Exploring the Trade-off Between Label Size and
Stack Depth in MPLS Routing

Anupam Gupta
Department of Computer Science
Carnegie Mellon University
Pittsburgh PA 15213
Email : anupamg @cs.cmu.edu

Abstract— Multiprotocol Label Switching or MPLS technology
is being increasingly deployed by several of the largest Internet
service providers to solve problems such as traffic engineering
and to offer IP services like Virtual Private Networks (VPNs).
In MPLS, the analysis of the packet (network layer) header
is performed just once, and each packet is assigned a stack of
labels, which is examined by subsequent routers when making
forwarding decisions.

Despite the fact that MPLS is becoming widespread on the
Internet, we know essentially very little about the performance
one can achieve with it, and about the intrinsic trade-offs in its
use of resources. In this paper, we undertake a comprehensive
study of the label size versus stack depth trade-off for MPLS
routing protocols on lines and trees. We show that in addition
to LSP tunneling, label stacks can also be used to dramatically
reduce the number of labels required for setting up MPLS LSPs
in a network. Based on this observation, we develop routing
algorithms and prove lower bounds for two basic problems: (1)
FIXED LABEL ROUTING: Given a fixed number of labels, we want
to minimize the stack depth, and (2) FIXED STACK ROUTING:
Given a bound on the stack depth, we want to minimize the
number of labels used. Our simulation results validate our
approach, demonstrating that our novel protocols enable MPLS
routing on large trees with few labels and small stack sizes.
Thus, our MPLS routing algorithms are applicable to a number
of practical scenarios involving the provisioning of VPNs and
multicast trees.

I. INTRODUCTION

In most conventional packet-based network routing pro-
tocols, a packet makes its way from source to destination
in essentially the following way. When a router gets the
packet, it analyzes the packet header and decides the next hop
for it. These decisions are made locally and independently
of other routers, based solely on the analysis of the packet
header, which contains the destination address. For example,
routers using conventional IP forwarding typically look for
a longest-prefix match to the entries in the routing table to
decide the next hop. In general, each router has to extract
out the information relevant to it from the (much longer)
packet header. Furthermore, routers are not designed to use
information about the source of the packets from these headers
for forwarding purposes.

An alternative proposed to this routing model by the IETF
is called MultiProtocol Label Switching or MPLS [7], [17].
In this, the analysis of the packet (network layer) header is

0-7803-7753-2/03/$17.00 (C) 2003 IEEE

Amit Kumar
Bell Laboratories
600 Mountain Avenue
Murray Hill NJ 07974
Email : amitk @research.bell-labs.com

Rajeev Rastogi
Bell Laboratories
600 Mountain Avenue
Murray Hill NJ 07974
Email : rastogi@research.bell-labs.com

performed just once, and causes the packet to be assigned a
stack of labels, where the labels are usually much smaller than
the packet headers themselves [24], [23]. At each subsequent
hop, the router examines the label at the the fop of the label
stack, and makes the decision for the next hop based solely
on that label. It can then pop this label off the stack if it so
desires, and push on zero or more labels onto the stack, before
sending it on its merry way. (We shall refer to this as label
replacement, and the path followed by the packet as a Label
Switched Path (LSP).) Note that there is no further analysis of
the network layer header by any of the subsequent routers.

There are a number of advantages of this over conventional
network layer forwarding, the obvious one being the above-
mentioned elimination of header analysis at each hop. A more
significant benefit, however, is that since we analyze the header
and assign the stack to the packet when it enters the network,
the ingress router may use any additional information about
the packet to route packets differently to satisfy different QoS
requirements. For example, data for time-sensitive applications
may be sent along faster but more expensive LSPs than regular
data. Also, the ingress router can encode information about
the source as well as the destination in the labels, which
cannot be done with conventional forwarding. Apart from
these factors improving network performance, explicitly routed
MPLS LSPs also make it much easier to do traffic engineering
compared to conventional routing schemes, since the entire
route taken by the packet can be specified very naturally
on the stack [2]. All these reasons have made MPLS very
popular among network and router designers, and companies
like Cisco, Juniper, Lucent and Nortel have been developing
routers which support MPLS protocols [4], [20].

