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Abstract— Multiprotocol Label Switching or MPLS technology
is being increasingly deployed by several of the largest Internet
service providers to solve problems such as traffic engineering
and to offer IP services like Virtual Private Networks (VPNs).
In MPLS, the analysis of the packet (network layer) header
is performed just once, and each packet is assigned a stack of
labels, which is examined by subsequent routers when making
forwarding decisions.

Despite the fact that MPLS is becoming widespread on the
Internet, we know essentially very little about the performance
one can achieve with it, and about the intrinsic trade-offs in its
use of resources. In this paper, we undertake a comprehensive
study of the label size versus stack depth trade-off for MPLS
routing protocols on lines and trees. We show that in addition
to LSP tunneling, label stacks can also be used to dramatically
reduce the number of labels required for setting up MPLS LSPs
in a network. Based on this observation, we develop routing
algorithms and prove lower bounds for two basic problems: (1)
FIXED LABEL ROUTING: Given a fixed number of labels, we want
to minimize the stack depth, and (2) FIXED STACK ROUTING:
Given a bound on the stack depth, we want to minimize the
number of labels used. Our simulation results validate our
approach, demonstrating that our novel protocols enable MPLS
routing on large trees with few labels and small stack sizes.
Thus, our MPLS routing algorithms are applicable to a number
of practical scenarios involving the provisioning of VPNs and
multicast trees.

I. INTRODUCTION

In most conventional packet-based network routing pro-
tocols, a packet makes its way from source to destination
in essentially the following way. When a router gets the
packet, it analyzes the packet header and decides the next hop
for it. These decisions are made locally and independently
of other routers, based solely on the analysis of the packet
header, which contains the destination address. For example,
routers using conventional IP forwarding typically look for
a longest-prefix match to the entries in the routing table to
decide the next hop. In general, each router has to extract
out the information relevant to it from the (much longer)
packet header. Furthermore, routers are not designed to use
information about the source of the packets from these headers
for forwarding purposes.

An alternative proposed to this routing model by the IETF
is called MultiProtocol Label Switching or MPLS [7], [17].
In this, the analysis of the packet (network layer) header is

performed just once, and causes the packet to be assigned a
stack of labels, where the labels are usually much smaller than
the packet headers themselves [24], [23]. At each subsequent
hop, the router examines the label at the the top of the label
stack, and makes the decision for the next hop based solely
on that label. It can then pop this label off the stack if it so
desires, and push on zero or more labels onto the stack, before
sending it on its merry way. (We shall refer to this as label
replacement, and the path followed by the packet as a Label
Switched Path (LSP).) Note that there is no further analysis of
the network layer header by any of the subsequent routers.

There are a number of advantages of this over conventional
network layer forwarding, the obvious one being the above-
mentioned elimination of header analysis at each hop. A more
significant benefit, however, is that since we analyze the header
and assign the stack to the packet when it enters the network,
the ingress router may use any additional information about
the packet to route packets differently to satisfy different QoS
requirements. For example, data for time-sensitive applications
may be sent along faster but more expensive LSPs than regular
data. Also, the ingress router can encode information about
the source as well as the destination in the labels, which
cannot be done with conventional forwarding. Apart from
these factors improving network performance, explicitly routed
MPLS LSPs also make it much easier to do traffic engineering
compared to conventional routing schemes, since the entire
route taken by the packet can be specified very naturally
on the stack [2]. All these reasons have made MPLS very
popular among network and router designers, and companies
like Cisco, Juniper, Lucent and Nortel have been developing
routers which support MPLS protocols [4], [20].

Despite the fact that MPLS is becoming widespread on the
Internet, we essentially know very little about the performance
one can achieve with it, and about the intrinsic trade-offs in
its use of resources. For instance, in [24], the label stack
was introduced into the MPLS framework to allow multiple
LSPs to be aggregated into a single LSP tunnel. However, an
important observation that we make in this paper, is that label
stacks can also be used to dramatically reduce the number
of labels required for setting up MPLS LSPs in a network.
To the best of our knowledge, this benefit of label stacks has
not been pointed out before, and this is one of the primary
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contributions of our work. In addition, we provide answers to
several pertinent questions like: What is the depth of the stack
required for routing in an n-node network, and how does this
interact with the label size?

We note here that there are a number of scalability and
performance related reasons for reducing the size of the label
space. First, there is a growing interest among several of
the largest service providers (e.g., AT&T) to use MPLS for
providing Virtual Private Network (VPN) services. Offering
these MPLS-based VPN services to thousands of customers
would require the service provider to set up and manage
thousands of MPLS LSPs connecting the VPN endpoints (this
is specially true for Layer 2 MPLS VPNs and VPN services
based on the overlay model which are predominant today [7]).
Clearly, since only 20 bits of each 32-bit label stack entry
are available for encoding the label, the label space cannot
exceed 220; the implication here is that for scalability, the
label space must be conserved to the greatest extent possible.
A second reason for having a small label space is to reduce
the size of the forwarding table used by each label switching
router to make label replacement and forwarding decisions
for each incoming label. A smaller forwarding table helps to
lower memory requirements at routers and also enables them
to switch packets faster.

From the above discussion, it follows that smaller label sizes
are critical for achieving better scalability and performance.
However, as we show in this paper, smaller label sizes are
obtained at the expense of deeper stacks. Deep stacks are
undesirable since each stack entry is 32 bits, and longer stacks
increase the space requirements in IP packet headers. Thus,
the two goals of smaller labels and smaller stacks oppose
each other, and the trade-offs involved are non-trivial. The
protocols for routing a set of MPLS LSPs that we develop
in this paper explore these trade-offs, and attempt to strike a
balance between smaller labels and smaller stacks. Previous
papers on routing do not address such questions, and it is not
clear whether the information theoretic bounds are close to the
truth.

