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Abstract— This paper explores optimization of paging and
registration policies in cellular networks. Motion is modeled as
a discrete-time Markov process, and minimization of the dis-
counted, infinite-horizon average cost is addressed. The structure
of jointly optimal paging and registration policies is investigated
through the use of dynamic programming for partially observed
processes. It is shown that there exist policies with a certain
simple structure that are jointly optimal, though the dynamic
programming approach does not directly provide an efficient
method to find the policies.

An iterative algorithm for policies with the simple form is
proposed and investigated. The algorithm alternates between
paging policy optimization and registration policy optimization.
It finds a pair of individually optimal policies, but an example is
given showing that the policies need not be jointly optimal.

I. INTRODUCTION

The growing demand for personal communication services
is increasing the need for efficient utilization of the limited
resources available for wireless communication. In order to
deliver service to a mobile station (MS), the cellular network
must be able to track the MS as it roams. In this paper, the
problem of minimizing the cost of tracking is discussed. Two
basic operations involved in tracking the MS are paging and
registration.

There is a tradeoff between the paging and registration
costs. If the MS registers its location within the cellular
network more often, the paging costs are reduced, but the
registration costs are higher. The traditional approach to paging
and registration in cellular systems uses registration areas
which are groups of cells [8]. An MS registers if and only if it
changes registration area. Thus, when there is an incoming call
directed to the MS, all the cells within its current registration
area are paged. Another method uses reporting centers [2]. An
MS registers only when it enters the cells of reporting centers,
while every search for the MS is restricted to the vicinity of
the reporting center to which it last reported.

Some dynamic registration schemes are examined in [3] :
time-based, movement-based, and distance-based. Under such
movements performed, or the distance traveled since the last
location update. These policies are threshold policies and
the thresholds depend on the MS motion activities. In [12],
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Fig. 1. Paging policy and registration policy generation

dynamic programming is used to determine an optimal state-
based registration policy.

Basic paging policies can be classified as follows:
• Serial Paging. The cellular network pages the MS se-

quentially, one cell at a time.
• Parallel Paging. The cellular network pages the MS in a

collection of cells simultaneously.
Serial paging policies have lower paging costs than parallel
paging policies, but at the expense of larger delay. The method
of parallel paging is to partition the cells in a service region
into a series of indexed groups referred to as paging areas.
When a call arrives for the MS, the cells in the first paging
area are paged simultaneously in the first round and then,

if the MS is not found in the first round of paging, all
the cells in the second paging area are paged, and so on.
Given disjoint paging areas, searching them in the order
of decreasing probabilities minimizes the the expected num-
ber of searches [14]. This paging order is denoted as the
maximum-likelihood serial paging order. An interesting topic
of paging is to design the optimal paging areas within delay
constraints [11], [14], [17]. However, in this paper, we consider
only serial paging polices.

Each paper mentioned above assumes a certain class of
paging or registration policy. Given one policy (paging policy
or registration policy) and the parameters of an assumed
motion model, the counterpart policy (registration policy or
paging policy, respectively) is found. For instance, the optimal
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paging policy is identified in [14] for a given registration
policy. This is shown as the top branch of Figure 1. Conversely,
an expanding “ping-pong” order paging policy suited to the
given motion model is assumed in [12]. With this knowledge,
dynamic programming is applied to solve for the optimal
registration policy. This corresponds to the bottom branch of
Figure 1.

Several studies have addressed minimizing the costs, con-
sidering the paging and registration policies together [1],
[15], [16]. In [15], a timer-based registration policy combined
with maximum-likelihood serial paging is introduced. The
minimum paging cost can be represented by the distribution of
locations where the MS last reported. Then an optimal timer
threshold is selected to minimize the total cost of registration
and paging. By contrast, a movement-based registration policy
is used in [1]. An improvement of [15] is given in [16] by
assuming that the MS knows not only the current time, but
also its own state and the conditional distribution of its state
given the last report. This is a state-based registration policy
and is aimed to minimize the total costs by running a greedy
algorithm on the potential costs. Although the papers discuss
the registration and paging policy together, they don’t consider
the joint optimization of the registration policy and paging
policy.

The structure of jointly optimal paging and registration poli-
cies is investigated in this paper. The conditional probability
distribution of the states of an MS is viewed as a controlled
Markov process, controlled by both the paging and registration
polices at each time. The method of dynamic programming
is applied, which in particular shows that the jointly optimal
policies can be represented compactly by certain reduced
complexity laws (RCLs). An iterative algorithm producing a
pair of RCLs is proposed based on closing the loop in Figure 1.
The algorithm is a heuristic which merges the approaches
in [12] and [14].

The remainder of the paper is organized as follows. Notation
and cost functions are introduced in Section II. Jointly optimal
policies are investigated in Section III. The iterative optimiza-
tion formula for computing individually optimal policy pairs is
developed in Section IV. Examples and conclusions are given
in Sections V and VI.