Despite the fact that MPLS is becoming widespread on the
Internet, we essentially know very little about the performance
one can achieve with it, and about the intrinsic trade-offs in
its use of resources. For instance, in [24], the label stack
was introduced into the MPLS framework to allow multiple
LSPs to be aggregated into a single LSP tunnel. However, an
important observation that we make in this paper, is that label
stacks can also be used to dramatically reduce the number
of labels required for setting up MPLS LSPs in a network.
To the best of our knowledge, this benefit of label stacks has
not been pointed out before, and this is one of the primary

IEEE INFOCOM 2003

contributions of our work. In addition, we provide answers to
several pertinent questions like: What is the depth of the stack
required for routing in an n-node network, and how does this
interact with the label size?

We note here that there are a number of scalability and
performance related reasons for reducing the size of the label
space. First, there is a growing interest among several of
the largest service providers (e.g., AT&T) to use MPLS for
providing Virtual Private Network (VPN) services. Offering
these MPLS-based VPN services to thousands of customers
would require the service provider to set up and manage
thousands of MPLS LSPs connecting the VPN endpoints (this
is specially true for Layer 2 MPLS VPNs and VPN services
based on the overlay model which are predominant today [7]).
Clearly, since only 20 bits of each 32-bit label stack entry
are available for encoding the label, the label space cannot
exceed 220; the implication here is that for scalability, the
label space must be conserved to the greatest extent possible.
A second reason for having a small label space is to reduce
the size of the forwarding table used by each label switching
router to make label replacement and forwarding decisions
for each incoming label. A smaller forwarding table helps to
lower memory requirements at routers and also enables them
to switch packets faster.

From the above discussion, it follows that smaller label sizes
are critical for achieving better scalability and performance.
However, as we show in this paper, smaller label sizes are
obtained at the expense of deeper stacks. Deep stacks are
undesirable since each stack entry is 32 bits, and longer stacks
increase the space requirements in IP packet headers. Thus,
the two goals of smaller labels and smaller stacks oppose
each other, and the trade-offs involved are non-trivial. The
protocols for routing a set of MPLS LSPs that we develop
in this paper explore these trade-offs, and attempt to strike a
balance between smaller labels and smaller stacks. Previous
papers on routing do not address such questions, and it is not
clear whether the information theoretic bounds are close to the
truth.

Note that a very important restriction while designing these
routing protocols is that the routers can only look at the top of
the stack to decide the next hop (as well as the set of labels
to push on the stack). We quote the following paragraph from
[24]:

The processing is always based on the top label,
without regard for the possibility that some number
of other labels may have been “above it” in the past,
or that some number of other labels may be below it
at present.

Further, routers maintain a distinct label switching forward-
ing table for each interface, and thus the next hop decision is
made based on the incoming edge on which the packet was
received and the label on the top of the stack.

A. Motivating Example — VPN Provisioning in the Hose Model

We illustrate the label size/stack depth trade-off based on
a practical scenario involving provisioning a single MPLS

0-7803-7753-2/03/$17.00 (C) 2003 IEEE

VPN in the hose model [6], [15], [16]. (In practice, a service
provider may provision thousands of such VPNs). In the hose
model, each VPN endpoint specifies a pair of bandwidths —
an ingress bandwidth and an egress bandwidth. The ingress
bandwidth for an endpoint specifies the maximum incoming
traffic from all the other VPN endpoints into the endpoint,
while the egress bandwidth is the maximum amount of traffic
the endpoint can send to the other VPN endpoints. In [16],
the authors showed that using a tree structure to connect VPN
endpoints results in efficient utilization of network bandwidth
since it enables bandwidth to be shared between VPN end-
points. The authors also propose algorithms for computing
VPN trees that minimize the reserved bandwidth, and suggest
that MPLS be used to set up LSPs between each pair of VPN
endpoints along edges of the VPN tree. Further, since the paths
connecting a pair of endpoints in the tree may not correspond
to the shortest path between the endpoints, the authors point
out that path setup will need to rely on the explicit routing
capabilities of either RSVP-TE or CR-LDP [7]. However, the
authors do not address the important problems of how labels
are allocated to the LSPs connecting the VPN endpoints, or
how the label stacks for the various LSPs are initialized and
manipulated. Below, we use a concrete example to illustrate
the issues that arise in developing routing protocols for the
LSPs that connect the VPN endpoints.

