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Abstract— MPLS is becoming an important protocol for intra-
domain routing. MPLS routers are offered by the major vendors
and many ISPs are deploying MPLS in their IP backbones, as
well as in ATM and Frame Relay networks. For this period
of possible transition to MPLS, it is urgent to increase our
understanding of the power and limitation of MPLS.

An attraction to MPLS is the flexibility it offers in engineering
the routing of traffic in a network, e.g., to support higher de-
mands without overloading any links. Mitra and Ramakrishnan
[GLOBECOM’99] showed that optimal routing solutions may
be found for a diverse set of traffic engineering goals. However,
for a network with N nodes (routers) and M edges (links), their
MPLS implementation may use Ω(N × M) different labels. This
is prohibitive since the number of labels is the number of entries
needed in the router tables.

We present an algorithm reducing the number of MPLS labels
to N + M without increasing any link load. Our explicit N + M
bound makes it easy to limit the table size requirement for a
planed network, and the linearity allows for tables implemented
in fast memory. For differentiated services with K traffic classes
with different load constraints, our bound increases to K(N + M).
Our stack-depth is only one, justifying implementations of MPLS
with limited stack-depth.

I. INTRODUCTION

Multi-Protocol Label Switching (MPLS) was proposed as a
standard in [1], and it is now becoming an important protocol
for intra-domain routing. MPLS routers are offered by major
vendors and many ISPs are deploying MPLS in their IP
backbone, as well as in ATM and Frame Relay networks
(see [2] for listings of vendors and users). For this period
of possible transition to MPLS, it is urgent to increase our
understanding of the power and limitation of MPLS.

Our general interest here is the use of MPLS in traffic engi-
neering [3], [4], [5], [6]. As stated in [6], “traffic engineering
is the process of controlling how traffic flows through ones
network so as to optimize resource utilization and network
performance”.

An advantage to MPLS over traditional shortest path proto-
cols such as OSPF [7] or IS-IS [8] is that it offers considerably
more flexibility in the control of traffic [4], [6], and this can be
used to derive optimal routing solutions to a vararity of traffic
engineering goals related to maximizing the through put while
avoiding over-utilized links [5].

However, an unnoticed problem in previous MPLS routing
solutions (see e.g. [6], [5]) is that they require routing tables

with a quadratic number of entries, and this limits their scaling
to large networks. Our contribution is to get down to a linear
number of entries without increasing any link loads. Thus
table space is the concern in this paper. Generally, this should
allow us to provision networks with smaller, cheaper, and
faster routers. Moreover, the ability to implement an individual
routing solution in very little space, allows us prepare for many
different traffic classes and error scenarios.

A. The off-line constraint based routing problem

As in [5], [6], our main focus is on the off-line constraint
based routing problem defined as follows. A network topology
is presented as a graph G = (V,E) whose nodes are the
routers and whose edges are the links in the network. Each
link e ∈ E has a capacity Ce. Among the nodes, we have some
sources S ⊆ V (ingress routers) and some destinations T ⊆ V
(egress routers). Also, we have a demand matrix D specifying
the amount of traffic D(s,t) to be routed from each source
s ∈ S to each destination t ∈ T . Our target is to distribute the
traffic subject to the constraint that the total load on any link
does not exceed its capacity.

In the rest of this paper, S, T, N, and M denote the number
of sources, destinations, nodes, and edges, respectively, that is,
S = |S|, T = |T |, N = |V |, and M = |E|. We generally think
of our networks as sparse with many nodes acting as sources
and destinations. Hence, even though we distinguish between
S, T, N, and M in our bounds below, we think of all of them
as being of the same order of magnitude.

The off-line constraint based routing problem is equally
interesting for other routing protocols and several studies [9],
[10], [11], [12] have been performed for traditional shortest
path protocols such as OSPF [7] or IS-IS [8].

1) Interpreting the parameters: We note that the link ca-
pacities in our problem may be set somewhat lower than the
official link capacities, e.g., 60%, in order to ensure Quality-
of-Service (QoS). This kind of under-subscription also helps
protecting against bursts [6].

Below we consider two different interpretations of the
demand matrix, each leading to different optimization criteria.

As in [5], the demand matrix may represent service level
agreements (SLAs), each committing support for a certain
amount of traffic along a virtual leased line from a source to a
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destination. We then have a bandwidth-broker type optimiza-
tion problem where SLAs between different source-destination
pairs are priced differently. Subject to the capacity constraints
in the network, our goal is to maximize our earnings in terms
of sold SLAs.

As in [6], we can also have an estimated demand matrix
based on concrete measurements of traffic. In [6] they use
capabilities in MPLS to measure the demands, and suggest
picking the demand from a source to a destination as the 95-
percentile measured over a week, and combine this with under-
subscribed links to protect against bursts. Other approaches
for measuring demands are presented in [13], [14]. Finally,
methods have been suggested for predicting a demand matrix
based on demographic data [15]. We note that some notion of
a demand matrix is always present, at least implicitly, in the
provisioning and configuration of communications network:
we have to take into account that more demand is expected
between New York and Washington than between two random
cities in Alaska. The better we understand the demand matrix,
the better we can share the network resources among the
demands. With an estimated demand matrix, we may consider
a best-effort type optimization problem of minimizing the
overall packet loss or latency in the network. We then have a
cost associated with each link which is some increasing convex
function of its load. The goal is to minimize the total costs
over all links [10], [11].

After our technical presentation, in §IV, we shall discuss
various limitations and applications of our approach in con-
nection with multiple traffic classes, dynamic reoptimization,
and error-scenarios.

