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Abstract— MPLS (Multi-Protocol Label Switching) over 

WDM (Wavelength Division Multiplexing) networks are gaining 
significant attention due to the efficiency in resource utilization 
that can be achieved by jointly considering the two network 
layers. This paper addresses the design of MPLS over WDM 
networks, where some of the WDM nodes may not have packet 
switching capabilities. Given the WDM network topology and the 
offered traffic matrix, which includes the location of the edge 
LSRs (Label Switched Routers), we jointly determine the location 
of the core LSRs (i.e. the core WDM nodes that also need to 
include packet switching capabilities) and the lightpath routes 
(which are terminated on the LSRs) that minimize the total 
network cost. We consider constraints both at the optical and 
packet layers: an MPLS hop constraint on the maximum number 
of LSRs traversed by each LSP (Label Switched Path), which 
guarantees a given packet level QoS, and a WDM path constraint 
on the maximum length of lightpaths, which accommodates the 
optical transmission impairments. A novel Integer Linear 
Programming (ILP) formulation based on an hop-indexed 
approach, which we call the HOP model, is proposed. A two-
phase heuristic, derived from a decomposition of the HOP model 
in two simpler ILP models that are solved sequentially, is also 
developed. The computational results show that the heuristic is 
efficient and produces good quality solutions, as assessed by the 
lower bounds computed from the HOP model. In some cases, the 
optimal solution is obtained with the branch-and-bound method. 

Keywords— Network design & planning, MPLS over WDM, 
ILP models 

I. INTRODUCTION 
Multi-Protocol Label Switching (MPLS) is the technology 

envisaged for future backbone IP networks to overcome some 
of the current problems associated with the provision of IP 
services with Quality of Service (QoS) [1] [2]. In particular, 
MPLS (i) improves the packet switching performance of 
routers and (ii) enables traffic engineering by introducing the 
possibility of source based routing (where the forwarding path 
from an ingress router to an egress router is not constrained by 
the paths of other ingress-egress pairs). A router that supports 
MPLS is known as a Label Switching Router (LSR). MPLS 
organizes the network in MPLS domains. The forwarding of 
IP packets from ingress to egress LSRs is done by means of 
routing paths, called Label Switched Paths (LSPs). In the 
ingress LSR, incoming IP packets are labeled based on their 

destination and required QoS and, depending on this 
classification, are forwarded through the appropriate LSP 
towards an egress LSR. We consider that edge LSRs (ingress 
and egress) can also act as intermediate LSRs to LSPs 
established between other edge LSRs. A packet traveling from 
ingress to egress undergoes a queuing delay in each LSR it 
traverses. It has been shown that combining the use of 
weighted fair queuing scheduling disciplines with leaky 
bucket traffic shaping at ingress nodes, places a bound on the 
maximum packet delay which is proportional to the number of 
LSRs [3]. Thus, QoS delay requirements can be guaranteed by 
constraining the number of LSRs in each LSP. 

At the physical layer, optical transmission and switching 
technologies are evolving rapidly, offering the prospect for 
all-optical networks based on Wavelength Division 
Multiplexing (WDM) and Optical Cross-Connects (OXCs) [4] 
[5]. In these networks, the optical connectivity between 
electrical endpoints can be established by all-optical 
concatenations of WDM channels, called lightpaths. 
Lightpaths have a limitation on their physical extent due to 
various transmission impairments (e.g. attenuation, crosstalk, 
dispersion, nonlinearities).  

MPLS over WDM (and IP over WDM) networks are 
gaining significant attention due to the efficiency in resource 
utilization that can be achieved by jointly considering the two 
network layers [6] [7] [8]. These networks are configured by 
defining lightpaths at the optical layer and LSPs at the packet 
layer. Lightpaths are routed over the physical network 
(comprising OXCs connected through optical fibers) and LSPs 
are routed over the logical topology of lightpaths (the virtual 
optical network). Besides the OXCs, which provide 
wavelength switching capabilities, some nodes may also 
include packet switching capabilities, i.e., some OXCs may 
have co-located LSRs (these nodes are sometimes called 
Generalized LSRs [8]). OXCs with co-located LSRs can 
switch traffic demands between lightpaths, enabling increased 
resource sharing (i.e. having the traffic demand 
accommodated in a lower number of lightpaths). In fact, 
having all OXC sites with co-located LSRs would maximize 
the resource sharing gains, but this could lead to unnecessarily 
high network costs. 
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Figure 2.   MPLS network over the virtual optical network. 