1(D) 2(

1(1)

2(1)

® ®
5 6 7
8 9
10 < 12
o o
3(1) 4(1) 3(1) 4(1)
(a) Network graph (b) Optimal VPN tree
Fig. 1. Routing along paths in a VPN tree using MPLS

Consider the network graph depicted in Figure 1(a). The
four VPN endpoints 1, 2, 3 and 4 are shown in the figure using
shaded nodes, and each VPN endpoint has equal ingress and
egress bandwidths of 1. Figure 1(b) illustrates the optimal VPN
tree connecting the four endpoints and the bandwidth reserved
on each edge of the tree. For instance, 2 units of bandwidth
need to be reserved in each direction on edge (6,11) since
the combined bandwidth requirement for endpoints 1 and 2
is 2, and the combined bandwidth for endpoints 3 and 4
is also 2. Note that the path connecting endpoints 2 and
4 in the tree is not the shortest path between them (the
shortest path between 2 and 4 consists of the following four
edges: (4,12),(12,9),(9,7),(7,2)). The same holds for VPN
endpoints 1 and 3. The problem is to develop MPLS routing
protocols for establishing the LSPs or routing paths (along

IEEE INFOCOM 2003

edges of the VPN tree in Figure 1(b)) between each pair of
VPN endpoints, and that use the minimum number of labels.

We first consider the problem of devising a MPLS routing
protocol for the routing paths with a stack depth of only 1. Our
protocol requires 4 labels, one label L; for each VPN endpoint
1. Further, every network node simply forwards each incoming
packet with label L; along the outgoing edge in the direction
of endpoint ¢ (without popping the label). For example, when
node 6 in Figure 1(b) encounters a packet with either label Ls
or Ly, it forwards the packet with the same label (L3 or Ly)
along edge (6,11). Similarly, packets with labels L; and Lo
are forwarded by 6 along edges (6,5) and (6, 7), respectively.
The following table depicts, for nodes 6 and 11, the actions
and outgoing edges for packets depending on the incoming
edge and label.

Node Incoming Incoming | Outgoing | Action
Edge Label Edge

(11,6),(7,6) Ly (6,5) None

6 (5,6), (11,6) Lo (6,7) None

(5,6),(7,6) L3, Ly (6,11) None

(6,11),(12,11) Ls (11,10) None

11 (6,11), (10, 11) Ly (11,12) None

(10, 11), (12,11) Ly, L (11,6) None

It is straightforward to observe that an endpoint ¢ can send
a packet to endpoint j by simply pushing a single label L;
onto the stack. Thus, in order to implement the routing paths
between VPN endpoints with a stack depth of 1, our protocol
requires 4 labels, one per endpoint!.

We next show that by increasing the stack depth to 2, we
can implement all routing paths with only 2 labels L; and
Ly. To see this, consider the routing protocol contained in
the following table, and consisting, for all nodes, the outgoing
edge and stack-related actions for packets (+ below denotes
the wild card entry that matches any label).

Node Incoming Incoming | Outgoing | Action
Edge Label Edge

5 (1,5) * (5,6) None
(6,5) * (5,1) None

(5,6) L1 6,7) None

(7,6) L, (6,5) None

6 (5,6),(7,6) Lo (6,11) Pop
(11,6) Ly (6,5) None

(11,6) Lo 6,7) None

7 (6,7) * (7,2) None
(2,7) * (7,6) None

10 (10,11) * (3,10) None
(3,10) ¥ (10,11) | None

(10, 11) I (11,12) | None

(12,11) L, (11,10) None

11 [(10,11), (12, 11) Lo (11,6) | Pop
(6,11) I (IT,10) | None

(6,11) Lo (11,12) | None

12 (11,12) * (12,4) None
(4,12) * (12,11) | None

With the above routing protocol, it is possible for every pair
of VPN endpoints to communicate with a maximum stack

't can be shown that with a stack depth of 1, the set of routing paths
cannot be implemented with less than 3 labels.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE

depth of 2. For instance, to send a packet to endpoint 2,
endpoint 1 simply pushes a single label L; onto the stack —
the routing protocol specifies that a packet with label L; and
entering nodes 5, 6 and 7 along edges (1,5), (5,6) and (6,7),
respectively, is forwarded along the edges (5,6), (6,7) and
(7,2), respectively. Similarly, endpoint 1 can send a packet
to endpoint 4 by pushing label Ly onto the stack twice. In
this case, node 6, when it receives the packet on edge (5,6),
pops the topmost label Ly and forwards the packet along edge
(6,11), and node 11, on seeing the second label Lo at the
top of a packet arriving on edge (6, 11), forwards the packet
toward endpoint 4.