II. NETWORK MODEL

A. State description and cost

The motion of an MS is modeled by a discrete-time Markov
process (X(t) : t ≥ 0) with finite state space S, one-step
transition probability matrix P = (pij : i, j ∈ S), and given
initial state x0. The state i ∈ S that the MS is in at a given
time determines the cell c that the MS is physically located in,
and the state may indicate additional information such as the
current velocity of the MS. Thus a cell c can be considered
to be a set of one or more states, and the set C of all cells
is a partition of S. It is assumed that the network knows the
initial state x0.

The state of the MS from one time t to the next evolves
according to the given transition probabilities. The order of the

possible events at a particular integer time instant t ≥ 1 are as
follows. First, it is announced whether the MS is to be paged,
and the answer is “yes” with probability λp, independently of
the state of the MS and all past events. The cost of the paging
at time t is PNt, where P is the cost of searching one cell
and Nt is the number of cells that are searched until the MS
is found. As a result of being paged, the state of the MS is
reported to the cellular network. Let Nt = 0 if the MS is not
paged at time t. No paging or registration is considered for
t = 0.

If the MS is not paged, then the MS decides whether
to register. The cost of registration is R and the benefit of
registration is that the cellular network learns the state of the
MS. We say that a report occurs whenever either a paging or
registration occurs, because in either case, the cellular network
learns the state of the MS.

Let Pt denote the event that the MS is paged at time t, and
let Rt denote the event that the MS registers at time t. For
any set A, let IA denote the indicator function of A, which is
one on A and zero on the complement Ac. Probability vectors
are considered to be row vectors. Given a state l ∈ S, let δ(l)
denote the probability vector for S which assigns probability
one to state l. Thus, δi(l) = I{i=l}. See the appendix for a
review of the notions of σ algebras used in this paper.

B. Paging policy notation

For simplicity we consider only serial paging policies, so
that cells are searched one at a time until the MS is located. It
is also assumed that if the MS is present in the cell in which it
is paged, it responds to the page successfully. In other words,
no paging failure is allowed. It is further assumed that the
time it takes to issue a single-cell page is negligible compared
to one time step of the MS’s motion model, so that paging is
always successfully completed within one time step.

Let Nt denote the σ algebra representing the information
available to the network by time t after the paging and
registration decisions have been made and carried out. Thus,
for t ≥ 0,

Nt = σ((IPs
, Ns, IRs

: 1 ≤ s ≤ t),
(X(s) : 1 ≤ s ≤ t and IPs∪Rs

= 1))

The initial state x0 is treated as a constant, so even though it
is known to the network it is not included in the definition of
Nt. Note that the initial σ algebra N0 is the trivial σ algebra:
N0 = {∅,Ω}.

A paging policy u is a collection u = (u(t) : t ≥ 1) such
that for each t ≥ 1, u(t) is an Nt−1 measurable random
variable with values in Perm(C), the set of permutations of
the set of cells C. Given a permutation a of C, the paging
rank vector, ra = (ral : l ∈ S) is defined as follows. If cells
are searched sequentially in the order specified by a, then ral
is the number of single-cell searches required to find the MS
if it is in state l. For example, suppose S = {1, 2, 3, 4, 5, 6}
and C = {c1, c2, c3} with c1 = {1, 2}, c2 = {3, 4}, and c3 =
{5, 6}. Then if a = (c2, c1, c3), meaning to search cell c2 first,
c1 second, and c3 third, then (ra1 , . . . , r

a
6) = (2, 2, 1, 1, 3, 3).
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C. Registration policy notation

Let Mt denote the σ algebra representing the information
available to the MS by time t, after the paging and registration
decisions for time t have been made and carried out. Thus,

Mt = σ(X(s), IPs
, Ns, IRs

: 1 ≤ s ≤ t).

The MS also knows the initial position x0, which is treated as
a constant. In practice an MS wouldn’t learn Ns, the number
of pages used to find the MS at time s. While we assume
such information is available to the MS, we will see that
optimal policies need not make use of the information. With
this definition, we have Nt ⊂ Mt, meaning that the MS knows
everything the network knows (and typically more).

When the MS has to decide whether to register at time t, it
already has the information Mt−1. In addition it knows X(t)
and IPt

. If the MS is paged at time t, then the network learns
the state of the MS as a result, so there is no advantage for
the MS to register at time t. Thus, we assume without loss of
generality that the MS does not register at time t if it is paged
at time t. This leads to the following definition.

A registration policy v is a collection v = (v(t) : t ≥ 1)
such that for each t ≥ 1, v(t) is an Mt−1 measurable random
vector with values in [0, 1]S with the following interpretation.
Given the information Mt−1, if X(t) = l and if the MS is not
paged at time t, then the MS registers with probability vl(t).