In this paper we consider a network design problem for 
MPLS over WDM networks. Given the topology of the WDM 
layer, the location of the edge nodes and the offered traffic 
matrix, we determine the core LSR locations (i.e. the core 
OXCs sites that also need to include packet switching 
capabilities) and the lightpath routes that minimize the total 
network cost, subject to constraints at both network layers. We 
consider (i) an MPLS level QoS constraint given by the 
maximum number of intermediate LSRs that can be traversed 
by each LSP and (ii) a WDM path constraint given by the 
maximum length of each lightpath. In this problem, the 
network cost includes both the costs of LSR and lightpath 
placements. The design solution is a tradeoff between the cost 
of installing LSRs (at OXC sites) and the resource sharing 
gains that can be obtained from it, which are accounted for by 
the cost of lightpath placement. 

The methodology adopted to solve this problem is based 
on the derivation of efficient Integer Linear Programming 
(ILP) models through appropriate reformulation techniques 
that can be solved with standard ILP algorithms (e.g. branch-
and-bound) [9] [10] [11] [12] [13]. Depending on the 
particular network design problem, this approach has been 
used by other authors either to determine optimal solutions in 
realistic times or as a means to derive lower bounds, from the 
branch-and-bound algorithm, to assess the quality of feasible 
solutions obtained through heuristics. ILP, and more generally 
Mixed Integer Linear Programming (MILP), has been widely 
used in several problems related to the design of optical 
networks [6] [8] [14] [15]. 

We model the design problem in an expanded graph that 
implicitly guarantees the WDM path constraints and use a 
hop-indexed approach to model the MPLS hop constraints. 
This is called the HOP model. The hop-indexed approach was 
previously explored in the context of spanning trees with hop 
constraints in [12]. We also derive a two-phase heuristic, 
which is a decomposition of the HOP model in two simpler 
ILP models that are solved sequentially (to optimality) using 
the branch-and-bound algorithm. The proposed heuristic was 
able to solve all considered problem instances in relatively 
short computing times while the HOP model was able to 
determine the optimal solutions only in a few cases with large 
computation times. Moreover, the lower bounds given by the 
HOP model show that the two-phase heuristic produces good 
quality solutions and, in some cases, gives the optimal 
solution. 

Network design problems under the context of MPLS 
network dimensioning were previously considered in [16] and 
[17]. These problems are solved through heuristics based on 
Lagrangean relaxation and can be seen as simplified versions 
of the current network design problem, when considering that 
all nodes can have co-located LSRs with no additional cost. 

This paper is organized as follows: section II defines the 
network design problem; section III describes the HOP model 
and discusses different modeling alternatives for the path 
formulation with hop constraints; in section IV, the two-phase 

heuristic is derived and explained; and, finally, section V 
presents the computational results. 

II. CHARACTERIZATION OF NETWORK DESIGN PROBLEM 
Consider (i) an optical network composed by a set of 

optical cross-connects (OXCs) and a set of fibers connecting 
the OXCs; (ii) an MPLS overlay packet switching network 
composed by a set of edge LSRs (which are endpoints for 
LSPs) and some possible core LSRs (to be determined as part 
of the design problem), where the connections between LSRs 
are provided by the optical network; (iii) an offered traffic 
matrix described in terms of the bandwidth that must be 
supported between each pair of edge LSRs (i.e., the bandwidth 
of each LSP). The network design problem consists in 
determining the number and location of core LSRs and the 
number and route of lightpaths. Edge LSRs are co-located 
with OXC nodes; the remaining OXC nodes are candidate 
locations for core LSRs. The objective of the network design 
problem is to obtain the least cost solution and, since the 
WDM network topology and the edge LSRs are given, the 
cost of each solution varies with the number and location of 
the required core LSRs and the number and length of the 
required lightpaths. We consider a cost value for each core 
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Figure 3.   Example of an Euclidean graph N (above) and the 

corresponding expanded graph N’ (below). 

LSR in each candidate location and a cost value per length 
unit for each lightpath in the solution. 

Figures 1 and 2 illustrate a feasible solution with a single 
core LSR of the network design problem. Figure 1 represents 
the virtual optical network of lightpaths over the WDM 
network, LSRs are end nodes for lightpaths and OXCs are 
optical switching nodes for lightpaths. Figure 2 represents the 
corresponding MPLS network layer where lightpaths are seen 
as point-to-point connections between LSRs, edge LSRs are 
end nodes for LSPs and core LSRs are packet switching nodes 
for LSPs. 

A network design configuration is a feasible solution if it 
satisfies the following three constraints: 

Network loading constraints: the total capacity of the 
lightpaths between two LSRs must be not less than the 
sum of the bandwidth capacities of the LSPs that cross 
them; 

MPLS hop constraints: an LSP between a given pair of edge 
LSRs must have a number of intermediate LSRs (either 
core LSRs or other edge LSRs) not greater than a 
predefined number; 

WDM path constraints: the route of a lightpath between two 
LSRs (either core or edge) must be not greater than a given 
maximum length value. 

