

Abstract---We solve the problem of time-optimal network queue
control: what are the input data rates that make network queue
sizes converge to their ideal size in the least possible time after a
disturbance while still maintaining maximum link utilization at
all times, even in the transient?

The problem is non-trivial especially because of the vast
possible heterogeneity in packet propagation delays in the
network. In this paper, we derive the time-optimal queue control
for a single congested network node with a single finite queue
shared by flows with arbitrary network delays. We neatly
separate the derivation of the optimal arrival rate sequence from
that of the feedback control protocol to achieve it.

The time-optimal control is robust to bandwidth and queue
size estimation errors. Its complexity is only a function of the size
of the network delays and no per-flow computation is needed.
The time-optimality and robustness properties are proven to hold
under all queue operating regimes with no need for linearizing
approximations.

 Keywords--- Flow Control, Queue Control, Congestion Control,
Control Theory, Optimization, ATM, ABR

I. INTRODUCTION

Networks all over the world, both public and private, are

facing continuously increasing traffic loads. In recent
developments, the long touted convergence of traditional
telephone services to the Internet is finally happening slowly
but surely. VoIP (Voice over IP) traffic has seen a gradual
increase over the last two years, especially in private intranets
as enterprises realize its cost and flexibility benefits. Peer-to-
Peer data traffic is on the rise and has to be controlled so as to
protect other data applications. Broadband wireless LAN
traffic is on a steep rise and is expected to contribute
significantly to backbone networks of service providers. High
bandwidth video traffic will also undergo a steep rise once
broadband to the home becomes ubiquitous.

With such bandwidth-hungry traffic on the rise and
additional raw bandwidth still being costly to deploy, the
problem of coordinated network-wide congestion prevention
and queue control will assume paramount importance more
than ever. The disturbances in the available bandwidth for any
class of traffic will become more severe. Users will establish
or break flows on a larger scale. Higher priority traffic classes
may suddenly consume or release large amounts of

bandwidth. These can lead to sudden and large changes in
queue sizes and link utilization.

In the light of this reality, this paper seeks to answer a
fundamental question: how should the flow source rates
feeding into a network be adjusted so as to quickly bring the
network back towards its ideal steady queue-size condition
after a disturbance. In fact, how fast can this be done while
always ensuring full utilization at some link in the path of
every traffic flow? How does the per-flow service rate
allocation used at the queues affect this convergence time?
What makes this particular control problem uniquely
challenging is the presence of time delays in the data and
control feedback paths. We believe that the solution to this
time-delayed control problem is important in the design of any
practical flow control scheme that has to handle large
disturbances.

More formally, the general time-optimal queue control
problem is: given initial queue sizes, and the link bandwidths
for all future times, determine the source rate sequences and
the per-flow service rates at queues that will bring the queue
sizes to desired values in minimum time, while ensuring that
at least one link remains fully utilized in every flow’s path.

We seek solutions to this problem with a gradual approach.
In this paper, we solve this problem for the case of a single
congested node in the network, with the flows sharing a single
queue and being jointly controlled. In a subsequent paper we
generalize the solution for the case of multiple congested
nodes.

As we see later in this paper, a sufficient condition for
convergence (after a disturbance) to ideal queue sizes in
minimum time is basically the minimization of magnitude of a
queue deviation term at every point in time. This queue
deviation term is the current queue size minus the ideal queue
size reduced by an overload term. This overload is the total
future queue size increase contributed by erroneously
computed past rates that did not anticipate the disturbance.
This has never been explicitly and precisely taken into account
in previous approaches to flow control and the emphasis on
time-optimal control is what led to its discovery.

Unlike past control theoretic approaches, including those
based on linear-quadratic optimal control [1,2,5], we neatly
separate the derivation of the optimal arrival rate schedules
from the closed-loop network protocol to achieve it. Other

Time-Optimal Network Queue Control : The Case of a Single Congested Node

Mahadevan Iyer
Dept. of Electrical and Computer Engg.

University of California, Irvine
Irvine, USA

miyer@ece.uci.edu

Wei Kang Tsai
Dept. of Electrical and Computer Engg.

University of California, Irvine
Irvine, USA

wtsai@ece.uci.edu

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

than fastest convergence, the other noteworthy features of the
time-optimal control and its corresponding protocol are:
1. Global Stability: Queue size convergence in minimum

time is guaranteed under all initial conditions and initial
traffic disturbances even if queue operation enters the
nonlinear regime.

2. Tight Robustness of Performance: The deviations of the
queue sizes from their time-optimal values are bounded
by exactly the total error bound in estimating the queue
size and available link capacity terms in the control.
Intuitively, this will also imply robustness of the time-
optimal protocol to link delay estimation errors since
these contribute bounded errors in estimating the future
queue size and capacity terms in the control.

3. Simplicity: The structure of the time-optimal control is
simple: a residual-capacity term minus a queue deviation
term.

4. Scalability: The control rates need to be computed only
per flow delay and not per flow. If D is the maximum
round-trip time in units of discrete control intervals, the
control complexity is 2()O D at the time of a disturbance
and O(W) otherwise, where W D≤ is the number of
different flow fairness weights.

5. Fairness: Once the expression for the time-optimal total
arrival rate is calculated, it can be divided in any desired
proportion to obtain the individual flow rates to be fed
back from switch to each flow source.

In practice, time-optimality in control becomes most
important during periods of large queue deviations, while
slower control can be used during other periods [14].

Related Work

Numerous network flow control schemes have been
proposed. The schemes surveyed in [12] and those in [7,8,14]
have focused primarily on the fairness to different flows and
maximal utilization of available link capacity while using ad-
hoc enhancements for queue control. Recently, linear control-
theory has been systematically applied to control of TCP
flows using active queue management ([9]) in Internet routers
in [10] which also contains references to numerous other TCP
control-theoretic analyses. However in this paper, we focus on
more closely related work on network level rate-based
feedback flow control using control theory.

