurrences of one symbol with another, then the stack
distance properties of all symbols are potentially affected —
even though the correlation properties of other symbols have
not changed. This is not true for the inter-reference distance
metric; it is purely a measure of correlation. A side, but
important, benefit is that inter-reference distance is much faster
and simpler to compute than stack distance.

Inter-reference distance was first used as a measure of
temporal locality in [8]. More recently, inter-reference distance
was used by Jin and Bestavros [10] as a measure of correlation;
our work follows their lead in this regard. However we add
to their approach in two ways: First, the measure of request
correlation used in [10] is the distribution of inter-reference
distance for equally popular objects, which may mix together
objects that have varying distributions of inter-request times;
we separate the inter-request distances for each object. Second,
rather than fitting a line to the slope of the distribution of inter-
request distances on log-log scale, which is fairly sensitive
to noise, we summarize it in a simpler metric: coefficient of

variation. This metric captures the essential properties of inter-
request distance, as shown in Section IV-B.

After developing these natural and precise metrics for
capturing temporal locality, we show how these metrics are
affected by the transformations on request streams that com-
monly occur in the Web: stream aggregation, disaggregation,
and filtering. The first two have not been extensively studied
before. The third transformation (the stream filtering effects
of caches) has recently received some attention. Weikle et
al. [19] introduce the view of caches as filters, and compare
properties of incoming and outgoing streams of references, in
the context of program memory references. In the context of
Web caching, Mahanti, Williamson and Eager [9] study how
temporal locality changes at different levels in the caching
hierarchy. They show that the concentration of references tends
to diminish, and the tail of the zipf distribution increases, as
one goes up the caching hierarchy. This effect is also noted and
characterized in [20], [21]. These papers are consistent with a
subset of our results; we put these effects (and others) into a
larger framework. For example, while [20] examines filtering
effects of caches, it does not separate the effects of filtering
on the two kinds of temporal locality, nor does it consider
transformations other than filtering.

III. A FRAMEWORK FOR ANALYZING WEB REQUEST

STREAMS

One of our main goals is to establish a framework for
analyzing the Web as a system of agents operating on streams.
Our motivation is to be able to isolate the different phenomena
that affect reference streams, so as to gain insight into the
characteristics of streams at different points in this topology.

Traffic on the Web can be seen as a sequence of requests
originated by clients that flow “upward” in some sense,
and responses to these requests that flow “downward”. The
different streams of requests, although presenting different
characteristics, all share some commonalities in the way the
requests flow and interact, dictated both by the HTTP protocol
and by the topology of the Web system.

Our abstraction views the topology of the Web system
as a graph, in which the nodes represent points where the
streams may be altered, and the edges are paths connecting
these points. Some nodes in our graph are the points at
which the application level surfaces, i.e., the endpoints of the
TCP connections through which web requests are transported.
However, nodes can also be specific portions of application
software. For example within a client browser there is a stream
of requests that is generated by user actions, which is passed
to the browser cache. The request stream that is sent into the
network originates from the miss stream of this cache. Thus,
the browser cache can be represented by a node that alters the
original request stream by filtering it.

The nodes in our graph are of three different types, depend-
ing on what their effect is on the request streams: Aggregators
(A), Disaggregators (D) and Filters (F); different components
of the Web topology may be represented by combinations of
these three kinds of nodes. There are also endpoint nodes,
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Fig. 1. Abstractions of typical components of the Web topology in the ADF
graph. The node types are Aggregator (A), Disaggregator (D), Filter (F), and
End Nodes (dark), and correspond to points in the topology at which the Web
request streams can be altered.

which can generate and absorb requests; these are clients and
servers, respectively.

The three types of nodes correspond to three phenomena
affecting streams. As mentioned above, the request stream that
a user generates goes through a filter node (F) (the browser
cache). After this, this same request stream is split into differ-
ent TCP ‘pipes’, that go to different destinations. This can be
abstracted by a disaggregator (D) node. Disaggregation will
most commonly happen when requests are sent to different
destinations, but may be artificially induced by content. For
example, a page served by a content provider which has a
contract with a CDN may have requests directed to varying
locations. Figure 1(a) shows how a client just described might
be represented in our model.