B. Constraint based routing with MPLS

As in the vendor paper [5] from Lucent and the ISP paper
[6] from Global Crossing, we are assuming that we want to use
MPLS to run a whole network, solving the constraint based
routing problem. Here we are trying to understand if such an
approach can scale for larger networks.

We note that MPLS may also be used in conjunction with,
say, OSPF, using MPLS tunnels to define virtual OSPF links
whose traffic follows a specified path in the network [1]. In
that context, our work is not likely to be relevant unless it is
a very elaborate system of tunnels that is called for.

A very significant feature of MPLS is that we can freely
distribute the traffic on different paths from a source to a
destination [6]. As described in [5], this freedom implies that
most variants of the off-line constraint based routing problem
can be formulated as linear or convex programming problems.
Such problems can be solved optimally in polynomial time
[16], and moreover, we can solve large problems with off-
the-shelf commercial software packages [17] and open-source
software packages [18]. In fact, these kinds of problems are
known as minimum-cost multicommodity flow problems for
which even faster specialized algorithms have been developed
(see e.g. [19]). However, when implementing the optimal
multicommodity flow solution using the flow-decomposition

technique from [5, §2.5] in MPLS, we may end up with routing
tables with Θ(T × M) entries, which is prohibitive for large
networks (c.f. §III-B for negative examples making [5] realize
the lower-bound).

We note that in the abstract and title, for simplicity, we used
N in place of S and T. Both S and T may be as big as N, but
here we want to qualify that we benefit if they are smaller.

An alternative is to use a greedy heuristic like the one from
[6]. This heuristic reduces the table size to Θ(S × T) entries,
which is still a lot. However, as a heuristic, the technique from
[6] is not guaranteed to find a solution, even if one exists. In
fact, the heuristic from [6] may only route a fraction 1/(N−1)
of the possible traffic (c.f. §III-A for negative examples for
[6]).

1) Our result: The result of this paper is that we can always
implement an optimal solution to the constraint based routing
problem using at most T + M entries in the routers. Our
explicit T + M bound makes it easy to limit the table size
requirement for a given network, and the linearity allows for
tables implemented in fast memory.

What we present is a algorithm that takes a given routing
solution S as input. The algorithm then implements in MPLS
another routing solution S′ such that for each link e in the
network, the load of e in S′ is no bigger than in S. Thus, if
we have any measure of costs which is non-decreasing in the
individual link loads, S′ is as good as S, if not better. If S
is optimal w.r.t. such a cost function, we say that S is load
optimal, and then S′ preserves this load optimality.

Thus, we may use the algorithm from [5] as a front-end that
produces a load optimal routing solution S. Unfortunately, in
implementing S, [5] may use MPLS tables as large as Θ(T ×
M). However, using our algorithm as a back-end, we reroute
S to a solution S′ that preserves load optimality, but which is
implemented with MPLS tables of size at most T + M.

C. Inside MPLS

We will now go into some of the details of MPLS routing
[1].

1) ATM style: In [20], [5], [6], they use MPLS to set
up so-called label switched paths (LSPs) from sources to
destinations. They may set up multiple LSPs from a source
to a given destination, and the source can split the traffic over
these LSPs. These LSPs are similar to the virtual circuits in
traditional ATM.

Packets are forwarded along the LSPs using a label in the
header. Each router/node has a table that for each label tells
what outgoing port to use for packets with that label, or to stop
if the router is a destination for the label. Moreover, the router
may swap the label with another label before forwarding the
packet.

The label swapping is used as follows. We configure one
LSP P at the time. On each edge (u, v) in P , we pick a label
x that has not before been used on an edge entering v. If the
next edge in P is (v, w) with label y, the router table at v
will have an entry telling that incoming packets with label x
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should be forwarded along (v, w) using the label y. If labels
entering each node are picked in order 1, 2, ..., the maximal
overall label will be the maximal number of LSPs entering a
single node.

The MPLS implementations of optimal routing solutions
from [5] may use Θ(T × M) LSPs, and it may have that many
LSPs entering a single router, hence the claimed bound on the
table size. Similarly, the heuristic routing solutions from [6]
may lead to Θ(S × T) LSPs and have that many LSPs entering
a single router.

We note that [21] proposes a technique for implementing
optimal routing solutions with a combination of MPLS and
OSPF, using LSPs to define virtual links for OSPF. This does
work nicely for some simple examples in [21]. It is not quite
clear how the routing solutions are computed, but assuming
similar techniques to those in [5], [21] may still end up with
Θ(T × M) LSPs in general.

In this paper, based on some standard results on multi-
commodity flows [22], we point out that we can actually
always find and implement optimal routing solutions using
Θ(S × T + M) LSPs. This is relevant for traditional ATM
networks that do not support the to-trees below.

2) The power of to-trees: As pointed out in [1], the label
based forwarding mechanism of MPLS can also be used to
route along multi-point-to-point trees. Here, a multi-point-to-
point tree is a rooted tree R, rooted in some destination t, and
with all edges oriented toward t. For short, we call R a tree
to t, or, if we do not wish to specify the destination, a to-tree.

To-trees can be used to route from multiple sources to
a single destination. The simplest implementation in MPLS
identifies each of these to-trees R with a label �R. Each router
in R sends packets labeled �R to the parent in R, except the
root which is the final destination.

Our main result is that we can always find and implement
a load optimal routing solution using T + M to-trees.

Above, we do not exploit routers’ ability swap the labels.
Similar to LSPs for paths, we can implement to-trees with so-
called LSP trees [1]. Here we just call them LSTs since the P
in LSP stands for path, which we replace with T for tree. In an
LST T , we may have many edges entering a node, and then
all these edges use the same label. Picking the labels entering
each node minimally, the maximal overall label becomes the
maximal number of LSTs with an edge entering a single node.