D. Cost function

Let β be a number with 0 < β < 1, called the discount
factor. One interpretation of β is that cβt is the effective cost at
time zero of cost c to be paid t time units in the future. Another
interpretation is that 1/(1 − β) is the rough time horizon of
interest. Given a paging policy u and registration policy v, the
expected infinite horizon discounted cost C(u, v) is defined as

C(u, v) = E

[ ∞∑

t=1

βt{PIPt
Nt + RIRt

}

]
. (1)

The pair (u, v) is jointly optimal if C(u, v) ≤ C(u′, v′) for
all other paging policies u′ and registration policies v′.

III. JOINTLY OPTIMAL POLICIES

This section investigates the structure of jointly optimal
policies by using the theory of dynamic programming for
Markov control problems with partially observed states. While
the structure results do not directly yield a computationally
feasible solution, they shed light on the nature of the problem.
In particular it is found that there are jointly optimal policies
(u, v) such that, for each t, u(t) and v(t) are functions of
the amount of time elapsed since the last report and the last
reported state.

Intuitively, the paging policies are selected based on the past
of the registration policy, because the past of the registration
policy influences the conditional distribution of the MS state.
On the other hand, by the nature of dynamic programming,
the optimal choice of registration policy at a given time
depends on future costs, which are determined by the future

of the registration policy. To break this cycle, we consider the
problem more from the viewpoint of the network. In order that
current decisions not depend on past actions, the state space
is augmented by the conditional distribution of the state of the
MS given the information available to the network.

A. Evolution of conditional distributions

For t ≥ 0, let w(t) be a row vector equal to the conditional
probability distribution of X(t), given the observations avail-
able to the network up to time t (including the outcomes of a
report at time t, if there was any). That is, wj(t) = P [X(t) =
j|Nt] for j ∈ S. Note that with probability one, w(t) is a
probability vector with index set S. Intuitively, the network
can control the distribution valued process (w(t)) by dictating
the registration policy of the MS. Since N0 is the trivial σ
algebra and X(0) = x0, the initial conditional distribution is
given by w(0) = δ(x0).

While the network may not know the recent past trajectory
of the state process, it can still estimate the registration policies
used by the MS. Such estimates play a role in how the
network can recursively update the w(t)’s. Thus, let v̂j(t) =
E[vj(t)|Nt−1]. Note that v̂ = (v̂(t) : t ≥ 1) is itself a
registration policy. Indeed, since Nt−1 ⊂ Mt−1, v̂(t) is Mt−1
measurable, and it takes values in [0, 1]S . If v̂ is used as a
registration policy by the MS, the MS’s actual decision of
whether to register at time t depends on both v̂(t) and X(t).
Since the network may not know X(t), the network can’t
itself know exactly when the MS will register, even though
the network does know v̂(t) at time t− 1.

Define a function Φ as follows. Let w be a probability
distribution on S and let b ∈ [0, 1]S . Let Φ(w, b) denote the
probability vector on S defined by

Φl(w, b) =

∑
j∈S wjpjl(1 − bl)∑

l′∈S

∑
j∈S wjpjl′(1 − bl′)

.

Φ(w, b) is undefined if the denominator in this definition is
zero. The meaning of Φ is that if at time t the network knows
that X(t) has distribution w, if no paging occurs at time t+1,
and if the MS registers at time t+1 with probability bX(t+1),
then Φ(w, b) is the conditional distribution of X(t+ 1) given
no registration occurs at time t+1. This interpretation is made
precise in the next lemma. The proof is omitted.

Lemma 3.1: The following holds:

w(t+ 1) = δ(X(t+ 1))IPt+1∪Rt+1

+Φ(w(t), v̂(t+ 1))IP c
t+1∩Rc

t+1
.

B. New state process
For t ≥ 1, let Θ(t) = (w(t), IPt

, Nt, IRt
). Note that the tth

term in the cost function is a function of Θ(t). Note also that
Θ(t) is measurable with respect to Nt, so that the network can
calculate Θ(t) at time t (after possible paging and registration).
Moreover, the first coordinate of Θ(t), namely w(t), can be
updated with increasing t with the help of Lemma 3.1. The
random process (Θ(t) : t ≥ 0) can be viewed as a controlled
Markov process, adapted to the family of σ algebras (Nt : t ≥
0) with controls (u(t), v̂(t) : t ≥ 1). Note that u(t + 1) and
v̂(t+1) are each Nt measurable for each t ≥ 0. The one step
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transition probabilities for (Θ(t)) are given as follows. (The
variables j and l range over the set of states S.)