Another important example is that of a proxy cache, which
is often located at some intermediate point of the topology,
between many clients and many servers. When requests are
received by a common cache server through different TCP
connections they are aggregated in a single stream, so that
the cache subsystem itself sees a single stream. This can
be represented by an aggregator node in our graph. This
aggregated stream is then processed by the cache, and the miss
stream that leaves the cache is the result of a filtering operation
by the cache. The next node is a disaggregator node, from
which several edges leave, headed towards different servers.
Of course, some of these may be other proxy servers, as well
as end servers or content providers. Figure 1(b) shows one
possible configuration of a proxy cache server in our graph.

A content provider, or an end point server, has similar
components. Right before the processing by the Web server,
which may even be a cluster of servers, there occurs an
aggregation operation, and several streams coming upward
are multiplexed into a single stream. Of course the details
of this aggregation would depend on factors such as load
balancing policies, which might be represented by several
independent aggregators, or by a sequence of aggregators and
disaggregators. A possible representation for a simple server
is shown in Figure 1(c).

Having categorized Web stream transformations into these
three kinds, we can begin to ask questions about why streams

show particular locality properties. That is, we can ask: how
does locality change when streams are aggregated? disaggre-
gated? filtered? In order to approach these questions we need
precise metrics for locality that are amenable to this style of
analysis. In the next section we describe those metrics, and in
the following section we use those metrics to provide some
initial answers to these questions.

IV. MEASURING TEMPORAL LOCALITY

To move to a view of the Web as a collection of reference
streams, we need to define quantitative measures of temporal
locality that are suitable for use in this framework.

Because we are analyzing streams abstractly, we avoid using
metrics that are dependent on the properties of any particular
system. This is in contrast to traditional metrics that have been
applied to caching systems, (e.g., hit ratio and byte hit ratio
[22]) which are strongly dependent on the parameters of the
cache itself (such as cache size and replacement policies) and
only indirectly reflect the intrinsic properties of the stream.

Furthermore, although we are interested in analyzing these
intrinsic properties of the streams, it is only possible to
estimate them based on particular finite stream realizations —
logs that record request sequences (e.g., client, proxy, or server
logs). Therefore we need to pay careful attention to issues of
normalization for artifacts such as the particular number of
requests or distinct objects in the log.

As described in Section II, temporal locality can be de-
composed into two effects: popularity and correlation. In the
following two subsections we define and motivate metrics we
use for measuring these two effects; we discuss normalization
issues; and we show that the resulting metrics are more general
and robust than previously used metrics for temporal locality.
The logs we use for some of the validations are described in
Section V.

A. Measuring Popularity: Entropy

In this section we define our metric for measuring the skew
(degree of imbalance) in the relative popularity of different
objects in a request stream, and demonstrate its strengths.

1) Definition: To measure the degree of imbalance in the
popularity of objects, we use the entropy of the request
stream [23], [24]. That is, the stream is treated as independent
samples of a random variable X , and we are concerned with
the entropy of X , denoted H(X).

In estimating H(X) from a given log, we view the requests
in the log as a sequence of symbols, which are the requested
objects; we approximate the probability pi of a given object i
being referenced as the number of times it appears in the log,
divided by the total references in the log. We thus obtain an
empirical probability distribution over the set of objects in the
log. Then the entropy H(X) is defined as in Equation (1). Note
that H(X) only depends on the probabilities of occurrence of
the different objects, and not on the relative order in which
they are occur.

As defined in Equation 1, H(X) also depends on the
number of distinct objects that are referenced in the log. In
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particular, the upper bound on entropy is given by H0(N) =
log2(N), and is attained when each object is equally likely to
be referenced. It has been shown that the number of distinct
references in a segment of a log increases with the size of
the segment, even for very large logs [25]. Thus to be able
to compare logs with different number of distinct references
present, it is important to normalize the entropy measure. The
appropriate normalization is based on the largest possible value
of H(X), namely H0(N). Therefore the metric for popularity
we will use is the normalized entropy:

Hn = H(X)/H0(N) (2)

where N is the number of distinct references in the log.
Finally, we note that in some of our later results, instead

of working with Hn, we use the following transformation of
Hn:

Hs = − log10 (1 − Hn) (3)

We use Hs (which we called “scaled” normalized entropy)
because Hn can often be quite close to 1, making it hard to
distinguish on plots.