Thus, for the example tree in Figure 1(b), it follows that
increasing the stack depth from 1 to 2 causes a reduction in
the label size from 4 to 2, when implementing all the routing
paths for the tree.

B. System Model

Before describing the precise problems involving the label
size/stack depth trade-off that we tackle in this paper, let us
formalize the model. Each packet carries a stack of labels. The
labels are drawn from a set X of size L, which is identified
with the set {1,2,---,L}.

The network is an undirected graph G = (V, E'), where each
node is a router and runs a routing protocol. When a packet
reaches a router v on edge e = {u, v}, the router pops the top
of the stack and examines it. (If the stack is empty, the packet
should be destined for v.) The protocol at vertex v is just a
function f : E, x ¥ — (F, x X*), where E, is the set of
edges incident to v. If f(e,top(Stack)) = (¢’,0), the router
pushes the string o on the stack, and then sends the packet
along edge €.

Note that there is no bound on the number of labels that
can be pushed on and hence, for ease of exposition, we force
the top of the stack be popped off when reaching a router.
The quantity of interest is the maximum stack depth required
for routing between any two vertices, which we denote by s.
An (L, s) protocol is one which uses O(L) labels, and has
maximum stack-depth O(s).

C. Problem Formulation

In this paper, we devise routing protocols for sending
packets between a set of n nodes along a specified set of
routing paths, one for each pair of nodes. We consider the
following two restrictions on the set of routing paths.

¢ ROUTING ON A LINE. In this case, the n nodes are along
a path P,. The set of routing paths for routing packets
essentially consists of all subpaths of P,, each subpath
carrying packets between the two endpoints of the path.
Thus, a packet between an arbitrary pair of nodes u, v on
P, follows a route along a subpath of P,.

e ROUTING ON A TREE. In this case, the n nodes commu-
nicate only along edges of a tree 1" connecting the nodes.
Thus, the set of routing paths consists of all the (unique)
paths in 7" between every pair of nodes in 7.

Note that the above formulation for trees is more general
than the VPN tree example presented in Section I-A. In

IEEE INFOCOM 2003

Section I-A, we only considered routing paths between the
leaves of the tree (that is, VPN endpoints 1, 2, 3 and 4 in
Figure 1(b)), while in the above tree routing problem, the
routing paths considered consist of the (unique) paths in the
tree between all pairs of nodes (that is paths between all the
nodes chosen from 1, ... ,12). Clearly, the restricted model in
which we restrict the set of paths to only those that connect
a subset of nodes in the tree (e.g., leaf nodes), has numerous
practical applications that include implementation of multicast
trees [13] and VPNs [6], [15], [16] (as described in Section I-
A). While the results that we present in this paper (lower
bounds as well as routing protocols) are for general routing on
a tree, they are also applicable to scenarios in which the set
of paths is restricted to be only between specific endpoints.

A routing protocol for a line/tree essentially specifies the
actions performed by each node on the stacks of incoming
packets such that for each path in the line/tree, packets between
the endpoints traverse the path. A good routing protocol is one
that uses the minimum possible set of labels (since this would
enhance router performance), while pushing the minimum
possible number of labels on the stack for each packet (since
this would keep the packet sizes small). Unfortunately, there
is a trade-off involved here, and the two goals of minimizing
label sizes and minimizing stack depths are conflicting. This
was shown earlier in Section I-A for the example tree in
Figure 1(b). With a stack depth of 1, 4 labels, one per VPN
endpoint, were needed to route packets between the leaves of
the tree. However, with a stack depth of 2, only 2 labels were
required.