Θ(t + 1) Probability

(δ(l), 1, r
u(t+1)
l , 0) λp

∑
j
wj(t)pjl

(δ(l), 0, 0, 1) (1 − λp)
∑

j
wj(t)pjlv̂l(t + 1)

(Φ(w(t), v̂(t + 1)), 0, 0, 0) (1 − λp)
∑

j
wj(t)pjl(1 − v̂l(t + 1))

Since Nt ⊂ Mt (i.e. the MS knows at least as much as
the network) the set of registration policies that are adapted
to (Nt : t ≥ 0) is a subset of all the registration policies.
However, we have shown that for an arbitrary registration
policy v there exists a registration policy v̂ that is adapted
to the family of σ algebras (Nt : t ≥ 0) which yields the
same cost as v. Therefore, without loss of generality, we can
restrict attention to registration policies v̂ that are adapted to
(Nt : t ≥ 0).

Combining the observations summarized in this section, we
arrive at the following proposition.

Proposition 3.1: The original joint optimization problem is
equivalent to a Markov optimal control problem with state
process (Θ(t) : t ≥ 0) adapted to the family of σ algebras
(Nt : t ≥ 0), with controls (u(t), v̂(t) : t ≥ 1).

C. Dynamic programming equations

Above it was assumed the w(0) = δ(x0) where x0 is
the initial state of the MS, assumed known by the network.
In order to apply the dynamic programming technique, in
this section the initial distribution w(0) is allowed to be any
probability distribution on S. It is assumed that the network
knows w(0) at time zero, and that the initial state of the MS is
random, with distribution w(0). The evolution of the system
as described in the previous section is well defined for an
arbitrary initial distribution w(0). Let Ew denote conditional
expectation in case the initial distribution w(0) is taken to be
w. The initial σ algebra N0 is still the trivial σ algebra, since
w(0) is treated as a given constant.

Define the cost with n steps to go as

Un(w) = min
u,v̂

Ew[
n∑

t=1

βt{PIPt
Nt + RIRt

}]

Next apply the backwards solution method of dynamic pro-
gramming, by separating out the t = 1 term in the cost for
n+ 1 steps to go. This yields

Un+1(w) = min
u,v̂

β



λpP
∑

j

∑

l

wjpjlr
u(1)
l

+(1 − λp)R
∑

j

∑

l

wjpjlv̂l(1)

+Ew[Ew[
n+1∑

t=2

βt−1{PIPt
Nt + RIRt

}|N1]]

]

Note that u(1) and v̂(1) are both measurable with respect to
the trivial σ algebra N0. Therefore these controls are constants.

Henceforth we write b for the registration decision vector v̂(1).
The vector b ranges over the space [0, 1]S .

The first sum in the expression for Un+1(w) involves the
control policies only through the choice of the permutation
u(1). This sum is simply the mean number of single-cell
pages required to find the MS given that the state of the MS
has distribution given by the product wP , where P is the
matrix of state transition probabilities. It is well known that
the optimal search order is to first search the cell with the
largest probability, then search the cell with the second largest
probability, and so on [14]. Ties can be broken arbitrarily. The
first sum in the expression for Un+1(w) can thus be replaced
by s(wP ), where s(q) denotes the mean number of single cell
pages required to find the MS given that the state of the MS
has distribution q and the optimal paging policy is used.

The dynamic programming equation thus becomes

Un+1(w) = βλpPs(wP )

min
b
β




∑

j

∑

l

wjpjl {λpUn(δ(l))

+(1 − λp)bl(R + Un(δ(l)))}

+




∑

j

∑

l

wjpjl(1 − bl)



Un(Φ(w, b))



 .

(2)

Formally we denote this equation as Un+1 = T (Un). By a
standard argument for dynamic programming with discounted
cost, T has the following contraction property:

sup
w

|T (U) − T (U ′)| ≤ β sup
w

|U − U ′| (3)

for any bounded, measurable functions U and U ′, defined on
the space of all probability distributions w on S. Consequently
[4], [5], there exists a unique U∗ such that T (U∗) = U∗,
and Un → U uniformly as n → ∞. Moreover, U∗ is the
minimum possible cost, and a jointly optimal pair of paging
and registration policies is given by a pair (f̄ , ḡ) of state
feedback controls, for the state process (w(t)). A jointly
optimal control is given by u(t) = f̄(w(t − 1)) and v(t) =
ḡ(w(t − 1)), where f̄ and ḡ are determined as follows. For
any probability distribution w on S, f̄(w) is the permutation
listing the states of S in order of decreasing values of wP ,
and ḡ(w) is a value of b that achieves the minimum in the
right hand side of (2) with Un replaced by U∗. Then if there
is no report at time t+ 1, the conditional distribution w(t) is
updated simply by:

w(t+ 1) = Φ(w(t), ḡ(w(t))) (4)

Clearly under such stationary state feedback control laws
(f̄ , ḡ), the process (w(t) : t ≥ 0) is a time-homogeneous
Markov process. Note that the optimal mapping f̄ does not
depend on ḡ.

Lemma 3.2: The registration policy ḡ can be taken to be
{0, 1}S valued (rather than [0, 1]S valued) without loss of
optimality.