2) Validation: In this section we show that normalized
entropy accurately captures the popularity component of tem-
poral locality by relating normalized entropy to two commonly
used measures of this property: hit ratio and Zipf exponent α.
As discussed in Section II, α is the most commonly used
measure of the degree of imbalance in popularity of Web
references. Here we show three key facts:

1) For any given number of unique references N , if refer-
ence popularity precisely follows a Zipf-like distribution,
then there is a one-to-one relationship between the Zipf
exponent α and H(X);

2) In some cases, reference popularity does not precisely
follow a Zipf-like distribution, making the estimation of
α error-prone, but having no such effect on H(X); and

3) Across a large set of traces and cache sizes, normalized
entropy is strongly correlated with hit ratio.

Our first point is that in the case where popularity in fact
follows a Zipf-like distribution, for a trace with N unique
references, H(X) has a one-to-one relationship with α. This
means that, given H(X) or Hn, one can determine the
corresponding α — so there is no need to additionally measure
it. The fact can be seen as follows: Let Sα,N =

∑N
i=1 i−α.

Then if a trace obeys a Zipf-like distribution, pi = 1
S i−α, so:

Hα,N
zipf (X) =

∑

i

−pi log2 pi

= log2 S +
α

S

∑

i

i−α log2 i (4)

The relationship between H(X) and α is intuitively clear:
as α approaches 0 the popularity distribution becomes more
uniform, and the entropy tends to log2N (as can be seen
by limα→0 Hα,N

zipf = log2 N ). On the other hand, when α
grows the popularity distribution becomes more imbalanced,
and in the limit only one object is referenced so the entropy

is 0 (limα→∞ Hα,N
zipf = 0). This relationship is illustrated in

Figure 2. Most of the reported estimates of α lie in the range
between 0.6 and 1 [14]. In this range, the Figure shows that
normalized entropy Hn typically lies between approximately
1/2 and 1.
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Fig. 2. Normalized entropy of ideal streams with Zipf-like popularity
distribution of references, as a function of the Zipf exponent α.

Our next point concerns the lack of generality and accuracy
inherent in using the Zipf-like distribution as a model.

In Figure 3 we show, for one of the traces we studied
(others, not shown, are similar), estimates of the Zipf exponent
using two different regression techniques (lines marked ‘zl’
and ‘ze’). The figure shows how reasonable regression proce-
dures can produce widely varying results. The ‘zl’ line was
determined by a linear fit on the logarithm of the references
versus rank data; the ‘ze’ lines was obtained from a non-linear
fit on the original data.

We can see that the linear fit (‘zl’) emphasizes the points
in the tail of the distribution, while the non-linear fit on the
original data (‘ze’) emphasizes the highest ranked objects. It
is a matter of judgement to determine which points to use and
which procedure to adopt, in order to correctly estimate the
exponent.

In fact, a third estimate of α is possible: that based on
inverting Equation (4). By first calculating H(X), and then
obtaining the corresponding α value, we obtain an estimate
of α that is independent of which points we use to fit the
actual popularity distribution; these lines are marked ‘zh’ in
Figure 3. Thus we argue that H(X) is a fundamentally more
robust metric than is α.

Cache size (%) Correlation Hn X HR
Scrambled Logs Original Logs

1 -0.72 -0.61
2 -0.83 -0.77
5 -0.84 -0.86
10 -0.81 -0.84
14 -0.79 -0.81
20 -0.78 -0.79
29 -0.76 -0.76
50 -0.74 -0.74

TABLE I

CORRELATION COEFFICIENT BETWEEN Hn AND HIT RATIO.
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Fig. 4. Hit ratio for the scrambled versions of the logs versus the normalized
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Our third point is that Hn has a strong effect on hit ratio
which suggests that it provides a useful view of locality. To
demonstrate this we show the results of cache simulations. We
simulated an LRU cache and did not consider the size of the
objects referenced, i.e., we considered all objects to be the
same size. While this is not an accurate measure of true hit
ratio considering object sizes, it can provide valuable insight
into the utility of the entropy metric.

Figure 4 shows the results when caches are sized to hold
5% of the number of unique references in each log. Logs were
scrambled to remove all temporal correlations, leaving only
the popularity component of the locality. The figure shows the
clear and strong trend of decreasing hit ratio with increasing
entropy. A wider range of results are summarized in Table I.
This table shows, for a range of cache sizes, the correlation
coefficient (R2) relating the normalized entropy to the hit ratio
obtained in the caching simulation for that size. The table
shows that the correlation between hit ratio and normalized
entropy is strong across a wide range of cache sizes.

