
 
Abstract---We solve the problem of time-optimal network queue 
control: what are the input data rates that make network queue 
sizes converge to their ideal size in the least possible time after a 
disturbance while still maintaining maximum link utilization at 
all times, even in the transient?  

The problem is non-trivial especially because of the vast 
possible heterogeneity in packet propagation delays in the 
network. In this paper, we derive the time-optimal queue control 
for a single congested network node with a single finite queue 
shared by flows with arbitrary network delays. We neatly 
separate the derivation of the optimal arrival rate sequence from 
that of the feedback control protocol to achieve it.  

The time-optimal control is robust to bandwidth and queue 
size estimation errors. Its complexity is only a function of the size 
of the network delays and no per-flow computation is needed. 
The time-optimality and robustness properties are proven to hold 
under all queue operating regimes with no need for linearizing 
approximations. 
 
  Keywords--- Flow Control, Queue Control, Congestion Control, 
Control Theory, Optimization, ATM, ABR 
 

I. INTRODUCTION 
 
Networks all over the world, both public and private, are 

facing continuously increasing traffic loads. In recent 
developments, the long touted convergence of traditional 
telephone services to the Internet is finally happening slowly 
but surely. VoIP (Voice over IP) traffic has seen a gradual 
increase over the last two years, especially in private intranets 
as enterprises realize its cost and flexibility benefits. Peer-to-
Peer data traffic is on the rise and has to be controlled so as to 
protect other data applications. Broadband wireless LAN 
traffic is on a steep rise and is expected to contribute 
significantly to backbone networks of service providers. High 
bandwidth video traffic will also undergo a steep rise once 
broadband to the home becomes ubiquitous. 

With such bandwidth-hungry traffic on the rise and 
additional raw bandwidth still being costly to deploy, the 
problem of coordinated network-wide congestion prevention 
and queue control will assume paramount importance more 
than ever. The disturbances in the available bandwidth for any 
class of traffic will become more severe. Users will establish 
or break flows on a larger scale. Higher priority traffic classes 
may suddenly consume or release large amounts of 

bandwidth. These can lead to sudden and large changes in 
queue sizes and link utilization.  

In the light of this reality, this paper seeks to answer a 
fundamental question: how should the flow source rates 
feeding into a network be adjusted so as to quickly bring the 
network back towards its ideal steady queue-size condition 
after a disturbance. In fact, how fast can this be done while 
always ensuring full utilization at some link in the path of 
every traffic flow? How does the per-flow service rate 
allocation used at the queues affect this convergence time? 
What makes this particular control problem uniquely 
challenging is the presence of time delays in the data and 
control feedback paths. We believe that the solution to this 
time-delayed control problem is important in the design of any 
practical flow control scheme that has to handle large 
disturbances. 

More formally, the general time-optimal queue control 
problem is: given initial queue sizes, and the link bandwidths 
for all future times, determine the source rate sequences and 
the per-flow service rates at queues that will bring the queue 
sizes to desired values in minimum time, while ensuring that 
at least one link remains fully utilized in every flow’s path. 

We seek solutions to this problem with a gradual approach. 
In this paper, we solve this problem for the case of a single 
congested node in the network, with the flows sharing a single 
queue and being jointly controlled. In a subsequent paper we 
generalize the solution for the case of multiple congested 
nodes.  

As we see later in this paper, a sufficient condition for 
convergence (after a disturbance) to ideal queue sizes in 
minimum time is basically the minimization of magnitude of a 
queue deviation term at every point in time. This queue 
deviation term is the current queue size minus the ideal queue 
size reduced by an overload term. This overload is the total 
future queue size increase contributed by erroneously 
computed past rates that did not anticipate the disturbance. 
This has never been explicitly and precisely taken into account 
in previous approaches to flow control and the emphasis on 
time-optimal control is what led to its discovery.  

Unlike past control theoretic approaches, including those 
based on linear-quadratic optimal control [1,2,5], we neatly 
separate the derivation of the optimal arrival rate schedules 
from the closed-loop network protocol to achieve it. Other 
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than fastest convergence, the other noteworthy features of the 
time-optimal control and its corresponding protocol are:  
1. Global Stability: Queue size convergence in minimum 

time is guaranteed under all initial conditions and initial 
traffic disturbances even if queue operation enters the 
nonlinear regime. 

2. Tight Robustness of Performance: The deviations of the 
queue sizes from their time-optimal values are bounded 
by exactly the total error bound in estimating the queue 
size and available link capacity terms in the control. 
Intuitively, this will also imply robustness of the time-
optimal protocol to link delay estimation errors since 
these contribute bounded errors in estimating the future 
queue size and capacity terms in the control. 