Proof: It is first proved that Un is concave for any given
n ≥ 0. Suppose w1 and w2 are two probability distributions
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on S, suppose 0 < η < 1 and suppose w = ηw1 + (1 −
η)w2. Then Un(w) can be viewed as the cost to go given the
MS has distribution w1 with probability η and distribution w2
with probability 1 − η, and the network does not know which
distribution is used. The sum ηUn(w1) + (1 − η)Un(w2) has
a similar interpretation, except the network does know which
distribution is used. Thus, the sum is less than or equal to
Un(w), so that Un is concave. Therefore U∗ is also concave.

Given a function H defined on the space of all probability
vectors for S, let H̃ be an extension of H defined on the
positive quadrant RS

+ as follows. For any probability vector w
and any constant c ≥ 0, H̃(cw) = cH(w). It is easy to show
that if H is concave then the extension H̃ is also concave.
With this notation, the dynamic programming equation for U∗
can be written as:

U∗(w) = βλpPs(wP )

min
b
β




∑

j

∑

l

wjpjl {λpU∗(δ(l))

+(1 − λp)bl(R + U∗(δ(l)))}
+ Ũ∗(wPdiag(1 − b))

]
.

where diag(1− b) is the diagonal matrix with lth entry 1− bl.
The expression to be minimized over b in this equation is a
concave function of b, and hence the minimum of the function
occurs at one of the extreme points of [0, 1]S , which are just
the binary vectors {0, 1}S . The minimizing b is ḡ(w). This
completes the proof of the lemma.

D. Reduced complexity laws

Given a pair of feedback controls (f̄ , ḡ), a more compact
representation of the controls is possible. Indeed, suppose the
controls are used, and suppose in addition that X(0) = x0,
where x0 is an initial state known to the network. Given t ≥ 1,
define k ≥ 1 and i0 ∈ S as follows. If there was a report
before time t, let t − k be the time of the last report before
t. If there was no report before time t let k = t. In either
case, let i0 = X(t−k). Since the network knows X(t−k) at
time t−k (after possible paging or registration), we have that
w(t − k) = δ(i0). Since there were no state updates during
the times t − k + 1, . . . , t − 1, it follows that w(t − 1) is
the result of applying the update (4) k − 1 times, beginning
with δ(i0). Hence, w(t− 1) is a function of i0, k. Moreover,
since u(t) = f̄(w(t − 1)) and v(t) = ḡ(w(t − 1)), it follows
that both the permutation u(t) and the registration decision
vector v(t) are determined by i0 and k. Let f and g denote
the mappings such that u(t) = f(i0, k) and v(t) = g(i0, k).
Note that f(i0, k) is a permutation of S and g(i0, k) ∈ {0, 1}S
for each i0, k. We call the mappings f , g reduced complexity
laws (RCLs). We have shown the following proposition.

Proposition 3.2: There is no loss in optimality for the
original joint paging and registration problem to use policies
based on RCLs.

Figure 2 shows an example of a registration RCL g for a
three-state Markov chain. The augmented state of a MS is a
triple (i0, k, j), such that i0 is the state at the time of the

0 1 2 3 4 5 6

path of MS

P

MS is paged

j

1

3

2

1

1

2

2

3

3

3

i  = 0 1

i  = 0

i  = 0

2

3

MS registers

State

Time since last report k

Fig. 2. Example registration policy for three-state Markov chain

last report, k is the elapsed time since the last report, and
j is the current state. Augmented states marked with an “x”
are those for which gj(i0, k) = 1, meaning that registration
occurs (if paging doesn’t occur first). An MS traverses a path
from left to right until either it is paged, or until it hits a
state marked with an “x”, at which time its augmented state
instantaneously jumps. The figure shows the path of a MS
that began in augmented state (i0, k, j) = (2, 0, 2). At relative
time k = 5 the MS entered state 3, hitting an “x”, causing
the extended state to instantly change to (3, 0, 3). Three time
units after that, upon entering state 1, the MS is paged. This
causes the augmented state to instantly jump to (1, 0, 1).

IV. ITERATIVE ALGORITHM FOR FINDING
INDIVIDUALLY OPTIMAL POLICIES

A. Overview of iterative optimization formulation

While jointly optimal policies can be efficiently represented
by RCLs f and g, the dynamic program method described
for finding the optimal policies is far from computationally
feasible, even for small state spaces, because functions of
distributions on the state space must be considered. In this
section we explore the following method for finding a pair of
policies with a certain local optimality property. First it is show
how to find, for a given paging RCL f , an optimal registration
RCL g. Then it is shown how to find, for a given registration
RCL g, an optimal paging RCL f . Iterating between these two
optimization problems produces a pair of RCL policies (f, g)
such that for each policy fixed, the other is optimal. Such pairs
of RCL policies are said to be individually optimal.