As for the LSPs, we may end up with many fewer labels
than LSTs, but it doesn’t improve our worst-case bound of
T + M. However, we consider T + M to be a sufficiently
small number that we do not need to worry about any
further improvements. The basic point is that when we have
provisioned a network with routing tables of a certain size,
we do not gain much from only using part of the tables. Our
result says that tables of size T + M suffice.

3) The label stack: Above, we have completely ignored
that MPLS packets actually may carry a stack of labels that
the routers can push and pop from. This feature can be used
in connection with link failures where one pushes a label on

the stack representing a detour around the failed link [23].
Alternatively, the stack may be used, as in [6], for hierar-

chical routing. This may, or may not, reduce the label space.
Also, we note that hierarchical optimization may easily lead
to worse routing solution than global optimization. Along the
same lines, some theoretical trade-offs between label space
and stack size are presented in [24] for special classes of
graphs. However, for general networks we do not know how to
decrease the label space with a larger stack, unless we go for
the extreme of just using port numbers as labels. The source
would then have to provide a packet with the a stack with all
the port numbers on the desired path to the destination.

D. Limited hard-ware

The fact that we need neither swapping nor the stack to get
load optimal routing solutions with T + M labels suggests the
relevance of limited implementations of MPLS, say, with a
restricted stack-depth of two like in ATM, leaving space for
stacking a detour around failed links as described in [23].

E. Routing tables on line cards

Above, we have assumed that each router has only one rout-
ing table. However, conceivably, one could have independently
configured routing tables on the line-cards of the incoming
links. This can sometimes be used to reduce the label space,
but it doesn’t help in general with the quoted bounds.

F. Concrete label spaces

The above worst-case bound of T + M is our main result.
Yet it is interesting to try to get an impression of how many
labels would be consumed in some concrete networks. These
concrete examples are discussed in more detail in §III.

First, consider a simple network with S sources in one
cluster that communicate with T destinations in another cluster.
If these clusters are connected by a single link, then any LSP
based approach is going to use at least S × T labels. Generally,
we have to be concerned about such an Ω(S × T) lower-bound
on the label space whenever we have a limited number of
bottle-necks.

In order to get a feel for what would happen with more
complex networks, we made our own implementations of the
algorithm of Mitra and Ramakrishnan [5] and the greedy
heuristic of Xiao et al. [6], as well as our own algorithm. We
applied them to some 2-level graphs produced with the GT-
ITM network generator [25]. These graphs had 300 nodes and
roughly 1000 edges. Mitra and Ramakrishnan [5] algorithm
got 92–113,000 paths/LSPs and 20–41,000 labels, the greedy
heuristic of Xiao et al. [6] got 39–47,000 paths/LSPs and 11–
16,000 labels, and our algorithm got 330–460 to-trees/LSTs
and 300–370 labels. As mentioned, the heuristic of Xiao et
al. [6] is not guaranteed to be able to support as much traffic,
and indeed, it was found to support 5–10% less traffic. Thus,
even with this limited sized network, our new algorithm gained
a factor 30 in label space.

We stress that concrete experiments like the one above
do not give any guarantees for the table sizes needed for a
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network of a given size. Network topologies are not random,
so we cannot make conclusions from one to another on a
simple experimental basis. In a provisioning phase, in order
to experimentally ensure sufficient table sizes in the routers,
one needs to make simulations for the concrete network, and
these simulations are violated by subsequent changes to the
topology. A safer approach is use our worst-case bound of
T + M, and say, multiply it by two, thus being prepared for
a doubling in size of the network. This worst-case bound is
luckily sufficiently small that we can use it in practice.

G. Contents

The rest of the paper is divided into two main sections. In
§II, we present our algorithm for implementing load optimal
routing with T + M MPLS labels. In §III, we present our
experiments including more details on the algorithms from [5],
[6]. In §IV, we discuss various applications and limitations of
our approach.

II. TECHNIQUES

Recall our problem: we are given a routing solution S
realizing some demand matrix D, that is, for each source
destination pair (s, t) ∈ S×T , the traffic routed from s to t is
D(s,t). Our goal is to find an efficient MPLS implementation
of a solution S′ which is at least as good as S in that no link
gets larger load. Thus, if S is produced as in [5] to be optimal
with respect to criteria correlating positively with demands and
negatively with link loads, then this optimality is inherited by
S′.

As mentioned, we will solve this problem, rerouting S to
some as good S′, but only using T + M to-trees and MPLS
labels. In order to contextualize our result, first, in §II-A,
we demonstrate that if no rerouting is needed, the number
of MPLS labels needed is cubic in the worst-case. Next,
in II-B, we turn to rerouting. In §II-B.1, we point out that
with rerouting, LSP implementations need a quadratic number
of labels in the worst-case. Thus, we really need both the
rerouting and the to-trees for our linear bound. The result is
formally stated in §II-B.2, and proved in §II-C-II-E.

A. The need for rerouting

We will now demonstrate that rerouting is needed since re-
alizing a prescribed distribution of flow between each source-
destination pair may require cubic table sizes.

1) With LSPs: Some unfortunate examples are illustrated in
Fig. 1. First consider (a). Each source wants to send the same
amount of traffic to each destination, and for each destination
it spreads the traffic evenly over the P parallel links. The thick
lines illustrate the distribution of flow from a particular source
to a particular destination. This routing solution does give
a best possible distribution of loads. Moreover, this kind of
symmetric solution is a possible outcome of the techniques in
[5, §2.2.2.] if one, as suggested in [5], uses an interior point
method [26] to solve the linear program.

To implement this solution with LSPs as in [5, §2.5], for
each source-destination pair, we need an LSP for each parallel

link, so we need S × T × P LSPs. Moreover, since these all
enter the bottleneck v, we end up with S × T × P labels.