Note that a very important restriction while designing these
routing protocols is that the routers can only look at the top of
the stack to decide the next hop (as well as the set of labels
to push on the stack). We quote the following paragraph from
[24]:

The processing is always based on the top label,
without regard for the possibility that some number
of other labels may have been “above it” in the past,
or that some number of other labels may be below it
at present.

Further, routers maintain a distinct label switching forward-
ing table for each interface, and thus the next hop decision is
made based on the incoming edge on which the packet was
received and the label on the top of the stack.

A. Motivating Example – VPN Provisioning in the Hose Model

We illustrate the label size/stack depth trade-off based on
a practical scenario involving provisioning a single MPLS

VPN in the hose model [6], [15], [16]. (In practice, a service
provider may provision thousands of such VPNs). In the hose
model, each VPN endpoint specifies a pair of bandwidths –
an ingress bandwidth and an egress bandwidth. The ingress
bandwidth for an endpoint specifies the maximum incoming
traffic from all the other VPN endpoints into the endpoint,
while the egress bandwidth is the maximum amount of traffic
the endpoint can send to the other VPN endpoints. In [16],
the authors showed that using a tree structure to connect VPN
endpoints results in efficient utilization of network bandwidth
since it enables bandwidth to be shared between VPN end-
points. The authors also propose algorithms for computing
VPN trees that minimize the reserved bandwidth, and suggest
that MPLS be used to set up LSPs between each pair of VPN
endpoints along edges of the VPN tree. Further, since the paths
connecting a pair of endpoints in the tree may not correspond
to the shortest path between the endpoints, the authors point
out that path setup will need to rely on the explicit routing
capabilities of either RSVP-TE or CR-LDP [7]. However, the
authors do not address the important problems of how labels
are allocated to the LSPs connecting the VPN endpoints, or
how the label stacks for the various LSPs are initialized and
manipulated. Below, we use a concrete example to illustrate
the issues that arise in developing routing protocols for the
LSPs that connect the VPN endpoints.
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(a) Network graph (b) Optimal VPN tree

Fig. 1. Routing along paths in a VPN tree using MPLS

Consider the network graph depicted in Figure 1(a). The
four VPN endpoints 1, 2, 3 and 4 are shown in the figure using
shaded nodes, and each VPN endpoint has equal ingress and
egress bandwidths of 1. Figure 1(b) illustrates the optimal VPN
tree connecting the four endpoints and the bandwidth reserved
on each edge of the tree. For instance, 2 units of bandwidth
need to be reserved in each direction on edge (6, 11) since
the combined bandwidth requirement for endpoints 1 and 2
is 2, and the combined bandwidth for endpoints 3 and 4
is also 2. Note that the path connecting endpoints 2 and
4 in the tree is not the shortest path between them (the
shortest path between 2 and 4 consists of the following four
edges: (4, 12), (12, 9), (9, 7), (7, 2)). The same holds for VPN
endpoints 1 and 3. The problem is to develop MPLS routing
protocols for establishing the LSPs or routing paths (along
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edges of the VPN tree in Figure 1(b)) between each pair of
VPN endpoints, and that use the minimum number of labels.

We first consider the problem of devising a MPLS routing
protocol for the routing paths with a stack depth of only 1. Our
protocol requires 4 labels, one label Li for each VPN endpoint
i. Further, every network node simply forwards each incoming
packet with label Li along the outgoing edge in the direction
of endpoint i (without popping the label). For example, when
node 6 in Figure 1(b) encounters a packet with either label L3
or L4, it forwards the packet with the same label (L3 or L4)
along edge (6, 11). Similarly, packets with labels L1 and L2
are forwarded by 6 along edges (6, 5) and (6, 7), respectively.
The following table depicts, for nodes 6 and 11, the actions
and outgoing edges for packets depending on the incoming
edge and label.

Node Incoming Incoming Outgoing Action
Edge Label Edge

(11, 6), (7, 6) L1 (6, 5) None
6 (5, 6), (11, 6) L2 (6, 7) None

(5, 6), (7, 6) L3, L4 (6, 11) None
(6, 11), (12, 11) L3 (11, 10) None

11 (6, 11), (10, 11) L4 (11, 12) None
(10, 11), (12, 11) L1, L2 (11, 6) None

It is straightforward to observe that an endpoint i can send
a packet to endpoint j by simply pushing a single label Lj

onto the stack. Thus, in order to implement the routing paths
between VPN endpoints with a stack depth of 1, our protocol
requires 4 labels, one per endpoint1.

We next show that by increasing the stack depth to 2, we
can implement all routing paths with only 2 labels L1 and
L2. To see this, consider the routing protocol contained in
the following table, and consisting, for all nodes, the outgoing
edge and stack-related actions for packets (∗ below denotes
the wild card entry that matches any label).