The network design problem is the determination of the 
least cost network solution among the set of all feasible 
solutions, i.e., the solutions that comply with the above three 
constraints. 

III. HOP MODEL FOR THE NETWORK DESIGN PROBLEM 
Let the WDM network layer be modeled by the graph N = 

(X,E) where the node set X represents the OXC locations and 
the edge set E represents the pairs of OXCs connected by 
optical fibers. Some of the nodes belonging to X have co-
located edge LSRs which are represented by node set ER (ER 
⊂ X). The set X\ER denotes the set of candidate core LSR 
locations. At the MPLS network layer, an LSP between each 
pair of nodes belonging to ER must be supported with a given 
bandwidth (in this work, we consider symmetrical LSPs). 
Therefore, we associate to each pair of edge LSRs an LSP k 
with traffic demand bk that must be supported between the 
corresponding source edge LSR, sk ∈ ER, and target edge 
LSR, tk ∈ ER. K denotes the set of all LSPs. The WDM path 
constraints impose that the length of a lightpath connecting 
any two LSRs cannot be higher than a maximum value, 
denoted by H1. The MPLS hop constraints impose a 
maximum number of H2 intermediate LSRs (either edge or 
core) in the path of any LSP k. The cost value ci denotes the 
cost of placing a core LSR in operation at node i ∈ X\ER. The 
cost value c{ij} denotes the cost of placing a lightpath in 
operation between two LSRs located in nodes i and j (we 
consider this cost value to be proportional to the lightpath 
length). 

Given that the only constraint involving the lightpaths is 
the maximum length and that the cost of a lightpath is 
proportional to its length, it is straightforward to observe that, 
in the optimal solution of the problem, a lightpath between 
any two nodes is always routed along the shortest path on 
graph N. This observation permits us to model the network 
design problem in an expanded graph N’ = (X,E’) with the 
same node set as N and where edge e = {i,j} is included in E’ 
if and only if the shortest path in N between i and j is not 
greater than H1. Figure 3 gives an example of an Euclidean 
graph N with 10 nodes and 18 edges (where white nodes 
represent OXC locations and dark nodes represent OXC 
locations with co-located edge LSRs) and the resulting 
expanded graph N’ where the edge set has 4 additional edges 
represented by thicker lines (both graphs are defined in a 
square of size 1.5 units of H1). 

The edges of the expanded graph N’ represent pairs of 
nodes that can be lightpath endpoints, i.e., such that LSRs can 
be located at these nodes and be connected through lightpaths. 
The advantage of modeling the problem in the expanded graph 
N’ is that the WDM path constraints are implicitly guaranteed 
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Figure 4.   Solution of example from Figure 3 in the expanded graph N’ 
(above) and in the original graph N (below). 

in this new graph and do not need to be explicitly modeled in 
the Integer Linear Programming (ILP) model of the problem.  

We present next a generic model for the design problem 
defined in graph N’. The model involves the following set of 
variables, which completely define a solution for the network 
design problem: 

iN  – binary variable that equals 1 if a core LSR is to be put in 
operation in node i ∈ X\ER; 0 otherwise. 

k
ijy  –  binary variable that equals 1 if edge {i,j} ∈ N’ is 

traversed by LSP k ∈ K in the direction from i to j; 0 
otherwise. 

}{iju  – integer variable specifying the number of lightpaths 

installed in edge {i,j} ∈ N’ (i.e., the number of lightpaths 
connecting an LSR placed in node i ∈ X and an LSR 
placed in node j ∈ X \{i}). 

Let V(j) denote the set of neighbor nodes of  node j in 
graph N’, i.e., V(j) is the set of nodes i ∈ X such that edge {i,j} 
belongs to edge set E’. The generic model for the design 
problem, defined in graph N’, is given by: 

Generic Model: 

∑∑
∈∈

+
'},{

}{}{
\ Eji

ijij
ERXi

ii ucNcMin  (1.1) 

subject to: 

{ }
nodes H2most at  traversing  to

 from  LSPfor path  a define 1 :

k

k
k
ij

k
ij

t

sKkyy ∈=
 (1.2) 

KkERXjNy j
jVi

k
ij ∈∈≤∑

∈
,\,

)(
 (1.3a) 

KkERjy
jVi

k
ij ∈∈≤∑

∈
,,1

)(
 (1.3b) 

( ) '},{,}{ Ejiuyyb ij
Kk

k
ji

k
ijk ∈⋅≤+∑

∈
α  (1.4) 

KkEjiuyy ij
k
ji

k
ij ∈∈≤+ ,'},{,}{  (1.5) 

ERXiNi \},1,0{ ∈∈  (1.6a) 

'},{,integerand0}{ Ejiu ij ∈≥  (1.6b) 

KkEjiyy k
ji

k
ij ∈∈∈ ,'},{},1,0{,  (1.6c) 