The reader may object that (a) is contrived with the high
node degrees, but (b) illustrates the same principle with lower
degrees, using binary trees to and from the bottlenecks v and
w, and with a regular bipartite graph in place of the parallel
edges. Again the thick edges illustrate the distribution of flow
from a particular source to a particular destination. In (b), the
bottleneck v has only one incoming edge, and hence it does
not make a difference to have independent routing tables on
the incoming edges.

The flow decomposition from [5, §2.5] can lead to at most
S × T × M LSPs, so we conclude that the worst-case number
of LSPs and labels resulting from [5] is Θ(S × T × M). In
the introduction, we actually quoted [5] for a better bound
of Θ(T × M) labels. This bound stems from a variant of
their approach mentioned in [5, §2.4]. We shall return to both
variants in §III-B

2) With to-trees: Using to-trees, we can easily implement
the routing from Fig. 1 (a) and (b) using T × M to-trees, for
each tree can take all sources over one of the parallel links.
It is therefore natural to ask if one in general can do better
with to-trees. The answer is no, as illustrated in Fig. 1 (c).
Each source insists on using its own parallel link from u to v,
and hence no to-tree can route from more than one source to
one destination. Moreover, as in (a), each source-destination
pair needs a to-tree for each parallel link from v to w. Thus,
we need at least S × T × P to-trees. In Fig. 1 (d), the same
point is made with low-degree nodes, and where the bottle-
neck node u has only a single incoming edge, thus showing
that independent routing tables in the line-cards of incoming
edges do not make a difference. The examples actually show:

Proposition 1: To implement prescribed flows for each
source destination pairs with MPLS, allowing label swapping,
but not using the stacks, we need routing tables of size
Θ(S × T × M) in the worst case.

Proof: As mentioned in §II-A.1, the upper bound is
already realized with LSPs in [5]. The lower-bound is a slight
refinement of the number of to-trees needed for Fig. 1 (c).
More precisely, packets arriving u with the same label will
proceed on the same path, so to proceed on different paths,
they need different labels, hence different entries in the routing
table at u. However, we need S × T × M different paths from u
to the destinations, so the result follows with P ≥ max{S, T}.

Thus, to get a sub-cubic number of labels we need some
rerouting.

B. Allowing rerouting

When we allow rerouting of a routing solution S, our
problem of matching S is simply the constraint-based routing
problem where the capacity Ce of an edge e is its load in S,
and thanks to the existence of S, we know that this problem
is feasible, i.e., that it has a solution.
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Fig. 1. Routing solutions to be rerouted.

1) With LSPs: Now, as described in [22, §17.5], using a so-
called basic solution to a path flow formulation of the above
constraint-based routing problem, we will get to a total of at
most S × T + M paths routing the demands between all the
source-destination pairs. These paths are then implemented
as LSPs with MPLS, replacing the cubic bound from §II-
A with a quadratic one. This is asymptotically optimal, for
obviously we need an LSP for each source-destination pair.
Also, considering Fig. 1 (a), to spread the loads, we need an
LSP for each parallel edge, hence at least max{S × T, P} =
Ω(S×T+M) LSPs. Since all of these enter the bottleneck node
u, u will need that many entries in its routing table. Summing
up,

Proposition 2: We can solve a feasible constraint-based
routing problem using S×T+M LSPs. Moreover, using LSPs,
we cannot in general get asymptotically smaller routing tables.

Thus, the quadratic bound is optimal for LSPs.
2) With to-trees: The result of this paper is that we can get

down to a linear number of labels using to-trees and rerouting.
More precisely, we will show

Theorem 3: We can solve a feasible constraint-based rout-
ing problem using T+M to-trees. Using MPLS with swapping,
but not the stacks, we cannot in general get asymptotically
smaller routing tables.
The lower-bound is trivial. For example, in Fig. 1 (a), at the
bottle-neck node v, we need a label for each destination and

we we need a label for each parallel link, hence max{T, P} =
Ω(T + M) entries for the routing table at v.

As for Proposition 2, the upper-bound uses basic solutions
as a starting point. However, whereas the quadratic bound
in Proposition 2 follows from a simple bound based on the
number of equations in a path based linear programming
formulation of the problem [22, §17.5], our linear bound needs
a more subtle combinatorial analysis presented in §II-E.

C. The algorithm

We will now show how to construct the to-trees claimed in
Theorem 3. The construction is, in itself, fairly natural. We
defer to § II-E the subtle analysis showing that the algorithm
only produces T + M to-trees.

First we formulate the multicommodity flow problem cor-
responding to the constraint-based routing problem. This
multicommodity flow problem is a special type of linear
programming problem. For a more detailed discussion of
multicommodity flow problems and this formulation, see [22,
§17]. For each destination t ∈ T and each edge e = (u, v) ∈
E, we wish to determine the flow of traffic F t

e ≥ 0 on e
toward t from the sources. Note that in this formulation, we
do not distinguish traffic flows from different sources if they
are for the same destination. For each destination t and node
v 
= t, we have the flow constraint:

∑

(v,w)∈E

F t
(v,w) −

∑

(u,v)∈E

F t
(u,v) = D(v,t). (1)
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Here, D(v,t) = 0 if v 
∈ S. This flow conservation constraint
says that the total traffic leaving v destined for t should be
equal to the total traffic entering v destined for t plus the
traffic demand from v to t. Moreover, for each edge e ∈ E,
we have the capacity constraint:

∑

t∈T

F t
e ≤ Ce (2)

This says that the total flow on each edge e is at most Ce,
which in turn was the flow on e in the original solution
S. Finally, to avoid generating cycles in the flows to any
destination, we ask to

minimize
∑

t∈T,e∈E

F t
e (3)

We now obtain a basic solution to this linear programming
problem. This can be done using any linear programming
solver based on the simplex method, such as the commercial
linear programming package CPLEX [17], or the open-source
package GLPK [18]. Several alternative methods for obtaining
a basic solution will be discussed in the next section, where
we also discuss the special properties of a basic solution that
we take advantage of.