[3] presented one of the first network-layer flow control
schemes to systematically apply linear feedback control
theory. The scheme controls a single congested queue in a
provably local-asymptotically stable manner, with arbitrary
but fixed network delays. Local stability here means
guaranteed queue convergence after a small initial disturbance
in available link capacity or set of flows. The disturbance is
assumed small enough to ensure linear operation i.e. full link
utilization and no buffer overflow at all times, even in the
initial round-trip time following a disturbance. [4] extends [3]
to multiple congested nodes. In [3,4], the available capacity
changes are kept track of indirectly by tracking changes in

queue size. This indirect and moreover linear control approach
for a nonlinear system like a network queue makes it very
difficult to ensure global stability. [16,17] use the classical
Smith predictor approach [21] to ensure local asymptotic
stability in the presence of network delays. [18] improves on
[17] by using a robust decoupled queue-reference and rate-
reference control that needs no direct knowledge of network
delays. [16-18] are all per-flow control schemes and do not
consider the idea of joint optimal control of all flows.

The linear controller in [15], like [3], does not use the
available capacity term directly but only by tracking the
current change in queue size. But it is a dual controller: after a
disturbance, a high gain controller quickly brings the queue to
near the equilibrium point after which a low gain controller
takes over and maintains local stability around the equilibrium
point. [5] presents a linear-quadratic optimal control approach
for per-flow control. Recent papers [1,2] formulate single-
queue control as a stochastic optimal control problem with
heterogeneous network delays. However [1,2] also assume a
linear operation for the queue at all times. [6] derives
stochastic optimal control policies assuming Markov-
modulated capacity variations. [20] designs robust controllers
to handle uncertain and heterogeneous network delays, but
assumes linear operation too.

The rest of the paper is organized as follows. Section 2
informally explains time-optimal control. Section 3
mathematically formulates the time-optimal control problem.
Section 4 derives the time-optimal input rates first for a single
flow and then generalizes to multiple flows. Section 5 derives
a switch-centric feedback protocol to achieve the time-optimal
control. Section 6 proves the robustness of the time-optimal
control. Section 7 makes concluding remarks.

II. INFORMAL DISCUSSION OF TIME-OPTIMAL
QUEUE CONTROL

Consider first the simple one queue/link model of Fig. 1.

The queue size Q(n) and output data rate o(n) get updated
regularly according to the discrete-time update equation1,
 (1) (() () ())Q n Q n a n C n ++ = + − (1)
 () min(() (), ())o n Q n a n C n= + (2)
where max(,0)x x+ = , a(n) is the data arrival rate and C(n) is
the available link capacity (or service rate) of the queue in the
nth time-slot, both measured in bits per time slot. In words, if
the demand (total arrival rate plus queue size) is no greater
than the link capacity in a time slot, the queue goes to zero;
otherwise the excess of demand over capacity remains in the
queue. The network node buffer holding the queue is assumed
infinite for now. Finite buffers are considered in section 4.

1 In the rest of the paper, an expression of the form x+ will
stand for max(,0)x and x− for min(,0)x .

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

()Q n

()C n()a n ()o n

*Q

Fig. 1. Quantities involved in single queue control.

Supposing our ideal state is one of zero queue size and full

link utilization. A trivial way to reach this state as quickly as
possible is simply not transmit any data into the queue until
the initial Q(0) bits of data are completely drained out and
after that keep the data arrival rate equal to the available
capacity at all times. The trouble with this approach is that the
link can remain underutilized when Q(n) < C(n) and no data is
sent; the entire queue would drain out and yet not utilize all
the available link capacity.

Indeed, a careful look at the queue update equations above
shows that only when the queue size is larger than the
available link capacity must the arrival rate must be 0 to
achieve maximum queue drainage in that time slot. However,
when the queue size is smaller than available capacity, the
‘room’ available in the queue is the available link capacity
minus the queue size, () ()C n Q n− , and an arrival rate of this
value will send the queue to zero at the end of that time slot
while still fully utilizing the link, i.e. () ()o n C n= . Hence the

arrival rate must be controlled as *() (() ())a n C n Q n += − in
order to minimize the queue size and maximize the link
utilization at every time step. Minimizing the queue size at
every time step in turn minimizes the time to converge the
queue size to zero.

In general if the target queue size is *Q , it’s the magnitude

of queue size deviation, *() ()q n Q n Q= − , and not the queue
size that must be minimized at every time step. The time-
optimal arrival rate must therefore be,
 *() (() ())a n C n q n += − (3)
Section 4 formally proves that (3) is indeed time-optimal, i.e.
converges ()q n to zero in minimum time and fully uses the
link capacity at all times. The time-optimal source rates are
then merely a time-delayed version of the time-optimal arrival
rates.

Next, consider multiple flows sending data into the same
queue. The flow sources are located at different distances from
the queue as for example in Fig. 3. Consider a disturbance in
the future capacities, as estimated by an observer at the queue.
Upon detecting such a disturbance, it takes one round-trip time
for the new desired arrival rate to be conveyed back to a
source and the data from the source to be arriving later at the
queue at this new rate. This is illustrated in fig. 2. The x-axis
is the time and the y-axis is the distance away from the switch
towards the various sources. The backward slanted line shows

. . .

Time

.

.

.

Switch nn+D1 n+D2

Control
Phase 1

Control
Phase 2

. . .

Data Trajectory

n+D3
n+DN. . .

Control
Information
Trajectory

Time of
Disturbance

Flow 1

Flow 2

Flow 3

Flow N

 Fig. 2. Control Phases and Data Trajectories

desired arrival rate information being conveyed by the switch
to each flow source which then respond with data traveling
along the trajectories shown by the forward slanted lines. The
time-axis gets divided into control phases with phase i being
from in D= to 1in D += where iD is the round-trip time for
the ith nearest source. In other words, the control phase in
which a time slot n resides is P(n) where

()P n i= if 1i iD n D +≤ <
Thus during phase 0, all flows are sending pre-disturbance

rates, during phase 1, only flow one is sending the newly
controlled (post-disturbance) rates, during phase 2, flows 1
and 2 are sending newly controlled rates and so on. In general,
the controllable flows at time n are from i=1 to ()P n or
equivalently all i such that in D≥ . The queue update
equation can be then written purely in terms of the total arrival
rate of these controllable flows and the capacity available to
them. That is,