Node Incoming Incoming Outgoing Action
Edge Label Edge

5 (1, 5) ∗ (5, 6) None
(6, 5) ∗ (5, 1) None
(5, 6) L1 (6, 7) None
(7, 6) L1 (6, 5) None

6 (5, 6), (7, 6) L2 (6, 11) Pop
(11, 6) L1 (6, 5) None
(11, 6) L2 (6, 7) None

7 (6, 7) ∗ (7, 2) None
(2, 7) ∗ (7, 6) None

10 (10, 11) ∗ (3, 10) None
(3, 10) ∗ (10, 11) None
(10, 11) L1 (11, 12) None
(12, 11) L1 (11, 10) None

11 (10, 11), (12, 11) L2 (11, 6) Pop
(6, 11) L1 (11, 10) None
(6, 11) L2 (11, 12) None

12 (11, 12) ∗ (12, 4) None
(4, 12) ∗ (12, 11) None

With the above routing protocol, it is possible for every pair
of VPN endpoints to communicate with a maximum stack

1It can be shown that with a stack depth of 1, the set of routing paths
cannot be implemented with less than 3 labels.

depth of 2. For instance, to send a packet to endpoint 2,
endpoint 1 simply pushes a single label L1 onto the stack –
the routing protocol specifies that a packet with label L1 and
entering nodes 5, 6 and 7 along edges (1, 5), (5, 6) and (6, 7),
respectively, is forwarded along the edges (5, 6), (6, 7) and
(7, 2), respectively. Similarly, endpoint 1 can send a packet
to endpoint 4 by pushing label L2 onto the stack twice. In
this case, node 6, when it receives the packet on edge (5, 6),
pops the topmost label L2 and forwards the packet along edge
(6, 11), and node 11, on seeing the second label L2 at the
top of a packet arriving on edge (6, 11), forwards the packet
toward endpoint 4.

Thus, for the example tree in Figure 1(b), it follows that
increasing the stack depth from 1 to 2 causes a reduction in
the label size from 4 to 2, when implementing all the routing
paths for the tree.
B. System Model

Before describing the precise problems involving the label
size/stack depth trade-off that we tackle in this paper, let us
formalize the model. Each packet carries a stack of labels. The
labels are drawn from a set Σ of size L, which is identified
with the set {1, 2, · · · , L}.

The network is an undirected graph G = (V,E), where each
node is a router and runs a routing protocol. When a packet
reaches a router v on edge e = {u, v}, the router pops the top
of the stack and examines it. (If the stack is empty, the packet
should be destined for v.) The protocol at vertex v is just a
function f : Ev × Σ → (Ev × Σ∗), where Ev is the set of
edges incident to v. If f(e, top(Stack)) = (e′, σ), the router
pushes the string σ on the stack, and then sends the packet
along edge e′.

Note that there is no bound on the number of labels that
can be pushed on and hence, for ease of exposition, we force
the top of the stack be popped off when reaching a router.
The quantity of interest is the maximum stack depth required
for routing between any two vertices, which we denote by s.
An (L, s) protocol is one which uses O(L) labels, and has
maximum stack-depth O(s).
C. Problem Formulation

In this paper, we devise routing protocols for sending
packets between a set of n nodes along a specified set of
routing paths, one for each pair of nodes. We consider the
following two restrictions on the set of routing paths.

• ROUTING ON A LINE. In this case, the n nodes are along
a path Pn. The set of routing paths for routing packets
essentially consists of all subpaths of Pn, each subpath
carrying packets between the two endpoints of the path.
Thus, a packet between an arbitrary pair of nodes u, v on
Pn follows a route along a subpath of Pn.

• ROUTING ON A TREE. In this case, the n nodes commu-
nicate only along edges of a tree T connecting the nodes.
Thus, the set of routing paths consists of all the (unique)
paths in T between every pair of nodes in T .

Note that the above formulation for trees is more general
than the VPN tree example presented in Section I-A. In
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Section I-A, we only considered routing paths between the
leaves of the tree (that is, VPN endpoints 1, 2, 3 and 4 in
Figure 1(b)), while in the above tree routing problem, the
routing paths considered consist of the (unique) paths in the
tree between all pairs of nodes (that is paths between all the
nodes chosen from 1, . . . , 12). Clearly, the restricted model in
which we restrict the set of paths to only those that connect
a subset of nodes in the tree (e.g., leaf nodes), has numerous
practical applications that include implementation of multicast
trees [13] and VPNs [6], [15], [16] (as described in Section I-
A). While the results that we present in this paper (lower
bounds as well as routing protocols) are for general routing on
a tree, they are also applicable to scenarios in which the set
of paths is restricted to be only between specific endpoints.

A routing protocol for a line/tree essentially specifies the
actions performed by each node on the stacks of incoming
packets such that for each path in the line/tree, packets between
the endpoints traverse the path. A good routing protocol is one
that uses the minimum possible set of labels (since this would
enhance router performance), while pushing the minimum
possible number of labels on the stack for each packet (since
this would keep the packet sizes small). Unfortunately, there
is a trade-off involved here, and the two goals of minimizing
label sizes and minimizing stack depths are conflicting. This
was shown earlier in Section I-A for the example tree in
Figure 1(b). With a stack depth of 1, 4 labels, one per VPN
endpoint, were needed to route packets between the leaves of
the tree. However, with a stack depth of 2, only 2 labels were
required.

There are two natural problems that can be formulated based
on this interplay between the label size L and the maximum
stack depth s:

• FIXED STACK ROUTING: In this problem, we are given a
bound s on the depth allowed for the stack, and we want
to find a routing protocol that minimizes the number of
labels L used.

• FIXED LABEL ROUTING: This is the dual problem of
FIXED STACK ROUTING, in which we are given a fixed
set of L labels, and we want to give a routing protocol
that minimizes the maximum stack depth s used by it.

There are some obvious observations that can be made: In
any graph G, if the stack depth is bounded by 1, we clearly
need n labels, else we will not be able to even distinguish
between the n nodes of the graph. A simple extension of this
is that if the stack depth is s, we need at least L ≥ n1/s

labels; and that a label set of size L requires a stack depth of
log n/ logL. We will refer to this as the information-theoretic
bound, and in the rest of the paper, this will be the holy grail
towards which we shall strive.

However, in some cases, we can show that the information-
theoretic bound is provably weak, and that no routing protocol
can achieve these trade-offs. This should not be very surpris-
ing to the reader, since the information-theoretic bound just
ensures that we have enough space to encode the destination
of the packet; it does not account for the extremely restricted

way in which we access the information we encode in the
stack.