We will now pick a destination t ∈ T , and distribute all
the flow to t on trees to t. This is done iteratively. In each
iteration, some of the flow to t is moved to some tree to t.
The flow variables and demands are reduced accordingly, and
we continue till all demands and flows are down to zero.

Algorithm A: Flow2Trees(t) Takes all the flow to t and
distributes it on trees to t.

A.1. while there is a sources s ∈ S with demand to t (D(s,t) >
0):

A.1.1. using only edges e with flow to t (F t
e > 0), construct

a tree R to t spanning all sources with demand to t.
A.1.2. move as much flow as possible to R.

We now need to show how to perform the steps in the
while-loop. This includes showing that (1) is preserved as an
invariant.

First, to find the tree R to t in step A.1.1, we do as follows.
For each node v, if v has an outgoing edge with flow to t, we
include an arbitrary such edge as its parent pointer in R.

To see that R gets the desired properties, note by (1) that
a node has outgoing flow to t if it has incoming flow to t
or demand to t. This implies that we get parent edges for all
nodes v 
= t with demand to t or with an incoming parent
edge. Since the flow to t contains no cycles, we conclude that
R is a tree to t spanning all nodes with demand to t.

Next we have to clarify what we mean by moving as much
flow as possible to R. Note that R is oriented toward t, so t is
implicit in R. In each node v in R, we satisfy a non-negative
demand DR

v ≤ D(v,t) to t, and each edge e in R will carry a
non-negative flow FR

e ≤ F t
e to t. This should be done subject

to the standard flow constraint at each node v 
= t:
∑

(v,w)∈R

FR
(v,w) −

∑

(u,v)∈R

FR
(u,v) = DR

v . (4)

Above, there is exactly one edge (v, w) ∈ R; namely the
parent pointer from v.

We want to send as much flow as possible in R, so our goal
is to

maximize
∑

v∈R

DR
v (5)

The above tree flow problem could be solved as a linear
program, but it is much more efficient to solve it with the
recursive procedure below. To get a maximal flow in R to t,
it is called with TreeFlow(t,∞, R).

Algorithm B: TreeFlow(v, c, R) sends a maximal flow to-
ward t, though at most c, using the sub-tree descending from
v in R. The flow value is returned.

B.1. f ← D(v,t).
B.2. if f ≥ c, f ← c.
B.3. DR

v ← f .
B.4. iterate u through the children of v in R.

B.4.1. g ← TreeFlow(u,min{c − f, F t
(u,v)}, R).

B.4.2. FR
(u,v) ← g.

B.4.3. f ← f + g.
B.5. return f
It can easily be verified that the flow has the desired properties,
that is, for each node v 
= t in R, 0 ≤ DR

v ≤ D(v,t), for each
edge e in R, 0 ≤ FR

e ≤ F t
e , and finally, (4) and (5) are

satisfied.
Having found the flow in R, for each node v 
= t in R, we

subtract DR
v from D(v,t) and for each e in R, we subtract FR

e

from F t
e . Neither the D(v,t) nor the F t

e can turn negative, and
since the flow in R satisfies (4), the subtractions preserve our
invariant (1).

Since the flow in R is maximal, it will saturate at least one
flow edge, so in each iteration, we will lose at least one edge
with flow to t. Thus Algorithm A terminates in at most M

iterations. Summing over all destinations, this leads to a crude
bound of T × M in-trees. A much more refined analysis in
§II-D-II-E will bring this bound down to T + M.

For the MPLS implementation, we create a label �R for
each tree R. For each node v in R, the router table will map
�R to its parent pointer in R, or to stay if v = t. Also, each
source s in R, we use label �R for a DR

s part of the traffic to
t.

D. Basic Solutions

The algorithm above called for a basic solution to the
linear program defined by equations (1) and (2). The concept
of a basic solution is fundamental to the theory of linear
programming. Here, we will note a few properties of basic
solutions, and some methods for obtaining one. For a fuller
treatment, see [27] or [28].

Associate with each variable the column vector of that
variable’s coefficients in each constraint of the linear program.
A basic solution is specified by a basis, that is, a subset of the
variables for which the associated columns form a basis of the
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vector space spanned by all the columns. The basic solution
is obtained from the basis by setting the value of all variables
not in the basis to 0, and then solving the remaining full-rank
system for the values of the variables in the basis.

¿From this, we obtain two important properties of basic
solutions:

(i) The number of variables in the basis is at most the
number of constraints, in our case, T × (N − 1) + M.

(ii) All non-zero variables in the basic solution are in the
basis.

For multicommodity flow problems, one can also show (see,
for example, exercise 17.9 in [22]):

(iii) For every destination t, the basic flow variables to t
contain a disoriented spanning tree St, that is, the set of
edges e with F t

e in the basis contain a tree St ignoring
the orientation of the edges.

There are several ways to obtain a basic solution to our
multicommodity flow problem. A linear programming solver
based on the simplex method will automatically produce basic
solutions, so we can use a commercial package like CPLEX
[17], or an open-source package like GLPK [18]. Alternatively,
since we only used (3) to avoid flow cycles, we can break
ties with high probability by multiplying each flow variable
by an independent random number in (3). We still avoid
cycles, and now we get a unique basic solution with any
exact linear programming solver (for example ADP [26])
or minimum-cost multicommodity flow solver (for example
EMNET [29] or MCNF85 [30]). On the theoretical side,
for a polynomial worst-case running time, we can use an
interior-point algorithm [31], [32], followed by a crossover
algorithm [33] which converts the interior-point solution to a
basic solution. Finally, for a strongly polynomial worst-case
running time, we can use [34].