There are two natural problems that can be formulated based
on this interplay between the label size L and the maximum
stack depth s:

o FIXED STACK ROUTING: In this problem, we are given a
bound s on the depth allowed for the stack, and we want
to find a routing protocol that minimizes the number of
labels L used.

o FIXED LABEL ROUTING: This is the dual problem of
FIXED STACK ROUTING, in which we are given a fixed
set of L labels, and we want to give a routing protocol
that minimizes the maximum stack depth s used by it.

There are some obvious observations that can be made: In
any graph G, if the stack depth is bounded by 1, we clearly
need n labels, else we will not be able to even distinguish
between the n nodes of the graph. A simple extension of this
is that if the stack depth is s, we need at least L > nl/s
labels; and that a label set of size L requires a stack depth of
logn/log L. We will refer to this as the information-theoretic
bound, and in the rest of the paper, this will be the holy grail
towards which we shall strive.

However, in some cases, we can show that the information-
theoretic bound is provably weak, and that no routing protocol
can achieve these trade-offs. This should not be very surpris-
ing to the reader, since the information-theoretic bound just
ensures that we have enough space to encode the destination
of the packet; it does not account for the extremely restricted

0-7803-7753-2/03/$17.00 (C) 2003 IEEE

way in which we access the information we encode in the
stack.

The nature of this restricted form of access is, however,
reflected in the next lower bound: If the graph is a tree T, the
number of labels is at least A — 1, where A is the maximum
degree of a vertex in 7. Indeed, let v be a vertex of degree A,
then a packet reaching v with a non-empty stack must decide
which edge to go out on, and there are A — 1 possibilities.

D. Our Contributions

In this paper, we undertake a comprehensive study of the
label size versus stack depth trade-off for MPLS routing
protocols on lines and trees. Our study involves both proving
lower bounds for fixed label and fixed stack routing, as well
as developing new routing protocols for a variety of situations.
Recall from Section I-B that an (L, s) protocol is one which
uses O(L) labels, and has maximum stack-depth O(s). The
main contributions of our work can be summarized as follows.

e NOVEL PROTOCOLS FOR FIXED STACK ROUTING: In
Section II, we first present a routing protocol for routing
on a line with maximum stack depth of s that uses only
snl/s labels, which is quite close to the information-
theoretic bound of n'/*. The situation for trees is more
involved, and we show that the information-theoretic
bound can be very weak. Specifically, we prove that
for a stack depth of 2, as many as Q(n?/3) labels may
be required for a tree with A = n'/?, whereas the
information theoretic bound is only ©(n'/2). To handle
this seemingly dire situation, we propose two solutions:
on one hand, we give a protocol that given a target stack
depth s, uses only O(A + sn'/*) labels but violates the
bound on the stack depth by a factor of 2. On the other
hand, if we are not allowed to violate the bound on the
stack depth, we show that it is possible to route on a
tree with Asn!/* labels.

e PROTOCOLS FOR FIXED LABEL ROUTING: As a first
step, we study routing on the path P,,. We give a routing
protocol using L labels requiring stack depth O(log; n)
only, which is within a constant factor of the information-
theoretic bound. These protocols serve as building-blocks
when we go to arbitrary trees. We use them in conjunction
with a variant of the so-called caterpillar decomposi-
tion [19], [18] of trees into paths to get a (A + L, l&g;L”)
routing protocol. (Recall that if the maximum degree
of a tree is A, then we clearly require at least A — 1
labels.) Note that the latter protocol can give us stack
depth O(log® n/loglogn) with A + O(logn) labels:
we improve this protocol to get a (A + loglogn,logn)
protocol as well. A number of the fixed label protocols
in Section III are based on concepts presented by us in
[14].

e SIMULATION RESULTS DEMONSTRATING THE
EFFECTIVENESS OF OUR PROTOCOLS: In order to
gauge the effectiveness of our protocols, we conducted
a series of simulation experiments on a broad range of
network graphs generated using the Waxman topology

IEEE INFOCOM 2003

model [25]. Our simulation results in Section VI validate
our approach, demonstrating that our novel protocols
enable routing on large trees with few labels and small
stack sizes. For instance, with our protocols, it is possible
to route on a tree containing 1000 nodes with only 70
labels and a stack of depth 3! Clearly, these savings in
labels for a single tree have the potential to translate
into fairly substantial reductions in label consumption
when thousands of such trees are provisioned by service
providers (e.g., for MPLS-based VPNs).