1

(1) (() () ())
N

i
i

Q n Q n a n C n +

=

+ = + −∑

 (() () ())c cQ n a n C n += + − (4)
where

:

() ()
i

c
i

i n D

a n a n
≥

= ∑ (5)

is the total controllable arrival rate and

:

() () ()
i

c i

i n D

C n C n a n
<

= − ∑ (6)

is the controllable capacity. But this queue update equation is
exactly that of a single flow through a single queue as in (1).
The single flow is really a super-flow, an aggregate of the
controllable flows identified for each give time slot.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

*Q

()S n

()cC m

m0

()C n

 S(n)1D

()Q n *()eQ n

Flow 1

Flow 2

D1=3 ms

D2=10 ms

n 2D

Fig. 3. Illustration of time-optimal control with negative

controllable link capacity

However there is one crucial difference between equations

(1) and (4). Unlike ()C n , ()cC n can go negative when the
longer uncontrollable flows are sending more than the
available link capacity, something that occurs significantly in
practice due to sudden available capacity drops or new flows
joining, say due to route changes. Hence the control given by
(3) has to be generalized to handle negative capacities.

Intuitively, an extra space must be reserved in the queue to
accommodate the queue buildups represented by the negative
capacities in the future. That means the target queue size value
must be effectively reduced by the sum of the future negative
capacities. Fig. 3 shows an example. Two flows cross a queue.
Flow 1 has shorter round-trip delay of 3 ms and flow 2 has a
round-trip delay of 10 ms. The target queue size is 50 Kb and
at any time n in control phase 1, the total future negative
capacity seen by flow 1, as represented by the shaded area in
the figure, is -30 Kb. This is the total data going to be dumped
in the queue by flow 2 in control phase 1 even if nothing
arrives from flow 1. Hence a queue space of 30 Kb must be
‘reserved’ for these and the effective target queue size is 50–
30=20 Kb. In general, the effective target queue size at time n
is

* *(())eQ Q S n += +
where

() (())c

l n

S n C l −

≥

=∑

is the total negative controllable capacity in the future of n.
We also call ()S n as the future overload at time n.

The arrival rates must therefore be calculated as
 *() (() ())c c ea n C n q n += − (7)
where
 *() ()e eq n Q n Q= − (8)
In the following section, we formally define the time-optimal
control problem within a reasonably simplified network
model. Section 4 then formally proves that (7,8) is indeed the
solution to the time-optimal control problem: it achieves
minimum convergence time while ensuring full link utilization
at all times.

III. NETWORK MODEL AND THE TIME-OPTIMAL

CONTROL PROBLEM

A. Network Model

Since the objective of this paper is to gain a fundamental
understanding of time-optimal queue control, we keep the
network model simple and make some reasonable simplifying
assumptions. The network is modeled as a set of packet-
switched nodes interconnected by links. A flow is a stream of
packets traveling from a given source to a destination through
a fixed sequence of links and nodes. This models even a
datagram network reasonably well for the purpose of feedback
flow control, provided the datagram routes change only on the
order of several round trip times, e.g. IP networks [18]. The
source and destination nodes could either be end hosts or edge
nodes of the network.

The set of packets that have entered a node and are waiting
to be routed on to a particular link are represented by a queue
to that link. This model is general enough to represent any
combination of input or output queuing done in present day
routers. All the flow control is concerned with is the size of
this queue and not with the particular queuing implementation
used inside the node/router.

In this paper, we only consider the control of a single queue
in a single bottleneck node in the network. The total access
link delay between transmission of a packet at a source and its
reception at the bottleneck node queue can be assumed fixed
since no variable queuing delays will be encountered by the
packet until it reaches the bottleneck queue. This is a
simplified model and also a first step in tackling the more
general problem of multiple queues with arbitrary network
topology and flow routes [11].

Time is divided into a sequence of time slots and all control
computations are done at the beginning of time slots. Different
packets can be of different sizes, with all traffic rates
measured in number of bits per time slot. The input rate in a
given time slot is the number of bits that enter the queue in
that time slot while the available link capacity in a time slot is
the maximum number of bits that can be served from the
queue in that time slot. This available link capacity value is
something determined by the local capacity allocation scheme
used inside the node. For example, in the ATM ABR or IP
best effort service, it is basically the total outgoing link
capacity minus that consumed by the higher priority VBR or
DiffServ flows. All the access link delays in this paper are
assumed to be and expressed in integer number of time slots.
Non-integer delays can be handled in a manner similar to that
in [3].

Buffer Size Assumption:
Initially, we assume the buffer holding the data queue to be
infinite in size. At the end of section 4, we explain why the
time-optimal control law of (7), (8) still holds for any buffer
size, finite or infinite.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Delay-Based Aggregation of Individual Flows:
All individual flows with equal round-trip delays, measured in
units of time slots, are aggregated together as a single flow. In
the rest of the paper, a “flow” refers to this aggregated flow.
The flows are then identified by integers such that flow
number i has the ith smallest round-trip delay.

Notations and Terminology:
The total forward access link delay for data packets along the
path of flow i from source up to the queue is denoted by fid .
The backward access link delay for the control packets from
the queue back to source i is denoted by bid . The round trip
time is i fi biD d d≡ + . The arrival rate at queue for source i at
time n is the number of bits of flow i arriving at the queue in
time slot n and is denoted by ()ia n . The source rate of flow i
at time n is the number of bits transmitted by source in time
slot n and denoted by ()iA n . Obviously,
 () ()i i fia n A n d= − (9)

The total arrival rate at time n is () ()i
i

a n a n≡∑ . The

available link capacity (or the service rate) for the queue in
time slot n is the maximum number of bits that can be
transmitted on the outgoing link during time slot n and is
denoted by C(n). The queue size at time n is the number of
bits in the queue at the beginning of time slot n and denoted
by Q(n). The queue deviation at time n is defined as

*() ()q n Q n Q≡ − where *Q is the target queue size. The
queue output rate in time slot n is the total number of bits
transmitted to the outgoing link and denoted by o(n).