3. Simplicity: The structure of the time-optimal control is 
simple: a residual-capacity term minus a queue deviation 
term.  

4. Scalability: The control rates need to be computed only 
per flow delay and not per flow. If D is the maximum 
round-trip time in units of discrete control intervals, the 
control complexity is 2( )O D  at the time of a disturbance 
and O(W) otherwise, where W D≤  is the number of 
different flow fairness weights. 

5. Fairness: Once the expression for the time-optimal total 
arrival rate is calculated, it can be divided in any desired 
proportion to obtain the individual flow rates to be fed 
back from switch to each flow source.  

In practice, time-optimality in control becomes most 
important during periods of large queue deviations, while 
slower control can be used during other periods [14].  

 
Related Work 

Numerous network flow control schemes have been 
proposed. The schemes surveyed in [12] and those in [7,8,14] 
have focused primarily on the fairness to different flows and 
maximal utilization of available link capacity while using ad-
hoc enhancements for queue control. Recently, linear control-
theory has been systematically applied to control of TCP 
flows using active queue management ([9]) in Internet routers 
in [10] which also contains references to numerous other TCP 
control-theoretic analyses. However in this paper, we focus on 
more closely related work on network level rate-based 
feedback flow control using control theory. 

[3] presented one of the first network-layer flow control 
schemes to systematically apply linear feedback control 
theory. The scheme controls a single congested queue in a 
provably local-asymptotically stable manner, with arbitrary 
but fixed network delays. Local stability here means 
guaranteed queue convergence after a small initial disturbance 
in available link capacity or set of flows. The disturbance is 
assumed small enough to ensure linear operation i.e. full link 
utilization and no buffer overflow at all times, even in the 
initial round-trip time following a disturbance. [4] extends [3] 
to multiple congested nodes. In [3,4], the available capacity 
changes are kept track of indirectly by tracking changes in 

queue size. This indirect and moreover linear control approach 
for a nonlinear system like a network queue makes it very 
difficult to ensure global stability. [16,17] use the classical 
Smith predictor approach [21] to ensure local asymptotic 
stability in the presence of network delays. [18] improves on 
[17] by using a robust decoupled queue-reference and rate-
reference control that needs no direct knowledge of network 
delays. [16-18] are all per-flow control schemes and do not 
consider the idea of joint optimal control of all flows.  

The linear controller in [15], like [3], does not use the 
available capacity term directly but only by tracking the 
current change in queue size. But it is a dual controller: after a 
disturbance, a high gain controller quickly brings the queue to 
near the equilibrium point after which a low gain controller 
takes over and maintains local stability around the equilibrium 
point. [5] presents a linear-quadratic optimal control approach 
for per-flow control. Recent papers [1,2] formulate single-
queue control as a stochastic optimal control problem with 
heterogeneous network delays. However [1,2] also assume a 
linear operation for the queue at all times. [6] derives 
stochastic optimal control policies assuming Markov-
modulated capacity variations. [20] designs robust controllers 
to handle uncertain and heterogeneous network delays, but 
assumes linear operation too. 

The rest of the paper is organized as follows. Section 2 
informally explains time-optimal control. Section 3 
mathematically formulates the time-optimal control problem. 
Section 4 derives the time-optimal input rates first for a single 
flow and then generalizes to multiple flows. Section 5 derives 
a switch-centric feedback protocol to achieve the time-optimal 
control. Section 6 proves the robustness of the time-optimal 
control. Section 7 makes concluding remarks. 
 

II. INFORMAL DISCUSSION OF TIME-OPTIMAL 
QUEUE CONTROL 

 
Consider first the simple one queue/link model of Fig. 1. 

The queue size Q(n) and output data rate o(n) get updated 
regularly according to the discrete-time update equation1, 
  ( 1) ( ( ) ( ) ( ))Q n Q n a n C n ++ = + −    (1) 
 ( ) min( ( ) ( ), ( ))o n Q n a n C n= +             (2)
where max( ,0)x x+ = , a(n) is the data arrival rate and C(n) is 
the available link capacity (or service rate) of the queue in the 
nth time-slot, both measured in bits per time slot. In words, if 
the demand (total arrival rate plus queue size) is no greater 
than the link capacity in a time slot, the queue goes to zero; 
otherwise the excess of demand over capacity remains in the 
queue. The network node buffer holding the queue is assumed 
infinite for now. Finite buffers are considered in section 4. 

                                                 
1 In the rest of the paper, an expression of the form x+ will 
stand for max( ,0)x and x−  for min( ,0)x . 
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Fig. 1. Quantities involved in single queue control. 
 