In the experiments reported in §III, we used CPLEX, and
for networks with 300 routers and roughly 1000 edges, we
identified our MPLS labeling in less than 24 minutes.

E. Analysis

In this section, we are going to show that the algorithm
from §II-C will generate at most T + M to-trees and labels. We
will use the properties of basic solutions mentioned above.

First we note a standard application of property (i) and (ii);
namely that (N − 1) × T + M bounds the total number of flow
edges to all destinations, and since each tree R to t from
Algorithm A eliminates at least one flow edge to t, we get at
most (N − 1) × T + M to-trees in total. Though still quadratic,
this beats the crude factor T × M that we mentioned at the end
of §II-C.

However, we claim that we can eliminate the factor (N−1),
getting a clean linear bound of T + M. To show this, we need
to employ (iii) and a more subtle argument.

Let M∗
t be the number of basic flow variables to t, Mt be

the number of flow edges to t, and Nt be the number of nodes
with outgoing flow to t. Here t is itself counted in Nt.

Lemma 4: N − Nt ≤ M∗
t − Mt

Proof: Consider the disoriented spanning tree St from
(iii). For each node v 
= t, let e(v, t) be the edge from v on
the disoriented path to t in St. Thus, we assign a unique basic
flow variable to each node v 
= t.

If a node v is not accounted for in Nt, then, by flow-
conservation, it has no incident flow edges to t, and hence
e(v, t) is not accounted for in Mt. However, by (ii), all flow
edges to t are basic flow variables, so we conclude that
N − Nt ≤ M∗

t − Mt.
Lemma 5: Algorithm A creates at most Mt − Nt + 2 trees

to t.
Proof: The proof is by induction over Mt. Consider a tree

R to t found in step A.1.1, spanning all nodes with demand
to t. If this is the last iteration in the sense that R carries all
the flow and demand to t, then R is the set of flow edges to t.
Since R is a tree, Mt = Nt − 1, so Mt − Nt +2 = 1, matching
that R is the last tree.

Now assume R is not the last tree. We subtract the flow and
demands from R in A.1.2. Let M′

t and N′
t by the new values

of Mt and Nt. Since we have used one tree, we need to argue
that

Nt − N′
t ≤ Mt − M′

t − 1. (6)

Let X be the nodes losing their outgoing flow to t — then
|X| = Nt − N′

t. In particular, each node in X loses its parent
edge R as a flow edge to t. We need to show that at least one
additional flow edge is lost.

Since the R was not the final tree, there is at least one
source s with additional demand to t, that is, DR

s < D(s,t).
However, since the flow in R is maximal by (5), this implies
that the path P in R from s to t contains a saturated edge e
with FR

e = F t
e , hence which will be lost as a flow edge to t

when FR
e is subtracted from F t

e . If P does not intersect X , e
is the additional lost flow edge needed for (6).

Now suppose P intersects X . By flow conservation (1), s
cannot be in X . Consider the first edge f in P entering a node
in X . Then f is not a parent edge of a node in X . Moreover,
since the nodes in X have no outgoing flow to t left, by flow
conservation (1), the edge f cannot have any flow to t left.
Thus f is an additional lost flow edge. This completes the
proof of (6).

Proof: [ of Theorem 3] We now need to prove our main
result, that the total number of to-trees produced is at most
T + M.

¿From (i) we have that
∑

t M∗
t ≤ (N −1)× T + M. However,

the two preceding lemmas imply that the number of to-trees
used by Algorithm A to cover the flow to a specific destination
t is at most

Mt − Nt + 2 ≤ M∗
t − N + 2

Adding this up over all destinations t, we get
∑

t

(M∗
t − N + 2) ≤ ((N − 1) × T + M)

+T × (−N + 2)
= T + M
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to-trees in total. This completes the proof of Theorem 3.

III. EXPERIMENTS

We conducted some experiments to get an impression of
how well different MPLS configuration schemes would do in
practice on some reasonably large networks, that is, not just
some small toy networks that we construct by hand and depict
in the text.

In order to qualify the difference between heuristics and
optimal algorithms, we consider scenarios where not all de-
mands can be satisfied. We are then both interested in how
much demand is dropped and how many labels are used.

A. Greedy

First we have a greedy heuristic like the one described by
one of Xiao et al. [6] (they don’t give all details, so we have to
make some guesses). The essential format is that demands are
satisfied in order of decreasing size. When routing a demand,
we only consider links with sufficient residual capacity to
satisfy the demand. We then send the demand on a widest
shortest path. Here, the residual capacity is the capacity minus
the current load, and a widest shortest path is a hop-count
shortest path along which the minimal residual capacity is
largest. Using widest shortest paths was suggested in [35]. If
there is no such path, the demand is dropped. We shall refer
to this heuristic as greedy no-split. Since there are at most one
path per demand, we get at most S×T paths, and with a single
bottle-neck link, we get that many labels.

In [6], they talk a lot about the advantage of splitting, even
though they don’t use it in their main algorithm. We therefore
decided to consider a variant that considered all links with
any residual capacity, send as much as possible on a widest
shortest path, and repeat the process with the remainder of the
demand. We then only dropped demand from s to t if there
was no path left with residual capacity from s to t. We call
this version greedy split. Since each path either completes a
demand or fills a link, this heuristic uses at most S × T + M.
The example discussed just before Proposition 2 forces greedy
split to use Θ(S × T + M) labels.