Queue and Output Update Equations:
As discussed at the beginning of section 2, we use a discrete
time update model for the queue size and output rates, viz.
 (1) (() () ())Q n Q n a n C n ++ = + − (10)
 () min(() (), ())o n Q n a n C n= + (11)

Initial Conditions for the Control:

The initial conditions for the control are the initial queue
size, 0(0)Q Q= , and the given arrival rates for each flow in its
uncontrollable phase, viz. the tuple,

0{ (0) ,{ () : 0 } }i i iQ Q a n n D= = ≤ <I

Full Notation for Queue Size Sequence:
From the update equation, (10), it follows that the sequence of
queue sizes is a deterministic function of the initial condition,
arrival rate sequences in the controllable phase for each flow,
and the link capacity sequence. In other words, the queue size
sequence can be fully described by the notation (, , ,)Q nI C a
where

() { () : }i i in a n n D= ≥a
is the vector of controllable arrival rate sequences and

() { () : 0}n C n n= ≥C
is the link capacity sequence. This notation (, , ,)Q nI C a is
needed to compare the queue sizes caused by the candidate
time-optimal sequence and other sequences, in the subsequent
proofs in this paper. The queue size deviation is then

*(, , ,) (, , ,)q n Q n Q= −I C a I C a

B. The Time-Optimal Queue Control Problem

Definition (Convergence):
The queue size is said to have converged to a value at a given
time n if it remains at that value from n onwards.

Given initial condition I, the link capacity sequence C, and a
vector of controllable arrival rate sequences a, the earliest time
at which the queue size has converged to *Q , is called the

convergence time to *Q and is denoted by *(, , ,)cT Q I C a .

The Single Queue Time-Optimal Control Problem can

now be succinctly defined:
Given an initial condition and the available link capacity
sequence, find the vector of controllable arrival rate
sequences that minimizes the convergence time to *Q while
fully utilizing the available link capacity in every time slot.

Some convenient terminology for comparing queue sizes
caused by optimal and non-optimal arrival rate sequences:
In the time-optimal control problem, the I and C are given and
are therefore dropped from the notation. The queue at time n
caused by arrival sequence a is therefore simply denoted by

(,)Q na .
To further simplify expressions in the proofs,
a) the phrase “ *(,) (,)Q n Q n≤a a ∀a ” is replaced by

“ *(,)Q na is the minimum” where *a is the candidate
sequence whose time-optimality is being proven.

b) Q n(,)*a is abbreviated as Q n()
c) a) and b) above also apply for q(.) and |q(.)| instead of

Q(.).

IV. SOLUTION TO THE TIME-OPTIMAL CONTROL
PROBLEM

In section 2, we made an intuitive guess at the solution by

first looking at control of only a single flow arriving at the
queue and then extending the solution to the case of multiple
flows. This extension was done by showing that the queue
update equation with multiple flows is equivalent to that of a
single “controllable” flow crossing a queue with possible
negative outgoing link capacities. The original single-flow
control was then extended to handle negative link capacities.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

In this section, we provide formal proofs to that these
solutions are correct. The technique is to first prove that to
achieve minimum convergence time, it is sufficient to keep a
certain queue deviation magnitude term minimized at every
time slot. Then we prove by induction on the time slots that
the candidate control we guessed at, indeed minimizes the
queue deviation magnitude at every time step and also keeps
the link fully utilized.

A. Single-Flow Time-Optimal Control

Lemma 1 (Sufficient Condition for Minimum Convergence
Time (C1))
Given initial conditions I and the capacity sequence C. Let a
be an arrival rate sequence such that for all n ≥ 0 , | (,)|q na is
the minimum. Then a achieves minimum convergence time.
Proof: Consider any arrival sequence a’. Let (')cn T≥ a .
Then | (,)|q na ≤ | (' ,)|q na = 0 . Hence () (')c cT T≤a a .

Theorem 1 (Time-Optimal Arrival Rates)

The arrival rate sequence

*() (() ())a n C n q n += −
solves the single-queue time-optimal control problem.

Proof: We prove by induction on n that the following two
conditions hold true for all n:
C1(n): | () |q n is the minimum.
C2(n): if () 0q n > , then (,) 0q n >a ∀a .
By Lemma 1, C1 will guarantee minimum convergence time.
C2 facilitates the proof by strengthening the induction step.

Base Case: Since 0(,0)Q Q=a is a given initial condition in
the problem, C1(0) and C2(0) are satisfied trivially.

Induction Step: Let C1(n), C2(n) hold true. We have,

Q n()+ 1 = (() (() ()) ())Q n C n q n C n+ ++ − −

 Case 1: () ()q n C n≤ . Then by the above equation we have

(1)Q n + = *Q and hence | ()|q n + =1 0 and is the minimum.
This satisfies both C1(n+1) and C2(n+1).

 Case 2: () () 0q n C n> ≥ . Therefore q n q n() | ()|= and is also
the minimum by the inductive assumptions C1(n) and C2(n).
Since *() 0a n = , we have from (10),

q n()+ 1 = () ()q n C n− > 0
Hence,

∀a , (, 1) (,) () () () (1) 0q n q n C n q n C n q n+ ≥ − ≥ − = + >a a

which satisfies both C1(n+1) and C2(n+1).

For proving full utilization of link bandwidth, it is sufficient
to prove that the total demand is always greater than link
capacity, i.e. *() () ()a n Q n C n+ ≥ . But this is always true
because

*() ()a n Q n+ ≥ () () ()C n q n Q n− + ≥ *()C n Q+

B. Multiple-Flow Time-Optimal Control

Lemma 2 below proves a sufficient condition similar to that
Lemma 1, but for the case of possibly negative capacities. The
difference is that the target queue size *Q is replaced by a
reduced target queue size *((1))Q S n ++ − . This reduction by
S(n-1) leaves room in the queue at the beginning of time slot n
for the total negative capacity (the total data going to be
dumped into the queue due to overload) in the future. Thus,
the deviation whose magnitude is to be minimized at every
point in time now becomes
 *(,) (,) ((1))q n Q n Q S n += − + −a a) (12)
We call (,)q na) as the overload-aware queue deviation at time
n.