Constraints (1.2) are given in a generic way and different 
sets of linear inequalities for describing them are discussed 
later. Constraints (1.3a) guarantee that if the path of at least 
one LSR k ∈ K includes a given node j that has not an edge 
LSR, then a core LSR must be put in operation at that node. 
These constraints together with constraints (1.3b) guarantee 
that the LSP paths do not repeat nodes, i.e., they do not 

contain cycles. Constraints (1.4) are the network loading 
constraints and guarantee that there are enough lightpaths 
between each LSR pair (α is the bandwidth of a single 
lightpath) to support the sum of the bandwidths of all LSPs 
that use these lightpaths. Constraints (1.5) are additional 
constraints (not necessary for defining the network design 
problem) that help significantly to solve the model by 
available ILP solvers. These constraints simply state that we 
must install a lightpath in an edge {i,j} if the edge is traversed 
by at least one LSP. Constraints (1.6a/b/c) define the variables 
of the model. 

Figure 4 shows an optimal solution for the example 
introduced in Figure 3 with H2 = 3 (black nodes represent the 
locations of core LSRs selected by the model and edges 
represent the lightpaths connecting LSRs). Since the model is 
defined on the expanded graph N’, the solution edges connect 
directly nodes with co-located LSRs (Figure 4 above). To 
compute the network design solution of the original problem, 
each edge must be replaced by the shortest path connecting its 
end nodes on the original graph (Figure 3 above). For 
example, in the solution shown in Figure 4 (above), the edge 
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solution connecting node 9 to node 8 means that a number of 
lightpaths (given by the solution value of variable }{iju , i = 8 
and j = 9) must be set-up between edge LSR located in node 9 
and a core LSR that must be placed in operation in node 8; 
since this edge is not in the original graph N (Figure 3 above), 
these lightpaths must be routed through the shortest path in the 
original graph, which is via the OXC of node 7 as represented 
in Figure 4 (below). 

One way of modeling generic constraints (1.2) is the 
constrained path model [9] [12] that uses the flow variables 

k
ijy  as already defined in the generic model: 

Kk
ti

tsi
si

yy

k

kk

k

iVj

k
ji

iVj

k
ij ∈






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∈∈
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 (A.1) 

Kky
Ejiji

k
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∈
,1  H2

'},{:),(
                  (A.2) 

For each LSP k ∈ K, the flow conservation constraints 
(A.1) guarantee that the variables k

ijy  include a path from its 

source node sk to its target node tk and the cardinality 
constraints (A.2) guarantee that the path crosses at most H2+1 
edges which is equivalent to say the number of intermediate 
nodes is at most H2. 

Another way of modeling generic constraints (1.2) is the 
feasible path model [11] [13], that uses the flow variables k

ijy  
defined in the generic model together with binary variables 

k
pf  that indicate whether the pth feasible path for LSP k (from 

source node sk to target node tk) is included in the solution (we 
assume that the feasible paths are ordered for each LSP k ∈ 
K): 

Kkf
kPp

k
p ∈=∑

∈
,1  (B.1) 

'},{;, EjiKkyf k
ij

Pp

k
p

k
ij

∈∈=∑
∈

 (B.2) 

k
k
p PpKkf ∈∈∈ ;},1,0{  (B.3) 

In the feasible path model, Pk represents the set of feasible 
paths for LSP k (that is, the paths with at most H2 
intermediate nodes in graph N’ from the source node sk to the 
target node tk) and k

ijP  represent the set of feasible paths of 

LSP k that use edge {i,j} ∈ E’ in the direction from i to j. 
Constraints (B.1) guarantee that the solution contains one 
feasible path for each LSP k and constraints (B.2) relate the 
path variables with the flow variables of the generic model: 
the flow variable k

ijy  is 1 if the selected feasible path of LSP k 
uses edge {i,j} in the direction from i to j. 

In this work, we adopted a more recent approach called 
hop-indexed model that was previously explored in the context 
of spanning trees with hop constraints [12] [18]. This model is 
a formulation that besides the flow variables defined in the 
generic model, also uses binary variables k

pijz ,  indicating 

whether LSP k ∈ K traverses edge {i,j} in the direction from i 
to j and {i,j} is the pth edge in the path from the source node sk 
to the target node tk: 
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{ } 1H2,...,2;;'},{,1,0, +=∈≠∧∈∈ pKksiEjiz k
k
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{ } 1H2,...,2;,1,0, +=∈∈ pKkzk
ptt kk

 (C.5c) 

This model contains “loop” variables k
ptt kk

z , , p = 2, ..., 

H2+1, in the target node tk to model the cases when the path 
from the source node sk to the target node tk contains fewer 
than H2+1 arcs (that is, k

pjtk
z , = 1 for some p < H2+1). For 

each LSP k ∈ K, the hop-indexed model constraints guarantee 
that: 