In fact, this result is supported by theory in [26], which
establishes that entropy can be used to establish bounds on
the miss rate of an optimal caching algorithm for a discrete
memoryless source with finite alphabet. It is important to note
however that they use the entropy rate of the source of the

request stream, and that the measure of entropy that we use
here is a first order approximation of the source entropy rate.
For details, we refer the reader to [23], [26].

Finally, Table I also shows results for the original, non-
scrambled versions of logs. It is interesting to note that entropy
bears a strong (negative) correlation with the hit ratio for the
original logs, especially for larger cache sizes. This may be
understood because the larger the cache, the less important the
impact of temporal correlation is on the cache performance.

B. Measuring Correlation: the Coefficient of Variation

Turning to measures of correlation, in this section we
describe our metric for the correlation component of temporal
locality, and and show its utility.

If all accesses to objects in a stream were completely
uncorrelated, we could model the request generating process
by the Independent Reference Model [7] (IRM). In the IRM,
each object has associated a probability of being referenced,
and each reference is independent of any other reference. In
this model the inter arrival time (IAT) (measured in number
of references) follows a geometric distribution, which is a
memoryless distribution. For each object i with reference
probability pi, the mean of its associated IAT distribution is
given by 1/pi.

If we form a random permutation of a log of references,
we expect the IAT of each object to follow a geometric
distribution, with mean determined by the relative frequency
of appearance of the object. In the original log, however, if
there is temporal correlation between the references to the
same object, we expect to see deviation from this memoryless
behavior.

As an initial example, to distinguish the presence of cor-
relation from that of popularity, we proceed as the authors
in [10], grouping equally popular objects and conducting
separate analysis of these groups. In the absence of temporal
correlation, we would have the IRM, as discussed above, and
the distribution of the IAT’s for any given object would depend
solely on the probability of accesses to that object. Thus,
equally popular objects would have the same IAT distribution.

We thus examined the IAT distribution for groups of objects
with the same number of accesses, and obtained similar results
for all such groups. As an example, we show in Figure 5 the
IAT distribution for one of these groups, that of all objects
with 8 references each.

We plot the cumulative distribution of the IAT for the
objects in the original log (plot (a)), and for a scrambled
version of the same trace (plot (b)). Figure 5(a) shows a strong
tendency of the IATs to cluster around shorter values, and that
this tendency is not present in the same plot for the scrambled
trace (b). We also show curves labelled ‘IRM’, which are
the corresponding geometric distribution. In plot (b) we see
how close the scrambled version approaches the curve for the
geometric distribution. The plots for all other frequencies show
very similar behavior, and these results confirm those obtained
(in a slightly different fashion) in [10].
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Fig. 5. IAT distribution for objects with frequency 8, for the original (top)
and scrambled (bottom) versions of the NLANR SV log.

1) Definition: Motivated by the fact that temporal cor-
relation for the accesses to the same object should cause
a deviation from the geometric distribution, we introduce a
metric that is very sensitive to this deviation. The coefficient
of variation of a distribution is its standard deviation σ divided
by its mean µ. Coefficient of variation (CV) is widely used
in different settings, and is a simple measure of relative
dispersion of a distribution. This metric is dimensionless and
is simple to calculate and understand.

CV is also a convenient measure to use here because it
has a natural reference point for the geometric distribution.
Given a geometric distribution with mean given by µ = 1

p

and variance given by σ2 = (1 − p)/p2, the CV is given
simply by

√
1 − p. In Web reference streams, in which even

the most heavily accessed objects have a very low probability
of reference (generally much less than 1%), the expected CV,
in the case of no temporal correlation, is very close to 1.
Thus, in this setting, CV values close to unity are associated
with distributions close to the IRM, and thus little or no
temporal correlation, while values larger than one represent
a distribution with large relative variance.

In order to use the IAT-CV as a measure of correlation, we
must decide how to apply it across the unique set of references
in a trace. In [10] the authors form IAT distributions over
the set of all objects with k references. This has the effect
of mixing together objects with possibly varying properties.
In contrast we wish to consider each object separately and
so form the IAT-CV for each unique reference in the trace.

Furthermore, unlike [10], using IAT-CV as a summary of the
distribution in this way does not require any assumption about
distributional shape nor does it require any manual curve-
fitting.

Each unique object in a trace has its own IAT-CV. In order
to summarize an entire trace we must combine these individual
values. The method we use is based on the per-reference IAT-
CV. That is, since we are concerned with temporal locality as it
impacts caching systems, we seek a metric that is weighted on
a per-reference basis (rather than, say, a per-unique-reference
basis).