Lemma 2 (Sufficient Condition for Minimum Convergence
Time (S1))
Given initial conditions I and the capacity sequence C. Let a
be a vector of controllable arrival rate sequences such that for
all n ≥ 0 , | (,) |q na) is the minimum. Then a achieves
minimum convergence time.
Proof: Consider any arrival rate sequence ′a . Let ()cn T ′≥ a .
Then,

(,) 0q m′ =a m n∀ ≥
=> 0 '() ()a m C m≤ = m n∀ ≥

=> (1) 0S m − = m n∀ ≥
From (12) this implies,

| (,) | | (,) | | (',) | | (',) | 0q m q m q m q m= ≤ = =a a a a))
=> T Tc c() (')A A≤

Theorem 2 below proves the time-optimality of the control

given by (7,8).

Theorem 2 (Time-Optimal Arrival Rates)
Any vector of controllable arrival rate sequences that satisfies

*() (() ())c c ea n C n q n += − where *() ()e eq n Q n Q= − and
* *(())eQ Q S n += + solves the single-queue time-optimal

control problem.
Proof: We prove by induction on n that the following two
conditions hold true for all n:
S1(n): | () |q n) is the minimum.
S2(n): if () 0q n >) , then (,) 0q n >a) ∀a .
By Lemma 2, S1 will guarantee minimum convergence time.
S2 facilitates the proof by strengthening the induction step.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

The full-link-utilization property will be proven at the end.
The proof by induction is given in Appendix A.

Fairness:

Once the optimal total controllable arrival rate sequence is
found, it can be divided in any desired proportion in each time
slot among the individual controllable flows. In general, this
proportion itself varies from time slot to time slot. Denoting

()iw n as the fraction of *()ca n that is given to controllable
flow i at time n, we have the general flow rate allocation as,

 * *() () ()c
i ia n w n a n= in D∀ ≥

where

()

() 1i
i P n

w n
≤

=∑

P(n), as we recall from section 2, is the total number of
controllable flows at time n. The simplest fair allocation
scheme is () 1/ ()iw n P n= . In the most general case one could
vary ()iw n with n in such a way as to ensure long term
weighted fairness on any required time-scale.

Independence of Time-Optimal Control Law on Buffer Size:

So far we have assumed an infinite buffer to be holding the
queue of data in the network node. With a finite buffer of size
B, the queue update equation (1) is modified to
 (1) min(, (() () ()))Q n B Q n a n C n ++ = + − (A.1)
Note that (1)Q n + is still a monotonically increasing function
of ()Q n and ()a n . Because of this, all inequality
comparisons in the proof of Theorem 2 still hold true even
after replacing (Q(n)+a(n)-C(n))+ with min(B, (Q(n)+a(n)-
C(n))+). Hence Theorem 2 is true even with a finite buffer.

Other than through a technical examination of the proof
steps, one can also guess the reason for this intuitively: the
control of (7,8) always tries to converge the queue towards the
effective target queue size and away from the buffer limit. In
the next section, the switch algorithm will use the finite buffer
equation (A.1) instead of (1) in order to predict the future
queue sizes correctly.

V. A SWITCH-SOURCE PROTOCOL TO ACHIEVE

TIME-OPTIMAL CONTROL

The control feedback framework we consider is a similar to
that of the ATM-ABR service, but simpler. Control packets
regularly travel from the source through each node in its path
upto the destination and then reverse their paths back to the
source. Explicit rates (ERs) are computed for each time slot
for each flow by the switch in a node. On receiving a control
packet from a downstream switch, the switch replaces the ER
in that packet with the minimum of that ER and the locally
computed ER for the current time slot. The source thus
receives the minimum of the ERs of each switch in its flow
path. The source then equates its transmission rate to the latest
ER it has received.

In this paper, we assume the ERs of the non-bottleneck
switches to be always larger than that of the bottleneck switch.
Therefore a flow ER sent by the bottleneck switch to the
source is actuated one round-trip time later as a data arrival
rate. Thus, denoting the bottleneck switch ER fed back to
source i at time m by ()iR m we have,

() () ()i
i i fi ia m A m d R m D= − = −

Substituting the above equation in (6), we have,

:

() () ()
i

c i
i

i m D

C m C m R m D
<

= − −∑

Note that the (6) and the above equation hold for a control
starting from time 0. The switch however re-predicts future
capacities and re-computes the control afresh at every the
beginning of every time slot in general. For a control to be re-
computed at time slot n, the above equation now has to be
time-shifted by n and therefore becomes,

:

ˆ ˆ(,) (,) ()
i

c i
i

i m n D

C n m C n m R m D
< +

= − −∑ (13)

where ˆ (,)C n m is the switch’s prediction of ()C m at time n.
Note that the summation term in (13) goes to zero for

Nm n D≥ + . Hence

 ˆ ˆ(,) (,) 0cC n m C n m= ≥ for Nm n D≥ + (14)
Because of (14), the predicted future overload for time m from
negative controllable capacities becomes

1

ˆ ˆ(,) ((,))
Nn D

c

l m

S n m C n l
+ −

−

=

= ∑ (15)

We now develop the switch pseudo-code. At the beginning
of every time slot, the future capacities are predicted by a
separate procedure, predict_capacities(). Then in procedure
compute_optimal_rates(), (13), (15), (8) and (7) are used in a
co-iterative computation of the optimal input rates and future
queue sizes from m=n to m= Nn D+ . The data variables ˆ()S m

and ˆ ()C m hold the computed values of ˆ (,)C n m and ˆ(,)S n m
at time n. The pseudocode for the computation at a switch is
thus:

main() {
 // n is current time
 // predict the future ()C m s

 for (m = n to Nn D+) ˆ ()C m = predict_capacities(m);
 compute_optimal_rates (n, Nn D+);
}

Algorithm 1: Switch Control Algorithm

where the procedure compute_optimal_rates() is as follows:

compute_time_optimal_rates(window_start, window_end) {

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

 // B is the size of the buffer holding the queue of data
 // P(m) is the control phase in which m resides

 //compute the current and future controllable capacities first
 for (m = window_start to window_end) {
 if (Nm n D< +)