Constraints (C.1): one of the edges coming out of the source 
node sk must be the 1st edge in its path; 

Constraints (C.2): for all nodes except the source and target 
nodes, an edge that goes into the node as the (p-1)th edge in 
the path forces an edge coming out of that node to be also 
in the path as the pth edge; 

Constraints (C.3a/b): the path includes an edge going into the 
target node tk in a position less or equal to H2+1: 
constraints (C.3a) guarantee that the path ends through an 
edge in position H2+1 (either coming from a neighbor 
node or from a “loop” variable) and constraints (C.3b) 
guarantee that the loop variable associated with the pth 
position must be 1 either if there is an edge going into the 
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Figure 5.   The layered network Nk . 

target node tk in the (p-1)th position or if the loop variable 
associated with the (p-1)th position is already 1. 

Constraints (C.4): relate the hop-index variables with the flow 
variables of the generic model: the flow variable k

ijy  is 1 if 

for a given p =1,…, H2+1, the hop-indexed variables k
pijz ,  

equals 1. 

The hop-indexed model is equivalent to an unconstrained 
path model in a layered acyclic network. For better 
understanding, consider a fully connected network with 5 
nodes and an LSP k ∈ K with origin sk = 1 and destination tk = 
5. If we consider H2 = 3, figure 5 represents the corresponding 
layered graph Nk that contains H2 copies of each node 
i∉{sk,tk}, named (i,p), and H2+1 copies of node tk. A node 
(i,p) is visited in the unconstrained path of the layered network 
if and only if node i is visited in position p in the hop 
constrained path in the original network. Traversing an arc 
((i,p),(j,p+1)), with i≠j and p = 0,...,H2, in the layered graph 
corresponds to traversing the arc (i,j) in position p+1 in the 
path of the original network. Note that the layered network 
contains arcs of the form (tk,p), (tk,p+1), with p=1,...,H2. 
These arcs correspond to the previously mentioned loop 
variables. In figure 5, a 2-hop path in the original network that 
includes arcs (1,3) and (3,5) is represented by the path shown 
in bold. The variables with value equal to one representing 
this path in the hop-indexed model are kkkk zzzz 4,553,552,351,13 ,, . 

Note that a feasible path in the layered network can 
include any two nodes (i,p) and (i,q) for q>p+1 which means 
that nodes can be repeated in a path in the original network. 
However, the hop-indexed constraints together with 
constraints (1.3a/b) in the complete model guarantee that these 
repetitions are not allowed. 

It can be shown that the generic model with either the 
feasible path model or the hop-indexed model for modeling 
constraints (1.2) has the same Linear Programming (LP) 
relaxation value (the LP relaxation of an ILP model is 
obtained from the original model by considering the integer 
variables as real variables between 0 and their maximum 
integer value). The proof of this equivalence result is given in 
[19] for a slightly different problem. The same result holds in 
the context of more general network design problems with hop 
constraints and the problem studied in this paper fits into this 

general class. There is a clear advantage of using the hop-
indexed model instead of the feasible path model for modeling 
constraints (1.2): the former has a compact number of 
variables and constraints and thus, can be solved by using 
available packages for solving ILP models; the later has an 
exponential number of variables (one for each feasible path) 
that requires either a type of implicit generation scheme that 
must be embedded with the solver or some “a priori” heuristic 
selection of path variables to be included in the model (note 
that this second option may loose optimality).  

Concerning the constrained path model, the hop-indexed 
model is much more complex since it contains far more 
variables and constraints. However, some interesting 
properties of the hop-index model presented and discussed in 
[12] indicate that modeling constraints (1.2) with the more 
complex hop-indexed model instead of the simpler 
constrained path model makes the whole model easier to 
solve (or, in other words, reduces the computing time) when 
using a standard branch-and-bound algorithm. The main 
reason for this fact is that the LP relaxation value of the hop-
indexed model is much closer to the optimum integer value 
which, in turn, gives a better first solution for the branch-and-
bound to start with. Our computational experience, using the 
hop-indexed model, on this network design problem has 
confirmed these expectations. 

For these reasons, the remainder of the paper only 
addresses the generic model with (1.2) modeled by the hop-
indexed model. For completeness reasons, we present below 
the generic model with (1.2) substituted by the constraints 
defining the hop-indexed model and designate this as the HOP 
model. Note that the equalities given by constraints (C.4) can 
be used to redefine constraints (1.3a/b), (1.4) and (1.5) in 
order to eliminate the original flow variables k

ijy . For better 
understanding, we maintain in the HOP model the numbering 
of constraints as given in the generic model and in the hop-
indexed part of the model (where the letter C is replaced by 
1.2). 