The nature of this restricted form of access is, however,
reflected in the next lower bound: If the graph is a tree T , the
number of labels is at least ∆ − 1, where ∆ is the maximum
degree of a vertex in T . Indeed, let v be a vertex of degree ∆,
then a packet reaching v with a non-empty stack must decide
which edge to go out on, and there are ∆ − 1 possibilities.

D. Our Contributions

In this paper, we undertake a comprehensive study of the
label size versus stack depth trade-off for MPLS routing
protocols on lines and trees. Our study involves both proving
lower bounds for fixed label and fixed stack routing, as well
as developing new routing protocols for a variety of situations.
Recall from Section I-B that an (L, s) protocol is one which
uses O(L) labels, and has maximum stack-depth O(s). The
main contributions of our work can be summarized as follows.

• NOVEL PROTOCOLS FOR FIXED STACK ROUTING: In
Section II, we first present a routing protocol for routing
on a line with maximum stack depth of s that uses only
sn1/s labels, which is quite close to the information-
theoretic bound of n1/s. The situation for trees is more
involved, and we show that the information-theoretic
bound can be very weak. Specifically, we prove that
for a stack depth of 2, as many as Ω(n2/3) labels may
be required for a tree with ∆ = n1/3, whereas the
information theoretic bound is only Ω(n1/2). To handle
this seemingly dire situation, we propose two solutions:
on one hand, we give a protocol that given a target stack
depth s, uses only O(∆ + sn1/s) labels but violates the
bound on the stack depth by a factor of 2. On the other
hand, if we are not allowed to violate the bound on the
stack depth, we show that it is possible to route on a
tree with ∆sn1/s labels.

• PROTOCOLS FOR FIXED LABEL ROUTING: As a first
step, we study routing on the path Pn. We give a routing
protocol using L labels requiring stack depth O(logL n)
only, which is within a constant factor of the information-
theoretic bound. These protocols serve as building-blocks
when we go to arbitrary trees. We use them in conjunction
with a variant of the so-called caterpillar decomposi-
tion [19], [18] of trees into paths to get a (∆+L, log2 n

log L )
routing protocol. (Recall that if the maximum degree
of a tree is ∆, then we clearly require at least ∆ − 1
labels.) Note that the latter protocol can give us stack
depth O(log2 n/ log log n) with ∆ + O(log n) labels:
we improve this protocol to get a (∆ + log log n, log n)
protocol as well. A number of the fixed label protocols
in Section III are based on concepts presented by us in
[14].

• SIMULATION RESULTS DEMONSTRATING THE

EFFECTIVENESS OF OUR PROTOCOLS: In order to
gauge the effectiveness of our protocols, we conducted
a series of simulation experiments on a broad range of
network graphs generated using the Waxman topology
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model [25]. Our simulation results in Section VI validate
our approach, demonstrating that our novel protocols
enable routing on large trees with few labels and small
stack sizes. For instance, with our protocols, it is possible
to route on a tree containing 1000 nodes with only 70
labels and a stack of depth 3! Clearly, these savings in
labels for a single tree have the potential to translate
into fairly substantial reductions in label consumption
when thousands of such trees are provisioned by service
providers (e.g., for MPLS-based VPNs).

Furthermore, in Section IV, we show that developing opti-
mal routing protocols frequently requires being able to solve
some interesting combinatorial optimization problems, most
of which turn out to be NP-hard.

On an unrelated note, we would like to point out that we
have not made significant efforts to optimize the constants
in our analyses. However, the constants involved are small,
and the algorithms underlying our protocols can be easily
implemented in practice; a claim which is vindicated by the
simulation results of Section VI.

II. FIXED STACK ROUTING

In this section, we consider the problem of routing on a line
or a tree when there is an upper bound on the stack depth s.
The objective is to minimize the number of labels used for
this routing.

A. The n-vertex path Pn

We first consider the special case where all the n vertices
lie on a single path, and let them be called 0, 1, 2, . . . , (n−1)
from left to right. It is clear to see that there is a trivial lower
bound of n1/s on the number of labels, since the stack (of
depth s) should be able to encode n distinct addresses. As an
upper bound, we prove the following theorem:

Theorem 1 Given a bound of s on the maximum stack depth,
there is a protocol for routing on the line that uses at most
sn1/s labels.

In this protocol, each label consists of a tuple 〈i, p〉. Here i
is a number between 1 and n1/s, and p is a position between
1 and s. Using these labels, we can use a stack of depth at
most s to encode any number smaller than n: we just look
at its representation in base �n1/s�, and for each non-zero
digit, we push the label corresponding to the tuple 〈value of
the digit, position from the right〉. If the stack is created so
that the positions increase from top to bottom, it is simple to
perform decrement operations by just popping the top label
and (potentially) pushing some labels on top of the stack.

For example, if n = 256 and s = 4, the encoding of
178 is 2302, the representation of 178 in base 4 = (256)1/4.
The stack corresponding to this is [〈2, 4〉, 〈3, 3〉, 〈2, 1〉], where
〈2, 1〉 is the label at the top. To decrement this, the top is
popped, and the label 〈1, 1〉 is pushed onto the stack, which
now corresponds to (2301)4 = 177.

Now if a vertex i wants to send a packet to a vertex j to
(say) its right, it encodes j − i− 1 on the stack as above, and

d

d

T

T1

c

Fig. 2. Proof of Theorem 2.

sends the packet to its neighbor to the right. (Note that since
j is to the right of i, j > i and hence the value (j − i− 1) is
between 0 and n− 1.) When a vertex receives a packet which
has a non-empty stack, it decrements the value as described
above. It is easy to see that the vertex j will get the packet
with an empty stack, and hence accept it.