Interestingly, the distribution of per-reference IAT-CV
shows a long tail, making the mean of this quantity an
unstable metric. We find experimentally that the long tail of
this distribution results in a mean IAT-CV that grows with the
length of the trace considered. Since we want to normalize our
metrics to be independent of trace length, we need a statistic
that is insensitive to trace length. For this reason we use the
distributional median, which is a very robust metric even for
long-tailed distributions.

To sum up, the metric for correlation we use is calculated as
follows. For each object in the trace, calculate its IAT-CV (the
standard deviation of its IAT over its mean IAT). Now form
the set consisting of the IAT-CV for each individual reference
in the trace; an object with n references in the trace will have
n copies of its IAT-CV in this set. The final metric is the
median value of this set.

2) Validation: The presence of correlations in a reference
stream can be measured by its effect on cache hit ratio. When
a trace is scrambled, the resulting hit ratio tends to decrease
due to the removal of correlation. This difference may be used
to gauge the utility of our IAT-CV metric. In Figure 6 we
show the relationship between the difference in hit ratio due
to scrambling, and the IAT-CV. In this case all caches were
sized to hold 5% of the unique references in each trace. The
figure shows the clear relationship between improvement in hit
ratio and IAT-CV. Larger IAT-CVs are indicative of stronger
contributions of correlation to the overall hit ratio of the trace
in a cache.

These results are generalized to a range of cache sizes in
Table II. The table shows that even for large cache sizes
(capable of holding half of the unique references in a trace),
that the improvement in hit ratio is correlated with IAT-CV;
and for small caches, this correlation is quite strong.

V. EFFECTS OF THE TRANSFORMATIONS ON REQUEST

STREAMS

In this section we analyze the effects of the three ADF
transformations on the temporal locality properties of streams.
We do this through a set of experiments on logs taken from
different points of the topology, using the metrics introduced
in Section IV. A short description of these logs is given in
Tables III and IV. All of these, except for the POP1 and POP2
traces, are publicly available and can be found in [27] or [28].
They are more thoroughly described in [29].
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Cache size (%) Correlation
CV X HR diff.

1 0.78
2 0.72
5 0.65
10 0.53
14 0.44
20 0.38
29 0.31
50 0.32

TABLE II

CORRELATION COEFFICIENT BETWEEN CV AND THE HR DIFFERENCE

(ORIGINAL - SCRAMBLED), FOR DIFFERENT CACHE SIZES.
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Fig. 6. Difference in hit ratio between the original and the scrambled logs,
for an LRU cache with relative size of 5%.

We broadly divide the logs we used into 3 groups, according
to their location in the topology of the Web: client, proxy,
and server logs, and this distinction is useful in some of the
discussions that follow.

A. Filtering

Trace driven simulations with empirical traces collected at
different points in the Web system are used to assess the
effects of filtering on reference streams. Because the goal of
the experiment is not to analyze replacement policies, but to
understand the effects of caching on reference streams, the
simulations assume a simple LRU policy.

When analyzing the filtering transformation, we want to
understand how entropy and CV capture the temporal locality
properties of the output stream. The two following questions
help us to understand the effects of this transformation: 1)
how do the locality metrics of the output stream vary as a
function of the cache size? and 2) how do the filtering effects
vary according to the topological position of the caching in
the Web?

Intuitively, we expect that filtering absorbs part of the
temporal locality of a reference stream and generates a miss
stream consisting of evenly distributed references to fairly
popular objects. The graph of Figure 7 shows the variation of
the normalized entropy as a function of the cache size. In the
graph, note that points corresponding to cache size equals to 0
refer to the entropy of the input stream. The figure shows that
the entropy of the output stream (i.e., miss stream) increases

Name Short Description Period

Client, before browser cache
bu95 ’95 Boston University2 01/01 - 02/28/95

Client Proxy, after browser cache
bu95flt ’95 Boston University 01/01 - 02/28/95
bu98ftl ’98 Boston University 04/06 - 05/21/98
bk-homeIP Berkeley Home IP Service 11/06 - 11/09/96

Network Proxy
pop-1 POP-MG Level 1 Cache 10/18 - 10/19/01
pop-2 POP-MG Level 2 Cache 10/18 - 10/19/01
nlanr-sd NLANR SD Root Cache 11/13 - 11/19/01
nlanr-sv NLANR SV Root Cache 11/13 - 11/19/01