 
Supposing our ideal state is one of zero queue size and full 

link utilization. A trivial way to reach this state as quickly as 
possible is simply not transmit any data into the queue until 
the initial Q(0) bits of data are completely drained out and 
after that keep the data arrival rate equal to the available 
capacity at all times.  The trouble with this approach is that the  
link can remain underutilized when Q(n) < C(n) and no data is 
sent; the entire queue would drain out and yet not utilize all 
the available link capacity. 

Indeed, a careful look at the queue update equations above 
shows that only when the queue size is larger than the 
available link capacity must the arrival rate must be 0 to 
achieve maximum queue drainage in that time slot. However, 
when the queue size is smaller than available capacity, the 
‘room’ available in the queue is the available link capacity 
minus the queue size, ( ) ( )C n Q n− , and an arrival rate of this 
value will send the queue to zero at the end of that time slot 
while still fully utilizing the link, i.e. ( ) ( )o n C n= . Hence the 

arrival rate must be controlled as *( ) ( ( ) ( ))a n C n Q n += −  in 
order to minimize the queue size and maximize the link 
utilization at every time step. Minimizing the queue size at 
every time step in turn minimizes the time to converge the 
queue size to zero. 

In general if the target queue size is *Q , it’s the magnitude 

of queue size deviation, *( ) ( )q n Q n Q= − , and not the queue 
size that must be minimized at every time step. The time-
optimal arrival rate must therefore be, 
   *( ) ( ( ) ( ))a n C n q n += −      (3) 
Section 4 formally proves that (3) is indeed time-optimal, i.e. 
converges ( )q n  to zero in minimum time and fully uses the 
link capacity at all times. The time-optimal source rates are 
then merely a time-delayed version of the time-optimal arrival 
rates. 

Next, consider multiple flows sending data into the same 
queue. The flow sources are located at different distances from 
the queue as for example in Fig. 3. Consider a disturbance in 
the future capacities, as estimated by an observer at the queue. 
Upon detecting such a disturbance, it takes one round-trip time 
for the new desired arrival rate to be conveyed back to a 
source and the data from the source to be arriving later at the 
queue at this new rate. This is illustrated in fig. 2. The x-axis 
is the time and the y-axis is the distance away from the switch 
towards the various sources. The backward slanted line shows  
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 Fig. 2.  Control Phases and Data Trajectories 
 
 
desired arrival rate information being conveyed by the switch 
to each flow source which then respond with data traveling  
along the trajectories shown by the forward slanted lines. The 
time-axis gets divided into control phases with phase i being 
from in D=  to 1in D +=  where iD  is the round-trip time for 
the ith nearest source. In other words, the control phase in 
which a time slot n resides is P(n) where 

( )P n i=  if 1i iD n D +≤ <  
Thus during phase 0, all flows are sending pre-disturbance 

rates, during phase 1, only flow one is sending the newly 
controlled (post-disturbance) rates, during phase 2, flows 1 
and 2 are sending newly controlled rates and so on. In general, 
the controllable flows at time n are from i=1 to ( )P n  or 
equivalently all i  such that in D≥ . The queue update 
equation can be then written purely in terms of the total arrival 
rate of these controllable flows and the capacity available to 
them. That is, 

1

( 1) ( ( ) ( ) ( ))
N

i
i

Q n Q n a n C n +

=

+ = + −∑  

      ( ( ) ( ) ( ))c cQ n a n C n += + −   (4) 
where 
    

:

( ) ( )
i

c
i

i n D

a n a n
≥

= ∑       (5) 

is the total controllable arrival rate and  
  

:

( ) ( ) ( )
i

c i

i n D

C n C n a n
<

= − ∑         (6) 

is the controllable capacity. But this queue update equation is 
exactly that of a single flow through a single queue as in (1). 
The single flow is really a super-flow, an aggregate of the 
controllable flows identified for each give time slot.  
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Fig. 3.  Illustration of time-optimal control with negative 

controllable link capacity 
 

 
However there is one crucial difference between equations 

(1) and (4). Unlike ( )C n , ( )cC n  can go negative when the 
longer uncontrollable flows are sending more than the 
available link capacity, something that occurs significantly in 
practice due to sudden available capacity drops or new flows 
joining, say due to route changes.  Hence the control given by 
(3) has to be generalized to handle negative capacities. 