B. Routing on trees

In this section, we turn our attention to routing using MPLS
on trees, trying to minimize the number of labels given a bound
s on the stack depth. In contrast to the path where O(n1/2)
labels sufficed, we show in Theorem 2 that as many as Ω(n2/3)
labels may be required, if the stack depth is bounded by 2.

To handle this seemingly dire situation, we propose two
solutions: on one hand, we give a protocol, that given a target
stack depth s, uses only O(∆ + sn1/s) labels but violates the
bound on the stack depth by a factor of 2. If we are not allowed
to violate the bound on the stack depth, we can manage with
∆sn1/s labels.

1) Lower Bounds: In this section, we will show that the
information theoretic bound of O(n1/2) is very weak for the
case when the stack depth is bounded by 2, and is in fact off
by a polynomial factor.

Theorem 2 There are trees on n vertices for which the
minimum number of labels required with stack depth 2 is
Ω(n2/3).
Proof: Consider the tree T in Figure 2. T is obtained as
follows: consider a rooted tree of depth 2 such that each
internal node has d children. Now, attach a path of length
c at all the leaves of this tree. So, T has n = O(cd2) vertices.
Let us denote the set of vertices in these paths of length c
as V ′. We shall refer to the children of the root as level one
nodes. We will only need to consider the case when the root
wants to send packets to V ′.

Fix a routing protocol which uses a stack depth of at most 2
and L labels. For each node in V ′, the root sets up a stack. Let
S be the set of all these stacks. For every depth 2 stack in S,
consider the first vertex where the label in the top of the stack
gets popped off. (If the packet has a stack of one label only,
we imagine the root popping off the top; and there can be at
most d packets starting with an empty stack.) Since there are
L labels, there must be at most L such distinct vertices — call
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these special set of nodes V ′′. Further, there must be a level
one node which has at most L/d descendants in V ′′ — let u
be this node and T1 be the subtree rooted at u. Now, u has d
different paths below it. At most L/d paths can contain a node
from V ′′. So, u must use the lower label in the stack to route to
the remaining d−L/d paths (because, no stack pop operations
occur in these paths and so, the stack depth for all packets
destined to any node in these paths must be 1). But there are
c(d − L/d) vertices in these paths. Therefore, it follows that
L ≥ c(d − L/d). This gives us that L ≥ cd2/(c + d). Now
setting c = d = n1/3 gives us the claimed bound.

This shows that we cannot even hope for a result like ∆ +
sn1/s, which we had for the path. In the next subsection, we
will give two results, one of which gets a good performance
but violates the bound on the stack depth, while the other
respects the bound but uses more labels.

2) Upper Bounds: The crucial fact at the heart of the
positive results is that for any tree T and any set S of vertices
in T , there is a separator vertex v such that deleting v breaks T
into several parts, none of these connected subtrees containing
more than |S|/2 vertices from A. Recursively finding these
separator vertices in these subtrees, the following fact can be
proved:

Proposition 3 For any tree T , a subset S with n vertices
in T , there is a subset A of at most 3n1/s vertices of T
whose deletion causes each connected subtree to have at most
n(s−1)/s vertices of S.

Before we prove this, let us prove a lemma:

Lemma 4 Given a forest F , and a subset S of n vertices in
F , by deleting at most one vertex, we can get two disjoint
subforests F1 and F2 of F such that each of these contain at
most 2/3 of the vertices of S.

Proof: Suppose each connected component of F has at most
n/3 vertices from S; then we start collecting the smallest
components of F until get between n/3 and 2n/3 vertices
of S. (We cannot directly go from below n/3 to above 2n/3,
since each piece is small.) This gives us F1, and the rest of
the trees form F2.

If one of the pieces has between n/3 and 2n/3 vertices
from S, this can be designated as F1, and the rest will be F2.
Finally, if one of the pieces has more that 2n/3 nodes from
S, we find the aforementioned separator vertex and delete it.
Now each remaining tree will have at most n/3 vertices from
S, and we can form F1 and F2 as in the first case.

Proof: (Proposition 3) To get this, we maintain a family
of vertex-disjoint subforests of T , successively breaking some
subforest until each has fewer than t = n(s−1)/s from S.
Clearly, this will imply that each tree in any forest has fewer
than t vertices, thus proving the result.

At the beginning, the family just has T itself. If the family
has some forest Fi with ni > t vertices from S, we use the
above lemma, and break it into two subforests Fi,1 and Fi,2

such that each resulting subforest Fi,j has between ni/3 and
2ni/3 vertices from S. We now remove Fi from the family
and add Fi,1 and Fi,2 to it. The process stops when all forests
have less than t vertices from S.

To count the number of vertices deleted, let us model
the above process by a tree, whose vertices are the various
subforests involved in the above process. Let T be the root of
this tree, and the children of Fi be the two forests Fi,j created
by applying lemma 4 to it. Note that each forest has exactly
two children, and hence this is a binary tree. Furthermore,
each forest at a leaf of this tree has at least t/3 vertices from
S, else its parent would not have been split. Hence there are
at most 3n/t = 3n1/s leaves in this tree, which also bounds
the number of internal nodes. However, each internal node
corresponds to at most one deleted vertex, which shows that
the set A of deleted vertices has size at most 3n1/s.

Using this, we can prove the first result. The statement of
the theorem is stronger than required, but useful for pushing
the induction through.

Theorem 5 Given any tree T , a subset S of n vertices in T ,
and a value s, there is a protocol to send messages to vertices
in S that uses stack depth at most (2s − 1) and ∆ + 3sn1/s

labels.
Proof: The proof of this proceeds by induction on s and n.
If s = 1, for any n, we can just use n distinct labels, one
for each vertex of S. To send a message to v ∈ S, the vertex
u simply places the label corresponding to v on the stack,
each intermediate vertex on the unique path sending it on to
the next, and the penultimate vertex on this path popping the
label off the stack before forwarding the message to v.