In this section we impose the constraint that a MS must
register if k ≥ kmax, for some large integer constant kmax.
With this constraint, the sets of possible registration and
paging RCLs are finite, and numerical computation is feasible
for fairly large state spaces. The initial state x0 is assumed
to be known and we write C(f, g) for the averaged infinite
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horizon, discounted cost, for paging RCL f and registration
RCL g.

B. Optimal registration RCL for given paging RCL

Suppose a paging RCL f is fixed. In this subsection we
address the problem of finding a registration RCL g that
minimizes C(f, g) with respect to g. Dynamic programming
is again used, but here the viewpoint of the MS is taken. The
states used for dynamic programming in this section are the
augmented states of the form (i0, k, j), rather than the set of
all probability distributions on S.

Since time is implicitly included in the variable k in the
augmented state, it is computationally more efficient to con-
sider dynamic programming iterations based on cycles rather
than on single time steps, where each cycle ends when there
is a report. Let τm be the time of the mth report. Replacing
the infinite horizon by time horizon τm reduces C(f, g) to

E

[
τm∑

t=1

βt {PIPt
Nt + RIRt

}

]
(5)

Letting m → ∞ in (5) yields C(f, g).
Then for each (i0, j, k), write Vm(i0, k, j) for the cost-to-go

for m ≥ 1 update cycles:

Vm(i0, k, j) = min
u

E

[
τm∑

t=1

βt {PIPt
Nt + RIRt

}

]
, (6)

where the expectation E is taken assuming that (a) the paging
RCL f is used for the paging policy, (b) at t = 0 the MS is
in state j, and (c) the last report occurred k time units earlier
in state i0. Also, define V0(i0, k, j) ≡ 0 since the cost is zero
when there are no report cycles to go.

The dynamic programming optimality equations are given
by

Vm(i0, k, j) = β
∑

l∈S

pjl

[
λp(Prf(i0,k+1)

l + Vm−1(l, 0, l))

+ (1 − λp)min {Vm(i0, k + 1, l),R + Vm−1(l, 0, l)}] (7)

As mentioned earlier, registration is forced at relative time k =
kmax+1 for some large but fixed value kmax. Therefore we set
Vm(i0, kmax + 1, l) = ∞ and use (7) only for 0 ≤ k ≤ kmax.
These equations represent the basic dynamic programming
optimality relations. For each possible next state, the MS
chooses whichever action has lesser cost: either continuing
the current registration cycle or registering for cost R.

Equation (7) can be used to compute the functions Vm
sequentially in m as follows. The initial conditions are V0 ≡
0. Once Vm−1 is computed, the values Vm(i0, k, j) can be
computed using (7), sequentially for k decreasing from kmax
to 0. Formally we denote this computation as Vm = T (Vm−1).
The mapping T is a contraction with constant β in the
sup norm, so that Vm converges uniformly to a function V∗
satisfying the limiting form of (7):

V∗(i0, k, j) = β
∑

l∈S

pjl

[
λp(Prf(i0,k+1)

l + V∗(l, 0, l))

+ (1 − λp)min {V∗(i0, k + 1, l),R + V∗(l, 0, l)}] (8)

for 0 ≤ k ≤ kmax, and V∗(i0, kmax + 1, l) ≡ ∞. The
corresponding optimal registration RCL g∗ is given by

g∗
l (i0, k) =

{
0, if V∗(i0, k, l) ≤ V∗(l, 0, l) + R
1, else.

(9)

for i0 ∈ S and 1 ≤ k ≤ kmax.
Thus, for a given paging RCL f , we have identified how to

compute a registration RCL g to minimize C(f, g).

C. Optimal paging RCL for given registration RCL

Suppose a registration RCL g is fixed. In this subsection we
address the problem of finding a paging RCL f to minimize
C(f, g). For i0 ∈ S and 0 ≤ k ≤ kmax, let w(i0, k) denote
the conditional probability distribution of the state of the MS,
given that the most recent report occurred k time units earlier
and the state at the time of the most recent report was i0. Thus,
w(i0, 0) = δ(i0), and for larger k the w’s can be computed
by the recursion:

w(i0, k + 1) = Φ(w(i0, k), g(i0, k))

The permutation f(i0, k) is simply the permutation of states
to be used when the MS must be paged k time units after the
previous report. At such time the conditional distribution of
the state of the MS given the observations of the base station
is Pw(i0, k − 1). Thus, the probability the MS is located in
cell c, just before the paging begins is given by

p(c|i0, k) =
∑

j∈S

∑

l∈c

wj(i0, k − 1)pjl

Finally, f(i0, k) is simply the permutation ordering the cells c
according to decreasing values of the probabilities p(c|i0, k).

D. Iterative optimization algorithm

In the previous subsections we described how to find an
optimal g for given f and vice versa. This suggests an iterative
method for finding an individually optimal pair (f, g). The
method works as follows. Fix an arbitrary registration RCL
g0. Then execute the following steps.