Recall again, that we call the above a heuristic because it
is not guaranteed to route the demands, even if it is possible.
A concrete example foiling greedy is a single path of vertices
v1 · · · vn. For i = 1, ..., N − 1, the link (vi, vi+1) has capacity
1, and this is matched by a demand of 1 from vi to vi+1.
However, in addition, we have a demand of 1 from v1 to vN.
If the last demand get placed first, it blocks all other demands,
thus reducing the throughput to 1, but if we take the other
demands first, the throughput is N − 1. Thus, either version of
greedy will only satisfy a fraction 1/(N − 1) of the nodes. To
make sure that greedy picks the wrong demand first, we can
just reduce all the other demands to 0.999999999.

B. Interior

Next we consider the optimal solution based on interior
point methods, as suggested by Mitra and Ramakrishnan [5].

In their optimization model, dropping as little demand as
possible is equivalent to assigning the same unit value to
each demand. In [5, §2.2.2] they use interior point methods
to find optimal flows for each individual demands. They then
decompose each flow into paths [5, §2.5]. We implement this
step using greedy split from above. When applied to such a
flow, greedy split makes an exact decomposition with no loss.
It makes at most one path per flow edge, of which we have
at most M, so with S × T demands, we end up with at most
S × T × M paths. The example from II-B.1 shows that in the
worst-case, they may end up Θ(S × T × M) labels. We call this
optimal algorithm interior demand.

As a remark in [5, §2.4], Mitra and Ramakrishnan point out
that they can reduce the complexity of the linear program, if
they instead get one flow from all sources to each destination.
This destination based approach essentially used the same
linear program as we used in §II-C. Again we decompose this
flow with greedy split, but since we now have only T flows,
we only get Θ(T × M) paths and labels, and it is this bound
we quoted them for in the introduction. We call this algorithm,
interior destination.

We note here that Mitra and Ramakrishnan never considered
the number of labels. We also note that they make a mistaken
remark that we with interior destination cannot value different
demands differently. Using the terminology from our own
linear program from §II-C, in (1), we replace ‘=’ with ‘≤’,
thus allowing us to not satisfy a demand. The actual traffic
sent from s to t is then

∑
(s,w)∈E F t

(s,w) −
∑

(u,s)∈E F t
(u,s) so

if that traffic has value W(s,t), our objective is to

maximize
∑

s∈S,t∈T



W(s,t)

∑

(s,w)∈E

F t
(s,w) −

∑

(u,s)∈E

F t
(u,s)





(7)
If all demands have the same unit value, as in our experiments,
(7) reduces to

maximize
∑

t∈T

∑

(u,t)∈E

F t
(u,t) (8)

C. Basic

Finally, we have our own algorithm. To minimize the
dropped demands, we simply used the linear program de-
scribed just above using (3) as a secondary optimization
criteria. However, as discussed in II-D we got an optimal basic
solution, that we then decomposed into at most T + M to-trees
as described in II-C. We call the algorithm basic to-tree.

To qualify how much the to-trees help, we also tried
decomposing the basic solution into paths using greedy split.
We call this algorithm basic paths. It is not too difficult to
show that this can give us at most S × T + M paths, like the
path based multi-commodity flow formulation mentioned in
§II-A.1. The proof is like a simplified version of the analysis in
§II-E. The example discussed just before Proposition 2 forces
basic path to use Θ(S × T + M) labels.
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D. Networks

As in [10], for our experiments, we used synthetic 2-level
networks produced using the generator GT-ITM [25], based
on a model of Calvert, Bhattacharjee, Daor, and Zegura [36],
[37]. The 2-level networks are divided into clusters. We have
local access arcs inside the clusters and long distance arcs
between clusters. The local arcs got capacity 250 whereas the
long distance arcs got capacity 1000. We considered networks
with 300 nodes and roughly 1000 links. We constructed two
networks, one with 10 and one with 20 clusters.

The 2-level networks do not provide demands. However, the
model places nodes in a unit square, thus getting a distance
δ(x, y) between each pair of nodes. Inspired by classical
entropy models for urban traffic [38], demands were modeled
as follows. For each node x, we pick two random numbers
ox, dx ∈ [0, 1]. Further, for each pair (x, y) of nodes we pick a
random number c(x,y) ∈ [0, 1]. Now, if the Euclidean distance
(L2) between x and y is δ(x, y), the demand between x and
y is

αoxdyc(x,y)e
−δ(x,y)/2∆ (9)

Here α is a parameter and ∆ is the largest Euclidean distance
between any pair of nodes. Above, the ox and dx model
that different nodes can be more or less active senders and
receivers, thus modeling hot spots on the net. Because we
are multiplying three random variables, we have a quite large
variation in the demands. The factor e−δ(x,y)/2∆ implies that
we have relatively more demand between close pairs of nodes,
yet the distance on its own never has an impact bigger than
a factor

√
e = 1.648.... It should be mentioned that the same

model without the distance factor also has been used in [15] for
Internet traffic. We scaled the demand so that optimal solution
would drop 20%. Here, scaling the demands by s means that
we multiply each demand by s. Then, for the heuristics, we
could see how much more they would drop. These demand
sets are called plain.

We noticed, however, that many links were hardly utilized,
which is not surprising as the capacities where chosen inde-
pendent of the demands. This is, however, very unrealistic.
In reality, networks are designed to match the demands. To
get a more reasonable set of capacities, we did as follows.
First, ignoring capacities, we sent all demands over hop-
count shortest paths, splitting traffic evenly at nodes with
multiple outgoing links on shortest paths to a destinations,
as in OSPF routing with unit weights and even splitting. We
scaled the demands so that the maximum utilization became
96. Corresponding to the current capacities for OCx links, each
link was given capacity the smallest of x ∈ {1, 3, 12, 48, 192}
which was greater than the scaled link load. Note here, that
links with the maximum utilization of 96 get a link capacity
of 192. Now we have a network with capacities that are
reasonably in relation to the demands. Finally, we multiplied
each demand by 1.5, modelling growth in the demand after
the network capacities were designed. The challenge was then
to drop as little as possible. These demand sets are called ospf.