For s > 1, we use Proposition 3 to get the set A of 3n1/s

separator vertices. We will now use Theorem 5 inductively in
two different ways. Let the vertex u want to send a message to
v, and suppose there is a vertex x ∈ A that lies on the (unique)
u − v path closest to v. We can then use the above protocol
for the base case (with 3n1/s labels) to send the message to
x. The next label on the stack is one of the ∆ labels, which
tells x which one of its (at most) ∆ edges should it send the
packet out on. Now the packet is in one of the subtrees of size
≤ n(s−1)/s, and inductively, we can use stack depth at most
2(s− 1) − 1 and ∆ + 3(s− 1)n1/s labels to route within this
subtree.

Note that though the 3(s−1)n1/s labels have to be distinct
from those already used, the ∆ labels can be reused. Putting
everything together, we get the claimed bound of ∆ + 3sn1/s

labels and stack depth 2s− 1.

Note that in the above proof, we can combine the label
indicating which vertex x to go to, and the label indicating
the edge to take out of x into one label. This increases the
size of the labels to ∆ × sn1/s, and hence gives the second
positive result of the section:

Theorem 6 Given a tree T with n vertices, and maximum
degree ∆, it is possible to achieve stack depth s with ∆sn1/s

labels.
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Note that Theorem 5 can be massaged to give another
procedure for routing on the line with maximum stack depth
s and sn1/s labels, giving another proof of Theorem 1.

III. FIXED LABEL ROUTING

In this section, we are given a fixed number L of labels,
and we want to devise protocols that use as little stack
depth as possible. We begin by showing that we can achieve
very good bounds on a line; furthermore, the algorithm we
develop for a line is simple and easy to implement. We then
extend this algorithm to get good routing schemes on trees.
The algorithms described in this section are based on ideas
presented by us in [14].

A. Routing on a Line

We begin by considering the case when we just have two
labels. The information theoretic bound says that log2 n bits
are required. This can clearly be achieved when the routers
can look at all the bits of the address. However, in the MPLS
model, where each router can look at just a single bit (without
even knowing its bit position), it is perhaps surprising that we
can perform routing with 3 log2 n stack depth.

Since the direction of travel of the packet is decided by
which edge it enters the vertex, it is enough to give a procedure
to send a packet from left to right. Let the vertices on the path
Pn be numbered 0, 1, . . . , n − 1, and let the two labels be 0
and 1. Direct all edges in Pn from left to right, and assign
label 0 to these edges. Now add some new directed edges E′

to this graph, each edge in E′ being also directed from left
to right, such that each vertex v has at most one edge in E′

going out of it. Assign each edge in E′ the label 1. It can
be shown that there is a way of constructing E′ such that the
edge set E′ ∪ Pn satisfies the following two properties :

• Low-diameter Property: For any two vertices u < v,
there is a directed path from u to v of length at most
3 log n.

• Nesting Property : Let u < u′ < u′′ be three distinct
vertices on the line ordered from left to right. If (u, u′′)
and (u′, v′) are two directed edges in E′, then v′ does not
lie to the right of u′′, i.e., v′ ≤ u′′. Essentially, no two
edges in E′ cross each other; either they span disjoint
portions of the line, or one is contained within the other.

One such example for n = 16 is shown in Figure 3,
where the solid edges are labeled 0, and the dotted edges are
labeled 1. Note the recursive structure of the construction: to
build a graph G2k on 2k nodes, take 2 copies of the graph
G2k−1 on 2k−1 nodes and attach them in series. (A graph
on 2 nodes is just a single arc.) This gives a graph on 2k − 1
vertices. Now we take a new vertex and attach it to the leftmost
vertex by an arc labeled 0, and to the rightmost vertex by an
arc labeled 1. This new vertex becomes vertex 0 in the new
graph G2k , and the other vertices get suitably renumbered. In
general, a graph Gn on n nodes is obtained by taking a graph
on 2�log2 n� nodes, and retaining only the leftmost n nodes.

The nesting property ensures the following fact in Pn ∪E′

for shortest paths defined in terms of the number of hops,
which we state without proof.

Lemma 7 Let u < u′ < v′ < v be four distinct nodes on the
line Pn. If the shortest path P from u to v in Pn ∪E′ contains
v′, then the shortest path from u′ to v contains v′.

We next describe the actual routing protocol. Given a node
u and a stack of labels l0, . . . , lr (l0 being on the top), we
define the path defined by the stack by the sequence of edges
obtained by starting from u and following the edges labeled
l0, . . . , lr. If u wants to send a packet to node v (u < v),
the stack is initialized so that the path defined by the stack
is a shortest path from u to v. Furthermore, we maintain the
invariant that when a node u′ receives the packet, the path
defined by the stack at that point is a shortest path from u′

to v. Now the Low-diameter property ensures that the stack
depth is at most 3 log n.