Furthermore, in Section IV, we show that developing opti-
mal routing protocols frequently requires being able to solve
some interesting combinatorial optimization problems, most
of which turn out to be NP-hard.

On an unrelated note, we would like to point out that we
have not made significant efforts to optimize the constants
in our analyses. However, the constants involved are small,
and the algorithms underlying our protocols can be easily
implemented in practice; a claim which is vindicated by the
simulation results of Section VI.

II. FIXED STACK ROUTING

In this section, we consider the problem of routing on a line
or a tree when there is an upper bound on the stack depth s.
The objective is to minimize the number of labels used for
this routing.

A. The n-vertex path P,

We first consider the special case where all the n vertices
lie on a single path, and let them be called 0,1,2,... ,(n—1)
from left to right. It is clear to see that there is a trivial lower
bound of nl/¢ on the number of labels, since the stack (of
depth s) should be able to encode n distinct addresses. As an
upper bound, we prove the following theorem:

Theorem 1 Given a bound of s on the maximum stack depth,
there is a protocol for routing on the line that uses at most
snt/s labels.

In this protocol, each label consists of a tuple (i, p). Here 4
is a number between 1 and n'/%, and p is a position between
1 and s. Using these labels, we can use a stack of depth at
most s to encode any number smaller than n: we just look
at its representation in base [n!/*], and for each non-zero
digit, we push the label corresponding to the tuple (value of
the digit, position from the right). If the stack is created so
that the positions increase from top to bottom, it is simple to
perform decrement operations by just popping the top label
and (potentially) pushing some labels on top of the stack.

For example, if n = 256 and s = 4, the encoding of
178 is 2302, the representation of 178 in base 4 = (256)'/4.
The stack corresponding to this is [(2,4), (3, 3), (2, 1)], where
(2,1) is the label at the top. To decrement this, the top is
popped, and the label (1,1) is pushed onto the stack, which
now corresponds to (2301), = 177.

Now if a vertex ¢ wants to send a packet to a vertex j to
(say) its right, it encodes j —¢ — 1 on the stack as above, and

0-7803-7753-2/03/$17.00 (C) 2003 IEEE

vibilG P

Fig. 2. Proof of Theorem 2.

sends the packet to its neighbor to the right. (Note that since
j is to the right of 4, j > i and hence the value (j — ¢ — 1) is
between 0 and n —1.) When a vertex receives a packet which
has a non-empty stack, it decrements the value as described
above. It is easy to see that the vertex j will get the packet
with an empty stack, and hence accept it.

B. Routing on trees

In this section, we turn our attention to routing using MPLS
on trees, trying to minimize the number of labels given a bound
s on the stack depth. In contrast to the path where O(n'/?)
labels sufficed, we show in Theorem 2 that as many as (n?/?)
labels may be required, if the stack depth is bounded by 2.

To handle this seemingly dire situation, we propose two
solutions: on one hand, we give a protocol, that given a target
stack depth s, uses only O(A + sn'/*) labels but violates the
bound on the stack depth by a factor of 2. If we are not allowed
to violate the bound on the stack depth, we can manage with
Asn'/* labels.

1) Lower Bounds: In this section, we will show that the
information theoretic bound of O(n'/2) is very weak for the
case when the stack depth is bounded by 2, and is in fact off
by a polynomial factor.

Theorem 2 There are trees on n vertices for which the
minimum number of labels required with stack depth 2 is
Q(n?/3).

Proof: Consider the tree T in Figure 2. T is obtained as
follows: consider a rooted tree of depth 2 such that each
internal node has d children. Now, attach a path of length
c at all the leaves of this tree. So, T has n = O(cd?) vertices.
Let us denote the set of vertices in these paths of length ¢
as V'/. We shall refer to the children of the root as level one
nodes. We will only need to consider the case when the root
wants to send packets to V.