E. Results

The results of all our experiments are presented in Table I.
Clearly the numbers are not as bad as suggested by our worst-
case analysis, but the gains from our basic to-trees are very
substantial. We note that we gain about a factor 30 in number
of labels over the greedy heuristics, and drop about 30% less
demand. Compared with interior, which is optimal like ours,
i.e., has the same loss of demands, we gain about a factor 100
in labels over interior destination, and about a factor 300 over
interior demands.

We also note that our basic path only used about twice as
many labels as the greedy heuristics while dropping 30% less
demand.

Somewhat surprising, for these examples, the drop rates of
greedy split and nosplit are always within 0.1% of each other.

The maximum time spent on finding any of our to-tree
solutions was 24 minutes.

IV. APPLICATIONS AND LIMITATIONS

We will now discuss some applications and limitations of
our MPLS implementations.

A. Dividing traffic into classes

Our free rerouting of traffic may not always be desirable
in connection differentiated services. Suppose we have two
classes of customers: gold customers that were promised a
guaranteed bandwidth, and normal customers. We may be
given a routing solution with the required constraint that gold
traffic uses at most 60% of the capacity of each link. The
normal traffic is assumed to have lower priority in the routers
so that it does not disturb the gold traffic.

Obviously, we cannot just mix the flows from the different
classes, but to find an MPLS implementation with few labels,
we can reroute each class independently. Then neither class
increases its load on any link, and hence all classes should
be happy with rerouting. The price we pay is that we use
K × (T + M) to-trees and labels to route K traffic classes with
different capacity constraints.

We note that finding a first “good” routing solution S for
differentiated services may be a non-trivial matter. Our claim
is only that we given S can find an as good solution S′ that
we can implement with K × (T + M) MPLS labels.

B. Dynamic reoptimization

Generally, we imagine that our optimization can be applied,
say, on a daily basis, or whenever we are about to run
out of labels. It is important to note here, that MPLS can
transition much more gracefully than, say, OSPF. One can in
the background prepare a new set of labels, and configure them
in the router tables without disturbing the traffic. When that
is done, one can transfer the traffic to the new label set, say,
just 10% at a time, waiting for the traffic to stabilize after
each 10%. This way one is sure that no link-load becomes
more than 10% more than it would be in either configuration.
Note that even if we switch all the traffic at once, we should
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Plain with 300 nodes, 1026 edges and 20 clusters
greedy interior basic

nosplit split demands destinations paths to-trees
labels 12709 12716 81113 20877 14462 307
structures 41302 41313 256626 92622 70608 339
dropped 28.2% 28.2% 20.0% 20.0% 20.0% 20.0%

OSPF with 300 nodes, 1026 edges and 20 clusters
greedy interior basic

nosplit split demands destinations paths to-trees
labels 12189 12217 76730 30502 21144 364
structures 46988 47035 239520 112821 82910 459
dropped 14.2% 14.2% 7.2% 7.2% 7.2% 7.2%

Plain with 300 nodes, 1056 edges and 10 clusters
greedy interior basic

nosplit split demands destinations paths to-trees
labels 11569 11577 141775 30239 21497 303
structures 39969 39984 336103 97466 70763 319
dropped 28.7% 28.7% 20.0% 20.0% 20.0% 20.0%

OSPF with 300 nodes, 1056 edges and 10 clusters
greedy interior basic

nosplit split demands destinations paths to-trees
labels 15104 15132 92008 40214 27456 350
structures 44130 44181 237489 110224 77988 452
dropped 18.4% 18.4% 12.8% 12.8% 12.8% 12.8%

Asymptotic worst-case
greedy interior basic

nosplit split demands destinations paths to-trees
labels S × T S × T + M S × T × M T × M S × T + M T + M

TABLE I

MPLS CONFIGURATION SCHEMES

be pretty safe. In the worst-case, a link could get the sum of
its loads in the two configurations. However, if the demands
switch in random order, and a link is not dominated by a single
demand, the link loads will just move nicely between the loads
in the two configuarions.

For contrast, with a shorest path protocol like OSPF, the
configuration is a single weight for each link, and while
transitioning from one weight setting to another, the shortest
paths could be all over the place, creating utter chaos in the
network.

C. Error-scenarios

In this paper, we have generally ignored link-failures and
the like. One approach suggested, but not implemented in [6]
is to say that no link can carry more than half of any demand.
Implementing this with few labels appears difficult. However,
the above is not the only defense against link-failures. Two
points of criticism is that losing even half may be too much,
and even worse, insisting that no link carries more than half

the demand may create a very bad routing solution. In the
worst-case with some bottle-neck link, the requirement would
only allow us to satisfy half the possible demands.

An alternative approach, mentioned earlier, is link rerouting
where one pushes a label on the stack representing a detour
around the failed link [23]. This approach fits perfectly with
ours in that it only requires one label per link.

An alternative solution for a few particularly worry-some or
common failure-situations is to have alternative sets of labels
configured, and switch to these labels if needed. Because we
only use T + M labels to describe a complete routing solution,
it is feasible to pre-configure many alternative sets of labels
that we can switch to in different scenarios. For example, in
our experiments, we gained a factor of 30 in number of labels.
That means that we can now pre-configure what to do in 30
different error scenarios without using more space than we
used to do for a single routing solution.
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