We now show how to maintain the invariant. Let the packet
be at u′ and let the edges labeled 0 and 1 originating from
u′ be e0 = (u′, u′′) and e1 = (u′, u′′′) respectively. (If there
is no label 1 edge from u′, the argument gets even simpler).
Note that edge e0 ∈ P and e1 ∈ E′. Thus, a packet can be
forwarded along e0 but not along e1. Suppose the top of the
stack contains label 0. Then u′ simply pops this label and
sends the packet to u′′, which must be the next vertex on the
path. Since the path defined by the stack when it was at u′

contained u′′, it is easy to show that the path defined by the
stack when it is at u′′ is also a shortest path from u′′ to v.
Otherwise, the top of the stack has a 1. In this case, u′ pops
this label and pushes a set of labels which encode a shortest
path from u′′ to u′′′. Lemma 7 ensures that the shortest path
from u′′ to v contains u′′′ as an intermediate node, which
implies that the path defined by the stack when it reaches u′′

is also a shortest path from u′′ to v, maintaining the invariant.
In fact, the above process to forward a packet so as to

maintain the invariant is extremely simple. As always, if a
router gets a packet, and the stack is not empty, it performs
the actions described below and sends it out on the other edge.
Each router pops off a 0 if it sees one on top of the stack;
the difference is in the handling of the 1’s. If the router has
outdegree 1, it just pops off the 1 (and in fact, such a vertex
will never see a 1); if it has outdegree 2, it replaces it by two
1’s.

The following theorem follows from the above discussion:

Theorem 8 There is a protocol for routing on the n-vertex
path which uses 2 labels and stack depth at most 3 log n.

It is trivial to encode the top O(logL) labels on the stack in
a label of size L, and hence we can use the above protocol to
get the following theorem:

Theorem 9 There is a protocol for routing on the n-vertex
path which uses L labels and stack depth at most O(logL n),
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which is within a constant factor of the information-theoretic
bound.

B. Routing on a Tree

The task of defining a routing protocol on a tree like a path
or a star is much facilitated by their structural simplicity; how-
ever, things tend to get more complicated as the “complexity”
of the tree grows. A very useful notion of complexity of a tree
is the spider dimension κ(T ) of a tree.

Suppose our tree was a set of paths joined together at a
single vertex, which we call a spider. (E.g., look at Figure 4.)
To send a packet on this tree from u to v, we could use the
protocol for routing on the line to send the packet from u
to the root r, and then from r to v. The depth of the stack
would be (about) twice the stack depth for routing on a single
path. Note that this generalizes very well: suppose we could
decompose the tree into paths such that the number of paths
seen on the unique path between any two points was bounded
by k, we could use the same idea to route, and the stack depth
would be at most k times the stack depth to route on a line.
(We will see later that we can do better than a factor k increase
in stack depth.)

This idea is at the heart of a spider decomposition: it
decomposes the tree into spiders such that at most κ(T )
different spiders are seen while traveling between any two
vertices of the tree. Given a tree T with l leaves, a spider
decomposition of T is a set of spiders C1, . . . , Ct such that
each spider Ci is a subgraph of T , and each edge of E appears
in exactly one of the spiders. The spider dimension2 of a tree

2We use this term at the risk of confusing the arthropod food-chain, since
these are often called caterpillar decompositions in the literature.
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κ(T ) is the smallest number t such that there exists a spider
decomposition of T into t spiders. Figure 5 gives an example.
There is a well known theorem which states that the spider
dimension of any tree is at most log l ≤ log n. To find this
decomposition, take a rooted tree with l leaves and find a
set of spiders such that deleting their edges leaves a forest
with each subtree having at most l/2 leaves. (The details can
be found in [18], [19], and the algorithm can be very easily
implemented.)

This immediately gives us the following theorem:

Theorem 10 Given a tree T with maximum degree ∆, there
exists a routing protocol for T which uses ∆ + L labels,
and in which the stack depth is at most (logL n) κ(T ) =
O(log2 n/ logL).

For the special case of L = log n, Theorem 10 gives us a
stack depth of O(log2 n/ log log n). For this case of L = log n,
we can get a stack depth of O(log n) using the algorithm in
the proof of Theorem 5. However, this is not the best we
can do, and we can improve on this to get a protocol with
L = 2 log log n and stack depth O(log n). Admittedly, this
does not fit into the model where L is specified; however,
2 log log n is smaller than 12 for all reasonably sized networks,
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and these results show that if we are dealing with bounded
degree trees, we can achieve a logarithmic stack depth with
very few labels.

Theorem 11 There exists a (∆ + log log n, log n) routing
protocol for trees.

The proof of Theorem 11 looks closely at the properties of
spider decompositions, and uses these to reduce the number
of labels used. The detailed proof, which we omit for lack of
space, appears in a separate paper. We would like to point out
that despite the slight complexity of the proof, the protocol is
fairly simple and can be easily and efficiently implemented; we
give simulation results for the above algorithm in Section VI.

IV. HARDNESS

The above approaches suggest a few natural optimization
problems, all of which turn out to be NP-hard.

The first problem we define is MINIMUM LABELS, which
is a special case of FIXED DEPTH ROUTING. In this, we are
given a graph G, a source node r, and a subset of vertices
S. The objective is to find smallest size set of labels such
that r can send messages to all the vertices in S on shortest-
paths using stacks of depth at most 2. We state the following
theorem without proof.

Theorem 12 The problem MINIMUM LABELS is NP-hard.

The second natural problem, which is inspired by our con-
structions in Section II-B, is MINIMUM SHATTERING SET. In
this problem, the input is a graph G and a number K, and the
objective is to find the smallest set of vertices S in G whose
removal breaks the graph into connected components, each of
size at most K. Any feasible solution S to this problem can
be used to route using stack depth s = 2 and K + |S| labels.

This problem also turns out to be NP-hard, since the case
where K = 1 is the VERTEX COVER problem, which is NP-
hard. Furthermore, if the number of vertices in G is n, the
case K = n/2 is the NP-hard GRAPH BISECTION problem,
for which the best known algorithms can only guarantee a
solution within O(log2 n) of the optimum value.

V. RELATED WORK

Distributed packet routing problems in networks has been
widely studied, e.g., see [9], [10], [22], [5], or [11] for a survey
of some of the issues and techniques. In these papers, the
emphasis has been to reduce the sizes of the routing tables
and the sizes of the packet headers while performing near-
shortest path routing. Our work is incomparable to this line
of work. In MPLS, setting up the initial stack may require
more memory than conventional routing problems, but once
the stack is set up, the memory needed by each router to just
forward the packets is very small.