Fix a routing protocol which uses a stack depth of at most 2
and L labels. For each node in V, the root sets up a stack. Let
S be the set of all these stacks. For every depth 2 stack in S,
consider the first vertex where the label in the top of the stack
gets popped off. (If the packet has a stack of one label only,
we imagine the root popping off the top; and there can be at
most d packets starting with an empty stack.) Since there are
L labels, there must be at most L such distinct vertices — call

IEEE INFOCOM 2003

these special set of nodes V. Further, there must be a level
one node which has at most L/d descendants in V" — let u
be this node and 7} be the subtree rooted at «. Now, u has d
different paths below it. At most L/d paths can contain a node
from V. So, u must use the lower label in the stack to route to
the remaining d — L/d paths (because, no stack pop operations
occur in these paths and so, the stack depth for all packets
destined to any node in these paths must be 1). But there are
c(d — L/d) vertices in these paths. Therefore, it follows that
L > c(d — L/d). This gives us that L > cd?/(c + d). Now
setting ¢ = d = n'/3 gives us the claimed bound. [

This shows that we cannot even hope for a result like A +
sn'/s, which we had for the path. In the next subsection, we
will give two results, one of which gets a good performance
but violates the bound on the stack depth, while the other
respects the bound but uses more labels.

2) Upper Bounds: The crucial fact at the heart of the
positive results is that for any tree 7" and any set .S of vertices
in T', there is a separator vertex v such that deleting v breaks T’
into several parts, none of these connected subtrees containing
more than |S|/2 vertices from A. Recursively finding these
separator vertices in these subtrees, the following fact can be
proved:

Proposition 3 For any tree T, a subset S with n vertices
in T, there is a subset A of at most 3n'/® vertices of T
whose deletion causes each connected subtree to have at most
n=1/5 vertices of S.

Before we prove this, let us prove a lemma:

Lemma 4 Given a forest F, and a subset S of n vertices in
F, by deleting at most one vertex, we can get two disjoint
subforests Fy and Iy of F' such that each of these contain at
most 2/3 of the vertices of S.

Proof: Suppose each connected component of F' has at most
n/3 vertices from S; then we start collecting the smallest
components of F' until get between n/3 and 2n/3 vertices
of S. (We cannot directly go from below n/3 to above 2n/3,
since each piece is small.) This gives us Fj, and the rest of
the trees form F5.

If one of the pieces has between n/3 and 2n/3 vertices
from S, this can be designated as F}, and the rest will be F5.
Finally, if one of the pieces has more that 2n/3 nodes from
S, we find the aforementioned separator vertex and delete it.
Now each remaining tree will have at most n/3 vertices from
S, and we can form F} and F5 as in the first case. [|

Proof: (Proposition 3) To get this, we maintain a family
of vertex-disjoint subforests of 7', successively breaking some
subforest until each has fewer than t = n(*=1/¢ from S.
Clearly, this will imply that each tree in any forest has fewer
than ¢ vertices, thus proving the result.

At the beginning, the family just has T itself. If the family
has some forest F; with n; > t vertices from S, we use the
above lemma, and break it into two subforests F;; and F; o

0-7803-7753-2/03/$17.00 (C) 2003 IEEE

such that each resulting subforest F; ; has between n;/3 and
2n;/3 vertices from S. We now remove F; from the family
and add F; ; and F; » to it. The process stops when all forests
have less than ¢ vertices from S.

To count the number of vertices deleted, let us model
the above process by a tree, whose vertices are the various
subforests involved in the above process. Let T" be the root of
this tree, and the children of F; be the two forests F; ; created
by applying lemma 4 to it. Note that each forest has exactly
two children, and hence this is a binary tree. Furthermore,
each forest at a leaf of this tree has at least ¢/3 vertices from
S, else its parent would not have been split. Hence there are
at most 3n/t = 3nl/% leaves in this tree, which also bounds
the number of internal nodes. However, each internal node
corresponds to at most one deleted vertex, which shows that
the set A of deleted vertices has size at most 3n'/*. [|

Using this, we can prove the first result. The statement of
the theorem is stronger than required, but useful for pushing
the induction through.

Theorem 5 Given any tree T, a subset S of n vertices in T,
and a value s, there is a protocol to send messages to vertices
in S that uses stack depth at most (2s — 1) and A + 3sn'/*

labels.
Proof: The proof of this proceeds by induction on s and n.

If s = 1, for any n, we can just use n distinct labels, one
for each vertex of S. To send a message to v € S, the vertex
u simply places the label corresponding to v on the stack,
ea