:

ˆ ˆ() () ()
i

c i
i

i m n D

C m C m R m D
< +

= − −∑ ;

 else
 ˆ ˆ() ()cC m C m← ;
 }

 //compute the overload terms using a backward recursion on
time m
 ˆ() 0NS n D+ ← ;
(L1) for (m = 1Nn D+ − to n)

 ˆ ˆ ˆ() (1) ((1))cS m S m C m −← + + + ;

 // compute one window full of optimal input rates into the
future
(L2) for (m = window_start to window_end)
 {
 // the controllable rates start only from 1n D+
 if (1m n D≥ +)
 {
 *ˆ ˆˆ () () (())eq m Q m Q S m +← − − ;

 * ˆˆ ˆ() (() ())c c ea m C m q m +← − ;
(L3) for all i such that im n D≥ +

*

* ˆ ()()
()

c
i

i
a mR m D
P m

− ← ;

 }
 *ˆ ˆ ˆˆ(1) min(,(() () ()))c cQ m B Q m a m C m ++ ← + − ;
 }
}
 Algorithm 2: Switch procedure to compute time-optimal rates

Note, from the for-loop labeled L3, that in order to compute
all desired input rates all the way upto *ˆ ()c

Na n D+ , it has
been necessary to compute not only the current explicit rate
but also pre-compute future explicit rates for flows 1 to N-1.
Specifically, flow k, the rates becomes controllable at

km n D= + and hence *()k
kR m D− is computed for

km n D= + to Nm n D= + . These rates for the future remain
stored in memory at the switch until they are fed back to the
source at the appropriate time.

A. Time-Optimality of the Switch Algorithm

We see that if the future capacities are predicted correctly at
time n, i.e. if

ˆ () ()C m C m= for Nn m n D≤ ≤ + ,

then by induction on the time m in the ‘for’ loop L2 in the
pseudo-code above, it is trivial to prove by induction on m
that for m n= to Nm n D= + ,

ˆ () ()c cC m C m= ,
ˆ() ()S m S m= ,
* *ˆ () ()c ca m a m= ,

*() () ()i
i i ia m R m D a m= − = i∀ , and

ˆ (1) (1)Q m Q m+ = + .

In other words, if the future link capacities are predicted
correctly one maximum RTT (ND time units) into the future,
the switch algorithm simulates the future correctly as well as
calculates the optimal arrival rates correctly.

B. Time-Optimality to a Step-Disturbance in Available
Capacity or Set of Flows

A simple switch algorithm would merely predict the future
capacities as equal to the current capacity, i.e. at time n,
ˆ () ()C m C n= for Nn m n D≤ ≤ + . In that case, under a step

disturbance, i.e. with () ()C m C n= for Nn m n D≤ ≤ + , the
future capacities get predicted correctly and the hence the
switch algorithm computes the exact time-optimal rates.

In practice, such a step disturbance in capacity will occur
when a new flow from a higher priority class, such as a real-
time traffic class joins or an existing flow exits thereby
causing a fixed change in the available capacity to this flow-
controlled class of flows.

C. Efficient Version of the Switch Algorithm

In general, at the beginning of every time slot n, the switch
must check if there has been a capacity disturbance, i.e. if
there has been a change in the current or future predicted
capacities or a change in the set of flow-controlled flows. If
so, the time-optimal rates are recomputed for a window of one
max-RTT into the future according to the procedure
compute_optimal_rates() above. However, during
disturbance-free periods, the window of computed optimal
rates has to be merely advanced by one time-step, i.e. we only
need to compute *ˆ ()c

Na n D+ . This efficient version of the
algorithm of Table 1 is shown in Table 3 below. The
compute_optimal_rates() procedure used in Table 3 is
exactly that specified in Table 2.

main()
{
 // n is current time
 // predict available capacities upto one max-RTT ahead
 for (m = n to Nn D+) ˆ ()C m = predict_capacities(m);

 if (capacity_disturbance() or change in the set of flows)

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

 // compute full window of rates upto max-RTT ahead
 compute_optimal_rates(n, Nn D+);
 else
 // compute only the rates at max-RTT ahead
 compute_optimal_rates(Nn D+ , Nn D+);
}
capacity_disturbance()
{
 // disturbance: previous predicted value of capacity for m
is not same as current predicted value
 if there exists m such that Nn m n D≤ ≤ + and

 ˆ ˆ() ()previousC m C m≠
 return (true);
 }

Algorithm 3: Efficient switch control algorithm that

recomputes previous time-optimal rates only at a disturbance

D. Scalability of the Time-Optimal Switch-Source Protocol

In the time-optimal control, all individual user flows with
the same round-trip delays, in units of time slots, are
aggregated and considered jointly as a single flow. Thus the
number of flows, N, can be at most equal to the largest round
trip delay. That is, NN D≤ . Consequently, each procedure in
the switch computation is seen by inspection of Tables 2,3, to
have the following complexity:
1. capacity_disturbance() involves ()NO D comparisons

2. compute_optimal_rates involves 2()
N

O D additions,
multiplications, and memory accesses in each of its 3
“for” loops only if there is a capacity or flow-set
disturbance. Otherwise the window of rates is merely
pushed forward by one time slot in statement L3. Note
that in L3, the number of different rates to be computed is
actually only equal to the number of different fairness
weights. Thus, for a simple equal-fairness control where
the weights are the same, only one explicit rate is
computed in L3.

3. In a simple implementation of predict_capacities(), the
entire future RTT of capacities can be predicted as a
constant equal to the exponentially weighted moving
average of past capacities. This requires only O(1)
computation if the average is computed iteratively from
one time slot to another.

In summary, an equal-fairness time-optimal protocol has a

control complexity of 2()
N

O D at the time of a disturbance and
(1)O otherwise. In contrast, linear control-theoretic protocols

involve ()NO D computations at each time step, irrespective
of whether a disturbance occurs or how capacities are
estimated.

VI. ROBUSTNESS OF TIME-OPTIMAL CONTROL

In this section, we show that the time-optimal control of
(7,8) is robust to errors in capacity and queue size estimation.
In other words, bounded estimation errors give rise to bounded
deviations from the optimal queue size achieved with no
estimation errors.