There has also been lot of work on finding sparse spanners
of graphs [1], [3]. However, these results are interesting only
when the graph is not sparse, whereas the problems we address
in this paper are non-trivial even for bounded degree graphs.

Another different (but related) large corpus of work has
studied the problem of distance labeling of graphs [26], [21],
[12]. Distance labeling problem involves assigning short labels
to vertices, so that an algorithm given the labels of any
two vertices in the graph can deduce the shortest distance
between them. (Note that the algorithm does not have any
other knowledge of the graph). Although this appears to be
similar to problem, they turn out to be technically quite
disparate.

To begin with, the distance labeling problem is trivial when
the input is a path, but finding good MPLS routing schemes
for the path is already non-trivial. In the case of trees, the
proof that all trees have O(log2 n) size distance labels [21]
relies on balanced vertex separators. This concept can be used
to give a (∆ + log n, log n) MPLS routing scheme on trees,
but there is no obvious way to improve this result. However,
our techniques allow us to get a better (∆ + log logn, log n)
MPLS scheme.

VI. EXPERIMENTAL RESULTS

We now describe the simulation results obtained from
implementing our routing protocols. The major findings of our
study can be summarized as follows :

• If we restrict ourselves to unit stack depth, then the
number of labels needed can be as large as the number
of nodes. Our study confirms the fact that having a stack
depth greater than 1 can lead to a significant reduction in
the number of labels needed. For instance, on trees with
1000 nodes, we found that increasing the stack depth
from 1 to 3 decreased the number of labels from 1000
to about 70, which is more than a 90% reduction in
the number of labels. Although this difference may not
seem significant for a single provisioned tree network
(after all, a router can easily maintain 1000 labels), but
consider a scenario where several hundred VPN trees are
provisioned over the same network. Here, such savings
for a single VPN network can translate to significant
savings of labels.

• If we are constrained by the number of labels for a
provisioned tree (again this can happen if there are many
such trees which need to be provisioned using MPLS),
then our experimental results show that we can deal with
this by increasing the stack depth slightly.

A. Network Generation Models

We tested our algorithms on two different network models.
One network generator was based on the work by Waxman
[25], the other by Fatoutsos et. al. [8]. For both models, we
generated graphs containing 1000 nodes in our experiments.
We then constructed a spanning tree by chosing a node at
random and building the shortest path tree out of it. Observe
that the shortest path tree is recommended for provisioning
VPN networks in Kumar et. al. [16].

• Waxman Model. [25] In this model, nodes are placed on
a plane, and the probability for two nodes to be connected
by a link decreases exponentially with the Euclidean
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distance between them. In our experiments, we used two
different sets of values for the parameters which control
the density of short edges in the network, α, and the
average node degree, β. In one set of experiments, we
set these values to 0.4 and 0.02 respectively, and in the
other set, we set these to 0.6 and 0.04 respectively.

• Power Law Model. [8] In this model, the node con-
nectivity follows a power-law rule: very few nodes have
high connectivity, and the number of nodes with lower
connectivity increases exponentially as the connectivity
decreases. This model is based on Internet measurements,
where a node is an autonomous system. Again, we
used two different values for the average edge density
parameter, m. We set m to 2 and 4.

B. Experimental Results

We carried out two sets of experiments. In one case, we
studied the effect of varying stack depth on the number of
labels needed. In the other case, we studied the effect of
varying the number of labels on the stack depth needed.

• Fixed Stack Routing. The algorithms described in Sec-
tion II work well when the stack depth is very small.
We implemented the algorithm inherent in the proof of
Theorem 5. This algorithm runs in O(s2n) time, where
s is the stack depth. Considering s as a constant, we
see that this algorithm is also very efficient. Figure 6
depicts the results obtained by running this algorithm.
¿From the results, it follows that even small increases in
the stack size can result in huge savings (close to 90%) in
the number of labels. For instance, increasing the stack
depth from 1 to 3 causes the number of labels needed
for routing on the tree to decrease from 1000 to barely
70. Also, observe that initial increases in the stack depth
result in bigger reductions in label sizes.

• Fixed Label Routing. The algorithm inherent in Theo-
rem 10 allows us to control the number of labels. Hence,
it is suitable when we have very limited number of
labels. Observe that the maximum degree of the tree,
∆ is a lower bound on the number of labels needed.
For the sake of comparing different sets of experiments,
we subtract the quantity ∆ from the number of labels
needed in the plots (the actual value of ∆ in the different
cases is mentioned on the plots). Figure 7 illustrates the
results obtained. Note that even small initial increases in
label sizes (beyond maximum degree) result in substantial
decreases in the stack depth required for routing.

VII. CONCLUDING REMARKS

In this paper, we conducted a comprehensive theoretical
study of the label size versus stack depth trade-off for MPLS
routing protocols on lines and trees. Specifically, we developed
routing algorithms and proved lower bounds for two basic
problems: (1) FIXED STACK ROUTING: Given a bound on the
stack depth, we want to minimize the number of labels used,
and (2) FIXED LABEL ROUTING: Given a fixed number of
labels, we want to minimize the stack depth. The protocols
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proposed in the paper minimize resource utilization, and are
efficient, practical, and simple to implement. Further, our
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simulation results indicate that the protocols perform well in
practice and enable MPLS routing on large trees with few
labels and small stack sizes. Consequently, our protocols have
numerous practical applications that include implementation
of multicast trees [13] and virtual private networks [6], [15],
[16] using MPLS as the underlying signalling mechanism.
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