HOP Model: 
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The network design problem defined by this ILP model 
can be easily extended to cope with multi-service MPLS 
networks. In the general case, we associate to each pair of 
edge LSRs a set of LSPs (one for each service) instead of a 
single LSP. Furthermore, for each one of these LSPs we may 
associate a different value of parameter H2 in cases with 
services with different QoS packet delay requirements. 

IV. A TWO-PHASE HEURISTIC  
Based on the HOP model, we have developed a two-phase 

heuristic that can be used to determine feasible solutions for 
the network design problem. The reasons for this approach are 
as follows: (i) the cost value of the solutions obtained with the 
heuristic can be given to the branch-and-bound algorithm as 
an upper bound, to help solving the HOP model (this can 
reduce significantly the computational time); (ii) the heuristic 
can obtain solutions for problem instances that could not be 
solved to optimality by the HOP model, due to exaggerated 
computational times or memory failure. 

The two-phase heuristic is based on the decomposition of 
the HOP model in two simpler ILP models that are solved one 
after the other. The first phase of the heuristic ignores the part 
of the problem that relates to lightpaths. It focus on finding 
locations for the core LSRs in order to guarantee that, for each 
pair of edge LSRs, there is at least one path satisfying the 
MPLS hop constraints. The objective is to minimize the part 
of the original objective function associated with the costs of 

core LSRs. The model is again an ILP which is a restricted 
version of the HOP model where the lightpath costs are 
ignored in the objective function (1.1) and the constraints 
involving variables }{iju  (constraints (1.4), (1.5) and (1.6b)) 
are eliminated. 

Phase 1 model: 
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The second phase of the heuristic considers the locations 
of core LSRs given by the optimal solution of the previous 
phase (defined by the solution of variables iN ) as input 
parameters. This phase is concerned with the determination of 
the required lightpaths (how many and between which LSRs). 
The output of phase 1 guarantees that a feasible solution can 
be obtained. We consider a restricted version of N’, the 
network N’’ = (ER∪CR,E’’), where CR denotes the set of core 
LSR locations obtained in the previous phase. The set of edges 
E’’ is a subset of E’ corresponding to the edges that have both 
endpoints in ER∪CR. Considering again the example of 
Figure 3, we show in Figure 6 the network N’’ that has been 
generated assuming that the solution of phase 1 is a set of 
three core LSRs in nodes 3, 5 and 8 (this is different from 
Figure 4, which represents a solution obtained with the HOP 
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Figure 6.   Graph N’’ corresponding to the example of Figure 3. 

model). Note that since phase 1 is based only on the cost of 
core LSRs, it can produce a set of locations that may not allow 
the optimal solution of the whole problem to be obtained in 
phase 2. Therefore, the described two-phase procedure does 
not guarantee the determination of the optimal network design 
solution. 

The second phase is also modeled by an ILP and the 
problem is defined in graph N’’. The set V(j) represents, now, 
the set of neighbors of node j on graph N’’. This second phase 
model is again a restricted version of the HOP model where 
the core LSR costs are ignored in the objective function (1.1) 
and the constraints involving variables iN  (constraints (1.3a) 
and (1.6a)) are eliminated. 

Phase 2 model: 
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Note that constraints (3.3b) in this second phase model, 
equivalent to constraints (1.3b) of the HOP model, are 
extended to all nodes of N’’ since in this graph there are LSRs 
in all nodes. 

V. COMPUTATIONAL RESULTS 
To analyze the performance of the HOP model and of the 

two-phase heuristic, we have generated 4 Euclidean networks: 
2 networks with 25 OXC nodes (networks N25a and N25b) 
and 2 networks with 50 OXC nodes (networks N50a and 
N50b). 

The OXC nodes were randomly located in a square grid of 
dimension 2 by 2 for the 25 node instances and 2.5 by 2.5 for 
the 50 node instances (the dimensions are given in number of 
H1 units, where H1 is the maximum lightpath length). The 25 
node instances were generated with 50 edges and the 50 node 
instances with 100 edges. To generate the optical fiber links of 
each network we considered, first, the complete graph 
generated by all OXC nodes and assigned costs to each link 
equal to the integer part of the Euclidean distance between its 
end nodes. Then, we determined the minimum cost spanning 
tree in this graph. The edges of this spanning tree are included 
in the WDM network together with the cheapest remaining 
50-(25-1) and 100-(50-1) edges, respectively for the 25 and 50 
node instances. 