Intuitively this can be seen as follows. First, consider the
errors that can arise in computing the current optimal input
rate in the control equation of (7,8),

* *() (() () ())c c ea n C n Q n Q n += − +

By adding the errors in estimating ()Q n and *()eQ n to the

error in estimating ()cC n , the problem reduces to considering

only errors in estimating ()cC n . The next queue size is then
given by

*(1) (() () ())c cQ n Q n a n C m ++ = + −
*ˆ(() (() () ()) ())c e cQ n C n Q n Q n C n+ += + − + −

where ˆ ()cC n is the estimated value of ()cC n . In the above
expression, that the deviations-from-optimal of ()Q n and

()Q n− tend to cancel each other out and what basically
remains to contribute to the deviation-from-optimal of

(1)Q n + is the difference between ˆ ()cC n and ()cC n . This is

obvious for the case where the estimate of *()ca n is positive in
which case the ‘()+’ nonlinearity above disappears. However a
formal proof of robustness shows the above argument to also
hold when the nonlinearity is reached, i.e. when the estimate

of *()ca n is zero or the next queue size is zero. Once again,
the trick is to use induction on time: if the queue size deviation
from the optimal is bounded at time n, show that it remains
bounded at n+1. The following robustness theorem therefore
holds with the formal proof provided in [11].

Theorem 3 (Robustness of Time-Optimal Control):

If the total error in estimating ()cC n , ()Q n and *()eQ n
remains bounded in magnitude by ε for all n, then

*| () () |Q n Q n ε− ≤ for all n where *{ ()}Q n is the time-optimal

queue size sequence resulting when ()cC n , ()Q n and *()eQ n
are estimated perfectly.

This in turn implies that the switch procedure
compute_optimal_rates() of the previous section achieves
bounded deviation from the optimal as long as its estimation
errors ˆ () ()c cC m C m− and ˆ () ()e eq m q m− always remain
bounded.

VII. CONCLUDING DISCUSSIONS

In this paper, we derived the time-optimal control of a

single network queue shared by multiple flows from sources

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

located at arbitrary distances from the queue. The time-
optimal control has a simple and easily implementable
structure: the desired arrival rate is simply a controllable
capacity term minus an effective queue deviation term. A
switch-centric protocol to achieve the time-optimal control
was also presented. The protocol computation is periodic and
scalable with a complexity of O(D2) when a disturbance is
detected and O(W) otherwise, where W is the number of
different flow fairness weights.

We showed that the time-optimal control is robust to errors
in measuring the available link capacity or queue size.
Intuitively, this should also lead to protocol robustness to
errors in estimating the packet delays between source and
switch, as long as a delay estimation error contributes to a
bounded error in estimating future queue sizes. Robustness to
delay errors will however be investigated in detail in a future
paper. While time-optimal control provides assurances on
optimal queue convergence under large step disturbances in
bandwidth, it is also important to investigate the performance,
such as queue mean and variance, under stochastically varying
bandwidths [1,2] .

The generalization of time-optimal control to multiple
congested nodes has been developed in [11]. The solution is
first derived for a single flow for general *Q . We provide a
rough description of this solution here for the case of zero link
delays and * 0Q = here (the solution for arbitrary link delays
is then obtained by appropriate time-shifting of the optimal
source rates) : At every time slot, a sequence of desired arrival
rate (DAR)s is calculated for each link, in a backward iteration
from the destination towards the source as follows. The
effective capacity of a link is computed as the minimum of its
actual capacity and the downstream DAR. The DAR of the
link is this effective capacity minus the local queue size.
Finally, the source rate is set to the DAR of the first (access)
link.

It can be shown that an alternate way to express this DAR
algorithm is as follows. For each link, subtract the total of
upstream and local queue sizes from the capacity. This is the
queue-reduced equivalent (QRE) capacity of the link. Then set
the source rate to the minimum of the QRE capacities of all
links in its path.

Generalizing this solution for a general network of flows
and general *Q is a hard problem. However, in [11], we have
intuitively derived the general network solution for the special
case of * 0Q = . A QRE capacity is computed for each link as
its capacity minus the total of upstream and local queue sizes
of all flows crossing it. A feasible set of source rate sequences
is then defined as one where the sum of source rates of flows
at any link always remains less than its QRE capacity. Any
such feasible set is then shown to minimize convergence time.
An additional condition is then added to maximize link
utilization. The formal proofs of these are being worked on
presently.

VIII. APPENDIX 1

Proof of Theorem 2:
For convenience, we drop the “c” superscript from ca and

cC in all that follows. The abbreviated terminology developed
at the end of section 3 will be used for convenience.

Base Case (n=0): Since (,) (0)q n q=a is a given initial
condition, S1(0) and S2(0) are satisfied trivially.

Induction Step: Let S1(n), S2(n) hold true.

Case 1: () 0C n ≥ .

=> (1) ()S n S n− =
=> () ()eq n q n=)

Then S1(n+1) and S2(n+1) hold true by exactly the same
steps in the proof of Theorem 1 except that “q” gets replaced
by “ q) ” and *Q by *((1))Q S n ++ − everywhere.

Case 2: () 0C n < .
 => (1) () ()S n S n C n− = + (16)
and

(, 1) (,) () ()

(,) ()
Q n Q n a n C n

Q n C n
+ = + −

≥ −
a a

a
 ∀a (17)

Case 2.1: * () 0Q S n+ ≤ .
 => * *(1) () () 0Q S n Q S n C n+ − = + + ≤

=> (,) (,)q n Q n=a a) ∀a
and
 (, 1) (, 1)q n Q n+ = +a a) ∀a (18)
 () () () ()eq n q n Q n C n= = >) (19)
 => *() 0a n = and (1) () ()Q n Q n C n+ = − (20)

Then because of (16-20) above, S1(n+1) and S2(n+1) hold
true by exactly the same steps of Case 2 in proof of Theorem 1
except that “q” gets replaced by “ q) ” and the first expression
“ () () 0q n C n> ≥ ” gets replaced by “ () 0q n ≥) ”.