• Find a paging RCL f0 to minimize C(f0, g0)
• Find a registration RCL g1 to minimize C(f0, g1),
• Find a paging RCL f1 to minimize C(f1, g1), and so on.

Then C(f0, g0) ≥ C(f0, g1) ≥ C(f1, g1) ≥ C(f1, g2) ≥ · · ·
Since there are only finitely many RCL policies, it must be
that for some integer d, C(fd, gd) = C(fd, gd+1). By con-
struction, the paging RCL fd is optimal given the registration
RCL gd. Similarly, gd+1 is optimal given fd. However, since
C(fd, gd) = C(fd, gd+1), it follows that gd is also optimal
given the registration policy fd. Therefore, (fd, gd) is an
individually optimal pair of RCL policies.

V. EXAMPLES

A. Rectangular grid example

In the rectangular grid topology, each cell has four neigh-
bors. The diagram to the left in Figure 3 shows the finite
imax × jmax rectangular grid topology. To provide the full
complement of four neighbors to cells on the edges of the
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grid, the region is wrapped into a torus. The “wrapped” finite
grid can serve to approximate larger sets of cells. Also, by
the symmetry of the torus, the functions f(i0, k), g(i0, k) and
distributions w(i0, k) need be computed for only one value of
last reported cell i0. Each cell in Figure 3 is represented by
the index pair (i, j), where i = 0, 1, . . . , imax −1 is the index
for the horizontal axis, and j = 0, 1, . . . , jmax−1 is the index
for the vertical axis.

As an example, consider the 15×15 rectangular grid motion
model with motion parameters psty = 0.4, pu = pd = pl =
0.1, pr = 0.3, x0 = (5, 5) and other parameters λp = 0.03,
P = 1, R = 0.6, β = 0.9, and kmax = 200. Figure 4 shows
for selected times t the state X(t), indicated by a small black
square, and the conditional state distribution w(t), indicated as
a moving bubble. The distribution w(t) collapses to a single
unit mass point at t = 9 due to a page and at t = 27 due to
a registration. Roughly speaking, the MS registers when it is
not where the network expects it to be, given the last report
received by the network. For instance, at time t = 26 the MS
is located at the tail edge of the bubble, so the network has low
accuracy in guessing the MS location. One time unit later, at
t=27, the MS finds itself so far from where the network thinks
it should be that the MS registers.

B. Simple Example

The following is an example of a small network for which
jointly optimal paging and registration policies can be com-
puted. The example also affords a pair of individually optimal
RCLs which are not jointly optimal. The space structure of
the example is shown in Figure 5. S = {0, 1, 2, 3, 4} and
C = {c0, c1, c2} with c0 = {0}, c1 = {1, 2}, c2 = {3, 4}.
From state 0, the MS transits to state 1 with probability 0.4 and
to state 3 with probability 0.6. The other possible transitions
shown in the figure have probability 1. The initial state is taken
to be 0.

We first describe the jointly optimal pair of paging and
registration policies. We consider, without loss of optimality,
policies given by feedback control laws (f̄ ,ḡ) as described in
Section III. Thus we take u(t) = f̄(w(t − 1)) and v(t) =
ḡ(w(t− 1)). Due to the special structure of this example, the
process w(t) takes values in a set of at most seven states, and
the possible transitions are shown in Figure 6. The dynamic
programming problem for jointly optimal policies thus reduces
to a finite state problem. The optimal choice of the mapping f̄
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is given by f̄∗(w), which pages states in decreasing order of
wP . It remains to find the optimal registration policy mapping
ḡ.

We claim that if t mod 3 = 0 or t mod 3 = 2, then it is
optimal to not register at time t. Indeed, if t mod 3 = 0 then
the network already knows the MS is in state 0, so registration
would cost R and provide no benefit. If t mod 3 = 2, then the
network knows that the MS will be in state 0 at time t + 1,
which is the next time of a potential page. Thus, again the
registration at time t would cost R and provide no benefit.
This proves the claim.

Therefore, it remains to find the optimal registration vector

δ(0)

δ(1)

(0, 0.4, 0, 0.6, 0)

δ(3)

δ(2)

(0, 0, 0.4, 0, 0.6)

δ(4)

Fig. 6. Evolution of w(t) for the simple example.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



TABLE I

REGISTRATION POLICIES ḡA , ḡB ,ḡC , ḡD FOR THE SIMPLE EXAMPLE.

Policy ḡ(δ(0)) P
[
R1|P c

1

]
P

[
N2 = 2|P c

1 ∩ P2
]

A (0, 0, 0, 0, 0) 0 0.4
B (0, 1, 0, 0, 0) 0.4 0
C (0, 0, 0, 1, 0) 0.6 0
D (0, 1, 0, 1, 0) 1 0

v(t) to use when t mod 3 = 1. Such vector is deterministic,
given by ḡ(δ(0)). There are essentially only four possible
choices for ḡ(δ(0)), as indicated in Table I.