End Server
bk-server Berkeley CS Dept. 12/01 - 12/31/01
wc ’98 World Cup Web Site 05/29/98

TABLE III

HIGH LEVEL DESCRIPTION OF THE LOGS USED

Name Requests Objects % 1-Timers
bu95 558,263 48,532 43.64
bu95flt 128,077 47,502 72.14
bu98flt 67,629 35,646 42.02
bk-homeIP 1,703,835 600,940 66.18
pop-1 1,949,490 464,795 69.53
pop-2 2,308,411 734,015 76.26
nlanr-sd 3,950,198 1,785,884 18.17
nlanr-sv 5,357,077 1,544,956 35.38
bk-server 6,011,564 268,018 1.69
wc 2,223,141 4,829 0.04

TABLE IV

SOME IMPORTANT STATISTICS OF THE LOGS USED
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Fig. 7. (Scaled) normalized entropy of the miss stream versus cache size.
Cache size is measured as a fraction of the total number of objects in the log.
The point for cache size of 0 corresponds to the original log.

with the cache size, indicating that more popular references
are eliminated from the stream as we increase the size of the
cache, making the object distribution of the output stream more
uniform.

The figure also shows that the deeper the cache in the Web
system, the lower the magnitude of the entropy difference be-
tween input and output streams. The explanation for that stems
from the different percentage of one-timers in the reference
streams. As indicated in Table IV, one-timers in the two traces
near to clients constitute 42% and 66% of references. In the
World Cup and Berkeley servers logs, the one-timers represent
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0.04% and 1.69%. In a popularity versus rank plot, the curves
for the server logs would have a concentration of points at the
top left portion of the curve while the client logs would have a
concentration of points at the tail of the curve. Williamson [20]
shows graphically that the primary impact of filtering is to
truncate and flatten the top left portion of popularity curves.
Therefore, entropy variation is magnified by the presence of
a large percentage of one-timers. Williamson [20] also shows
that deeper levels of caching produce little change in the object
popularity profile, which agrees with the results shown here.
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Fig. 8. CV of the miss stream versus cache size.

Figure 8 displays the IAT-CV as a function of cache size. As
the cache size increases, more repetitions are eliminated from
the output stream, decreasing the temporal correlation of the
miss stream. As a matter of fact, the miss stream should exhibit
a low coefficient of variation, for the temporal correlations
are almost eliminated by the LRU policy of the caching. For
larger cache sizes, since we use a cache simulator that only
has capacity misses, and no expiration misses, the number of
requests in the miss streams begins to diminish quickly, and
so does the number of repetitions. This makes the number
of objects that actually contribute to the value of IAT-CV to
also diminish, and the metric loses precision for these larger
caches.

In summary, we find that the effects of caching are to re-
move both sources of temporal locality from reference streams.
This suggests that the output stream from a cache would
typically be a poor candidate for sending to another cache,
since the subsequent “downstream” cache would observe little
temporal locality in its input stream. Nonetheless, we observe
that multilevel caching is common in the Web, from client
caches to proxy caches to server accelerators (caches in
front of servers). Why are such multilevel caching schemes
effective? The answer is provided by turning again to the ADF
framework, which we do in the next section.

B. Aggregation and Disaggregation

In order to analyze the effects of the aggregation and
disaggregation transformations on the streams, we analyze
different logs by separating them into sub-logs corresponding,
in turn, to the sources of the requests, and to the destinations

of the requests. We then study the distribution of Hn and IAT-
CV across these sub-logs. Note that we do not use any filtering
between the two transformations, for we want to isolate their
individual effects. The plots in Figure 9 show the cumulative
distribution per reference, i.e., weighted by the number of
requests in each sub-log, of Hn and the CV, for a sample
log. The full vertical lines in each plot shows the value of the
corresponding metric in the full log.
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Fig. 9. Cumulative distributions of Hn and cv for the Berkeley Home IP
log, for the aggregation and disaggregation sub-logs. The full vertical line is
the respective value for the full log.

We first examine the results for normalized entropy. Across
all logs we studied, the percentage of requests from incoming
sub-logs with Hn greater than that of the full log is con-
sistently above 50%. This shows that aggregation tends to
decrease the normalized entropy of its output stream compared
to its input. That is, aggregation acts to increase the popularity
component of temporal locality. This provides an answer to
the question posed at the end of the last section: higher level
caches tend to be effective despite lower level caching because
they generally involve considerable stream aggregation (as
shown in Figure 1(b)). This is an example of how we can
use the ADF framework to enable better engineering of the
Web system, since we can decide to place caches at locations
in which high levels of aggregation occur.