Case 2.2: * () 0Q S n+ > .

 =>
*

*

(, 1) (,) () (())

(,) ((1))

q n Q n C n Q S n

Q n Q S n

+ ≥ − − +

= − + −

a a

a

)

 (21)

 Case 2.2.1: () ()eq n C n> . Then,

*() 0a n = and (1) () ()Q n Q n C n+ = −
 Case 2.2.1.1: * (1) 0Q S n+ − > .

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

In this case, from (16), () 0q n ≥) holds by the following
reasoning,

*() () ((1))q n Q n Q S n= − + −)
 *() (()) () () () 0eQ n Q S n C n q n C n≥ − + − = − ≥

Hence by inductive assumption S1, ()q n) is the minimum.
From (21) above and because ()q n) is the minimum, we have,

*

*

(, 1) (,) ((1))

() ((1)) (1) 0

q n Q n Q S n

Q n Q S n q n

+ ≥ − + −

≥ − + − = + ≥

a a)

)

which satisfies conditions S1(n+1) and S2(n+1).

Case 2.2.1.2: * (1) 0Q S n+ − ≤ . Then as in case 2.1,

(,) (,) 0q n Q n= ≥a a) ∀a
Then by inductive assumption S1, ()q n) is the minimum and
so is ()Q n . Therefore from (21),

*

*

(, 1) (,) ((1))

() ((1)) (1) 0

q n Q n Q S n

Q n Q S n q n

+ ≥ − + −

≥ − + − = + ≥

a a)

)

which satisfies conditions S1(n+1) and S2(n+1).

Case 2.2.2: () ()eq n C n≤ . Then we get,

*(1) ()Q n Q S n+ = +
=> | (1) | 0q n + =)

which satisfies conditions S1(n+1) and S2(n+1).

Full Link-Utilization Property: Since

*() ()a n Q n+ ≥ () () ()eC n q n Q n− + ≥ *() (())C n Q S n ++ +
()C n≥ ,

the link capacity is always fully utilized.

IX. REFERENCES

[1] E. Altman, T. Basar, R. Srikant, “Robust Rate Control for ABR
Sources,” Proc. IEEE Infocom 1998.

[2] E. Altman, T. Basar, R. Srikant, “Congestion Control as a Stochastic
Control Problem with Action Delays,” Automatica, Dec. 1999.

[3] I. Benmohamed, S. M. Meerkov, “Feedback Control of Congestion in
Packet-Switching Networks: The case of a Single Congested Node,”
IEEE/ACM Transactions on Networking, vol. 1, No. 6, 1993.

[4] I. Benmohamed, S. M. Meerkov, “Feedback Control of Congestion in
Packet-Switching Networks: The case of multiple congested nodes,”
International Journal of Communication Systems, vol. 10, No. 5, 1997.

[5] I. Benmohamed, Y. T. Wang , “A control-theoretic ABR explicit rate
algorithm for ATM switches with per-VC queueing,” IEEE Infocom 1998.

[6] S. Bhatnagar, M. C. Fu, S. I. Marcus, and P. J. Fard, "Optimal
structured feedback policies for ABR flow control using two-timescale
SPSA." IEEE/ACM Transactions on Networking, Vol. 9, No. 4, Aug. 2001,
pp. 479-491.

[7] A. Charny, D. Clark, and R. Jain, “Congestion Control with Explicit
Rate Indication,” Proc. ICC 1995.

[8] F. Chiussi, Y. Xia, and V. P. Kumar, “Virtual Queuing Techniques for
ABR Service: Improving ABR/VBR Interaction,” Proc. Infocom 1997.

[9] S. Floyd, V. Jacobson, “Random Early Detection Gateways for
Congestion Avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
No. 4, Aug. 1993, pp 397-413.

[10] C. V. Hollot, V. Misra, D. Towsley, and W. Gong, "Analysis and Design
of controllers for AQM Routers Supporting TCP Flows." IEEE/ACM
Transactions on Networking, Vol. 47, No. 6, Jun. 2002, pp. 945-959.

[11] M. Iyer, and W. K. Tsai, “Time-Optimal Network Queue Control,”
Technical Report, ECE Dept., UCI, June 2002. Available at
http://www.eng.uci.edu/~miyer.

[12] R. Jain, “Congestion Control and traffic management in ATM
networks: recent advances and a survey,” Computer Networks and ISDN
Networks, Nov. 1996.

[13] J. Ros and W. K. Tsai, "A Theory of Temporal-Spatial Flow Control:
The Case of Single Bottleneck Link", ICON '99.

[14] S. Kalyanaraman, R. Jain, S. Fahmy, R. Goyal, and B. Vandalore, “The
ERICA Switch Algorithm for ABR Traffic Management in ATM Networks,”
Submitted to IEEE/ACM Transactions on Networking, Nov. 1997.

[15] A. Kolarov and G. Ramamurthy, “A Control-Theoretic Approach to the
Design of Closed Loop Rate Based Flow Control for High Speed ATM
Networks,” IEEE Infocom 1997.

[16] S. Mascolo, D. Cavendish, and M. Gerla, “ATM Rate Based
Congestion Control using a Smith Predictor: an EPRCA implementation,”
IEEE Infocom 1996.

[17] S. Mascolo and M. Gerla, “An ABR congestion control algorithm
feeding back available bandwidth and queue level,” IEEE ATM Workshop
Proceedings, 1998.

[18] P. Narvaez and K. Y. Siu, “Optimal Feedback Control for ABR service
in ATM,” IEEE ICNP 1997.

[19] V. Paxson, “End-to-End Routing Behavior in the Internet,” ACM
Sigcomm ‘96, May 1996.

[20] P. Quet, B. Ataslar, A. Iftar, H. Ozbay, S. Kalyanaraman, and T. Kang,
"Rate-based flow controllers for communication networks in the presence of
uncertain time-varying multiple time-delays." Automatica, 38(2002), pp.
917-928.

[21] O. Smith, “A Controller to Overcome Dead Time,” ISA Journal, Vol. 6,
No. 2, Feb. 1959.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

	INFOCOM 2003
	Return to Main Menu