At the MPLS network layer, we have considered 12 edge 
LSRs for instances with 25 nodes (generating a traffic matrix 
with 66 origin-destination pairs), and 15 edge LSRs for 
instances with 50 nodes (generating a traffic matrix with 105 
origin-destination pairs). The majority of edge LSRs were 
located at the network fringes, to make sure that the WDM 
path and MPLS hop constraints have some effect on the 
feasible solutions (if edge LSRs were all located near each 
other, direct lightpaths between them would be feasible 
making the problem a lot easier to solve). Thus, the following 
rules were used: in network N25a, the 12 edge LSRs were 
located at the most distant nodes from the Euclidean center of 
the network; in network N25b, 10 edge LSRs were located at 
the most distant nodes from the Euclidean center and 2 edge 
LSRs were located closer to the Euclidean center; in network 
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Figure 7.   Network N25b (above) and network N50b (below). 

N50a, 14 edge LSRs were located at the most distant nodes 
from the Euclidean center and 1 edge LSR was located closer 
to the Euclidean center; in network N50b, 12 edge LSRs were 
located at the most distant nodes from the Euclidean center 
and 3 edge LSRs were located closer to the Euclidean center. 
Figure 7 presents the  resulting optical topology and edge LSR 
locations for the networks N25b and N50b. 

In all problem instances, we assumed that the cost of 
putting a core LSR in operation is ci = 100, for all i ∈ X\ER; 
the cost of a lightpath between nodes i and j is given by c{ij} = 
20 × (length of the shortest path between i and j) (in H1 units); 
the capacity of lightpaths is α = 1; the bandwidth demands bk, 
of all LSP k ∈ K, are randomly generated with an uniform 
distribution in the interval ]0, 0.1]. For all problem instances, 
we considered two values for the parameter H2. 

The edge set E’ of the expanded network N’ is computed 

apriori, which resulted in expanded graphs of 109 edges 
(network N25a), 125 edges (network N25b), 367 edges 
(network N50a) and 388 edges (network N50b). 

As stated before, both the HOP model and the phase 2 
model of the heuristic contain additional constraints 
(constraints (1.5) and (3.5)) that increase significantly the LP 
relaxation value of the models and therefore give a better first 
solution for the branch-and-bound to start with. Unfortunately, 
these sets contain a large number of constraints and our 
experience indicates that including all of them in the models 
would lead to an excessive computational effort. Thus, instead 
of adding all inequalities to the models from the beginning, we 
have decided to consider only a selected sub-set C. This set C 
is computed as follows. We start by solving the LP relaxation 
of the HOP model without constraints (1.5), or their 
equivalent in phase 2 of the heuristic (the LP relaxation of an 
ILP model is much easier to solve than the original model 
[20]). The optimal solution of the LP relaxation is examined to 
see whether it violates some of the constraints (1.5). The 
violated constraints are added to the model (as noted before, 
these constraints help to improve the LP relaxation but do not 
change the value of the optimal integer solution). We solve the 
LP relaxation of the new model and proceed as before, that is, 
we examine whether some of the remaining inequalities in 
(1.5) are violated by the new LP solution. If there are some 
violated inequalities, the process continues. If none is violated 
by the current optimal LP solution, the procedure stops and 
the set C is then defined by all the inequalities added to the 
model in all iterations. For example, the problem instance of 
network N25a with H2 = 3 was solved to optimality in 588 
minutes when all constraints (1.5) were included in the model 
but it took only 66 minutes (Table II) when the sub-set C was 
considered. In this case, the above method for generating 
constraints was able to reduce the 7194 constraints of type 
(1.5) included in the original model to only 422 constraints 
(about 6% of the total). All the computational results 
presented in this section make use of this constraint generation 
procedure.  

All results were obtained through the use of CPLEX 7.0 (a 
standard solver package that includes the branch-and-bound 
algorithm for solving ILP models) running on a PC platform 
with a Pentium III processor at 450Mhz of clock rate and with 
256MB of RAM. 

Table I presents the solution values (SV) and the CPU 
times (CPU) obtained in phase 1 and phase 2 of the proposed 
heuristic, and the complete solution value (CSV). The CPU 
times show that the phase 1 model is easy to solve. The phase 
2 model is much harder to solve which suggests that additional 
research is necessary to improve its efficiency. Nevertheless, 
the smaller cases were solved in less than half an hour and the 
most difficult case (N50a with H2 = 4) was solved in around 6 
hours of CPU time which is still a realistic time for a network 
design task. We note that there are no feasible solutions for H2 
values lower than the ones presented in Table I, since for these 
H2 values there is no network configuration that can cope 
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simultaneously with the WDM path constraints and MPLS 
hop constraints. 