For the case of the disaggregation, although the median of
the distribution is close to the reference value for the full log,
one can notice a significant increase in the number of requests
belonging to outgoing sub-streams with lower normalized
entropy. This is also intuitive, because the streams that servers
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receive have a more limited set of objects, and the requests
can be drawn from several different incoming streams, the
repetitions of which were not filtered together before.

Concerning the IAT-CV, we have found for all logs we
studied that the distribution per reference of the IAT-CV
decreases when comparing the incoming sub-streams for the
aggregation to the outgoing sub-streams for the disaggregation.
This can be seen for the second plot in Figure 9. This
finding is in line with the intuitive notion that the temporal
correlations should decrease when aggregating, because the
separate processes that generate the requests (for example, two
different users) are most likely independent time series. The
same observation applies to the disaggregation transformation.

Thus we find that aggregation and disaggregation shed
considerable light on the Web system: both aggregation and
disaggregation tend to increase the popularity component of
temporal locality, while tending to somewhat decrease the
correlation component of temporal locality. These conclusions
are supported by looking at the properties of traces at different
levels in the hierarchy, which we do in the next section.

C. Locality properties in different points of the topology
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Fig. 10. CV versus Normalized Entropy for logs studied. Logs from locations
close to clients are shown with filled symbols, logs from proxy servers are
shown with hollow symbols, and the logs from servers are shown with line
drawn symbols.

Having studied the effects of the transformations individu-
ally, we now present, in Figure 10, results combining both
metrics for each of the ten logs we studied, which come
from different points in the topology. We can readily notice
three different groups of points. The first is that composed
of one point, ‘bu95’. This is the only trace that is collected
before browser caches, and has not been filtered in any way.
It presents a high degree of temporal correlation, that comes
from the correlations in user surfing patterns, and also the
lowest relative entropy, since no repetitions have been filtered
out yet. Then we move to the ‘proxy region’, in which
the streams present high Hn and a much lower CV. These
characteristics come from the fact that these proxies generally
receive streams that have been filtered by lower level caches.
It is interesting to notice that even proxies that are close
to clients exhibit these characteristics. The third region in
the plot is the ‘servers’ region. These present the lowest

temporal correlation, and also lower entropies. This is in line
with our findings that aggregation and disaggregation both
increase popularity imbalance and that all transformations tend
to decrease temporal correlation.

These findings show that the correlation and popularity
components of locality behave differently as streams pass
through the Web system; while popularity imbalance can rise
or fall as a result of stream transformations, correlation seems
to be intrinsically generated by clients and generally declines
as streams are transformed.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a shift in perspective in Web
characterization, focusing on properties of request streams, and
how these are affected by aggregation, disaggregation, and
filtering transformations.

We have proposed new metrics to capture the two causes
of temporal locality: popularity and correlation. Entropy was
defined as a natural metric for measuring the skew in the
relative popularity of different objects in a request stream,
and the Coefficient of Variation of the IAT distribution was
used as a metric for temporal correlation, motivated by the
fact that the presence of such a correlation between accesses
to the same object should cause a deviation from the geometric
distribution. We validated these metrics using a wide collection
of logs from different points in the Web topology, and showed
that they are intuitive and effective.

We then showed how these metrics can give valuable
insights when applied to the transformation framework. For
example, they yield an important observation that concerns the
effectiveness of caching hierarchies: while caches themselves
decrease temporal locality, aggregation and disaggregation can
increase temporal locality. These observations provide guid-
ance for overall design of the Web system: e.g., in suggesting
that stream aggregation (perhaps more than network topology)
is a key factor in optimizing cache placement.

This point is refined by our separate measurement of the two
components of locality. While the popularity component can
sometimes increase (leading to the effect just described), all
three transformations were found to diminish the correlation
component, and this effect was confirmed by the consistent de-
cline in correlation found in streams moving up the hierarchy
from clients toward servers.

Looking to the future, we believe that in some cases, bounds
on the values of the resulting streams can be determined,
given the parameters of the input streams and transformation
node. We are currently investigating analytical frameworks for
studying cache system performance in light of the properties
discussed in this paper. We also see these metrics as important
tools for understanding and better designing the Web as a
system of multiple interacting agents that create, transform
and absorb streams of request.
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