The cost for any pair (f̄ ,ḡ) is given by

C(f̄ , ḡ) =
Rβ(1 − λp)P [R1|P c

1 ]
1 − β3

+
λpP(1.4β + β2 + β2(1 − λp)P [N2 = 2|P c

1 ∩ P2] + β3)
1 − β3

Consulting Table I we thus find that (f̄∗, ḡA) is jointly optimal
if R ≥ λpPβ, and (f̄∗, ḡB) is jointly optimal if R ≤ λpPβ.

For the remainder of this example we consider policies
given by RCLs. Under the assumption that 0 < R ≤ λpPβ,
the pair of mappings (f̄∗, ḡB) is equivalent to a pair of RCLs,
which we denote by (fB , gB). Under gB , the MS registers only
after entering state 1 and not being paged. The pair (fB ,gB)
is jointly optimal, and hence it is also individually optimal.
Similarly, let (fC ,gC) be RCLs corresponding to the feedback
mappings (f̄∗,ḡC). In particular, an MS using registration RCL
gC registers only after entering state 3 and not being paged.

Proposition 5.1: (fC ,gC) is individually optimal, but not
jointly optimal.

Proof: The paging RCL fC is optimal for the registration
RCL gC because for gC fixed, it is equivalent to the optimal
feedback mapping f̄∗. Suppose then that the MS uses the
paging RCL fC . Note that if the MS does not report at time
t = 1, and if it is paged at time t = 2, the network will page
cell c1 first. Hence, if the MS enters state 3 at time t = 1 and
if it is not paged at t = 1, then by registering for cost R it
can avoid the two or more pages required at time t = 2 in
case of a page at t = 2. Since R ≤ λpPβ, it is optimal to
have the MS register at t = 1 in this situation. Thus gC is
optimal for fC , so the pair is individually optimal. However,
(fC ,gC) has the same cost as (f̄∗,ḡC). Thus, (fC ,gC) is not
jointly optimal.

VI. CONCLUSIONS

In this paper, we show how the joint paging and registration
optimization problem can be formulated as a dynamic pro-
gramming problem with partially observed states. In addition,
an iterative method is proposed, involving dynamic program-
ming with a finite state space, in order to find individually
optimal pairs of RCLs. A possible direction of future research
is to apply approximation methods such as neuro-dynamic
programming [6], in order to cope with very large numbers of
states for the iterative method, or to derive other approaches
for solving the joint paging and registration problem.

VII. APPENDIX

Some basic definitions involving σ algebras are collected
in this appendix. In this paper the network only observes
random variables with finite numbers of possible outcomes,
so that emphasis is given to conditioning with respect to finite
σ algebras.

The collections of random variables considered in this
paper are defined on some underlying probability space. A
probability space is a triple (Ω,F , P ), such that Ω is the set
of all possible outcomes, F is a σ algebra of subsets of Ω
(so ∅ ∈ F and F is closed under complements and countable
intersections) and P is a probability measure, mapping each
element of F to the interval [0, 1]. The sets in F are called
events. A random variable X is a function on Ω which is
F measurable, meaning that F contains all sets of the form
{ω : X(ω) ≤ c}. In the remainder of this section, N denotes
a σ algebra that is a subset of F . Intuitively, N models the
information available from some measurement: one can think
of N as the set of events that can be determined to be true or
false by the measurement. A random variable Y is said to be N
measurable if N contains all sets of the form {ω : Y (ω) ≤ c}.
Intuitively, Y is N measurable if the information represented
by N determines Y .

An atom B of N is a set B ∈ N such that if A ⊂ B and
A ∈ N then either A = ∅ or A = B. Note that if C ∈ N and
B is an atom of N , then either B ⊂ C or B ⊂ Cc. If N is
finite (has finite cardinality) then there is a finite set of atoms
B1, . . . , Bm in N such that each element of N is either ∅ or
the union of one or more of the atoms.

Given a random variable X with finite mean, one can define
E[X|N ] in a natural way. It is an N measurable random
variable such that E[XZ] = E[E[X|N ]Z] for any bounded N
measurable random variable Z. In particular, if A is an atom
in N , then E[X|N ] is equal to E[XIA]/P [A] on the set A.
(Any two versions of E[X|N ] are equal with probability one.)

Given a random variable Y , we write σ(Y ) as the smallest
σ algebra containing all sets of the form {ω ∈ Ω : Y (ω) ≤ c}.
The notation E[X|Y ] is equivalent to E[X|σ(Y )]. In case Y
is a random variable with a finite number of possible outcomes
{y1, . . . , ym}, the σ algebra σ(Y ) is finite with atoms Bi =
{ω : Y (ω) = yi}, 1 ≤ i ≤ m. Furthermore, given a random
variable X with finite mean, E[X|Y ] is the function on Ω
which is equal to

E[XIBi
]

P [Bi]
on Bi for 1 ≤ i ≤ m.
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