TABLE I.COMPUTATIONAL RESULTS OF THE HEURISTIC 

  Two-Phase Heuristic  
 H2 Phase 1 Phase 2 CSV 
  SV CPU SV CPU  

3 300 4 sec 194 2 min 494 
N25a 

4 300 5 sec 185 21 min 485 
2 200 1 sec 215 1 min 415 

N25b 
3 200 3 sec 199 13 min 399 
3 400 19 sec 340 4 min 740 

N50a 
4 300 83 sec 360 347 min 660 
3 600 18 sec 326 240 min 926 

N50b 
4 400 48 sec 314 107 min 714 

TABLE II.COMPUTATIONAL RESULTS OF HOP MODEL 

 HOP Model 
 H2 SV CPU Gap 

3 481 66 min 2.70% 
N25a 

4 454.24 * 2 days 6.77% 
2 415 2 min 0.00% 

N25b 
3 383.5 * 2 days 4.04% 
3 740 1438 min 0.00% 

N50a 
4 599.8 * 2 days 10.03% 
3 906.75 * 2 days 2.12% 

N50b 
4 683.13 * 2 days 4.52% 

 
Table II presents the results obtained by the HOP model 

(SV and CPU have the same meaning as in Table I). In this 
case, we imposed a limit of 2 days on the maximum CPU time 
and gave an initial upper bound to the branch-and-bound 
algorithm given by the solution values of the two-phase 
heuristic (presented in Table I). The results with the symbol * 
refer to the cases where the HOP model did not achieve the 
optimal solution (in fact, none of these cases achieved any 
feasible solution below the upper bound given by the 
heuristic). In these cases, the SV values shown in Table II are 
the best lower bound values obtained by the branch-and-bound 
algorithm. Either the value of the optimal solution or the lower 
bound value (obtained through the HOP model) can be used to 
assess the quality of the heuristic solution. In Table II, the 
“Gap” column gives, in percentage, the difference between the 
cost value of the solution obtained with the heuristics and the 
SV value obtained with the HOP model. 

The results of Table II show that the HOP model was able 
to obtain the optimal solution only in three cases. 
Nevertheless, in two of these cases, the heuristic achieved the 
optimal solution and, in the other case, a feasible solution 
which is only 2.7% worse than the optimum value was 
obtained in around 2 minutes while the optimum solution took 

66 minutes. In the cases where the HOP model did not yield 
the optimal solution, the reported lower bounds show that the 
solutions of the heuristic are at most (in the worst case) 10% 
above the optimal value. Note, however, that in these cases the 
quality of the solutions may be better than suggested by the 
gap values, since we do not know whether the optimal value is 
near the lower bound or near the value of the heuristic 
solution. 

The main advantage of the proposed decomposition 
approach is that it separates the original problem into (i) a 
hop-indexed facility allocation problem (which is easy to 
solve) and (ii) a standard multi-commodity network loading 
problem defined in a much smaller graph and, therefore, much 
easier to solve than the original one.  

Note also that the two-phase heuristic favors solutions that 
minimize the costs of core LSRs. This is a good approach 
since, in general, electrical switching involves higher costs 
than optical switching and, therefore, the overall cost of a 
design solution is more dependent on the costs of LSRs than 
the costs of lightpaths. 

The CPU times of Table I and II show that the adopted 
models are more efficient (have on average smaller computing 
times) for smaller values of H2. This result was expected since 
the models become more complex (with more variables and 
constraints) for growing values of H2. 

We have also tested the use of the constrained path model 
to derive both the exact model (the equivalent to the HOP 
model) and the two-phase heuristic of our network design 
problem. The CPU times were, in general, quite worse. For 
example, it took almost one day to obtain the optimal solution 
of problem N50a with H2 = 3 using the HOP model  (Table II) 
but the constrained path based model did not obtain any 
feasible solution within 2 days of CPU time. In the same 
problem instance, the two-phase heuristic yield the final 
solution in around 240 minutes while its constrained path 
counterpart took nearly 1000 minutes. In all the cases where 
the HOP model did not find the optimal solution, its 
constrained path counterpart was also not able to find the 
optimal solution and the obtained lower bounds were always 
worse. 

In summary, the two-phase heuristic (based on the hop-
indexed approach) is a promising method to handle the design 
of MPLS over WDM networks with packet level QoS 
constraints, since it is able to obtain good quality solutions to 
relatively large problems in realistic computational times. 

VI. CONCLUSIONS  
In this paper, we have addressed a network design problem 

that arises in IP networks provisioned through an MPLS 
network layer operating over a WDM optical network. The 
network design problem considers the joint determination of 
the MPLS network layout and the WDM optical layout taking 
into account both packet level QoS constraints and lightpath 
level constraints (which accounts for transmission 
impairments). We proposed an ILP model based on an hop-
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indexed approach, called the HOP model, to give an exact 
solution to the network design problem. We have also 
developed a two-phase heuristic, based on the decomposition 
of the HOP model in two simpler ILP models. Our results 
show that the proposed heuristic is successful in producing 
good feasible solutions for relatively large networks within 
realistic computational times using the branch-and-bound 
algorithm. Also, the lower bounds computed through the HOP 
model show that the two-phase heuristic produces good 
solutions and, in some cases, achieves the optimal solutions. 
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