Intuitively, an extra space must be reserved in the queue to 
accommodate the queue buildups represented by the negative 
capacities in the future. That means the target queue size value 
must be effectively reduced by the sum of the future negative 
capacities. Fig. 3 shows an example. Two flows cross a queue. 
Flow 1 has shorter round-trip delay of 3 ms and flow 2 has a 
round-trip delay of 10 ms. The target queue size is 50 Kb and 
at any time n in control phase 1, the total future negative 
capacity seen by flow 1, as represented by the shaded area in 
the figure, is -30 Kb. This is the total data going to be dumped 
in the queue by flow 2 in control phase 1 even if nothing 
arrives from flow 1. Hence a queue space of 30 Kb must be 
‘reserved’ for these and the effective target queue size is 50–
30=20 Kb. In general, the effective target queue size at time n 
is  

* *( ( ))eQ Q S n += +  
where 

( ) ( ( ))c

l n

S n C l −

≥

=∑  

is the total negative controllable capacity in the future of n. 
We also call ( )S n  as the future overload at time n.  

The arrival rates must therefore be calculated as 
     *( ) ( ( ) ( ))c c ea n C n q n += −   (7) 
where 
   *( ) ( )e eq n Q n Q= −   (8) 
In the following section, we formally define the time-optimal 
control problem within a reasonably simplified network 
model. Section 4 then formally proves that (7,8) is indeed the 
solution to the time-optimal control problem: it achieves 
minimum convergence time while ensuring full link utilization 
at all times. 

 
III. NETWORK MODEL AND THE TIME-OPTIMAL 

CONTROL PROBLEM 
 
A. Network Model 

Since the objective of this paper is to gain a fundamental 
understanding of time-optimal queue control, we keep the 
network model simple and make some reasonable simplifying 
assumptions. The network is modeled as a set of packet-
switched nodes interconnected by links. A flow is a stream of 
packets traveling from a given source to a destination through 
a fixed sequence of links and nodes. This models even a 
datagram network reasonably well for the purpose of feedback 
flow control, provided the datagram routes change only on the 
order of several round trip times, e.g. IP networks [18]. The 
source and destination nodes could either be end hosts or edge 
nodes of the network. 

The set of packets that have entered a node and are waiting 
to be routed on to a particular link are represented by a queue 
to that link. This model is general enough to represent any 
combination of input or output queuing done in present day 
routers. All the flow control is concerned with is the size of 
this queue and not with the particular queuing implementation 
used inside the node/router.  

In this paper, we only consider the control of a single queue 
in a single bottleneck node in the network. The total access 
link delay between transmission of a packet at a source and its 
reception at the bottleneck node queue can be assumed fixed 
since no variable queuing delays will be encountered by the 
packet until it reaches the bottleneck queue. This is a 
simplified model and also a first step in tackling the more 
general problem of multiple queues with arbitrary network 
topology and flow routes [11]. 

Time is divided into a sequence of time slots and all control 
computations are done at the beginning of time slots. Different 
packets can be of different sizes, with all traffic rates 
measured in number of bits per time slot. The input rate in a 
given time slot is the number of bits that enter the queue in 
that time slot while the available link capacity in a time slot is 
the maximum number of bits that can be served from the 
queue in that time slot. This available link capacity value is 
something determined by the local capacity allocation scheme 
used inside the node. For example, in the ATM ABR or IP 
best effort service, it is basically the total outgoing link 
capacity minus that consumed by the higher priority VBR or 
DiffServ flows.  All the access link delays in this paper are 
assumed to be and expressed in integer number of time slots. 
Non-integer delays can be handled in a manner similar to that 
in [3].  
 
Buffer Size Assumption: 
Initially, we assume the buffer holding the data queue to be 
infinite in size. At the end of section 4, we explain why the 
time-optimal control law of (7), (8) still holds for any buffer 
size, finite or infinite. 
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Delay-Based Aggregation of Individual Flows: 
All individual flows with equal round-trip delays, measured in 
units of time slots, are aggregated together as a single flow. In 
the rest of the paper, a “flow” refers to this aggregated flow. 
The flows are then identified by integers such that flow 
number i has the ith smallest round-trip delay. 
 
Notations and Terminology:  
The total forward access link delay for data packets along the 
path of flow i from source up to the queue is denoted by fid . 
The backward access link delay for the control packets from 
the queue back to source i is denoted by bid . The round trip 
time is i fi biD d d≡ + . The arrival rate at queue for source i at 
time n is the number of bits of flow i  arriving at the queue in 
time slot n and is denoted by ( )ia n . The source rate of flow i 
at time n is the number of bits transmitted by source in time 
slot n and denoted by ( )iA n . Obviously,  
  ( ) ( )i i fia n A n d= −        (9) 

The total arrival rate at time n is ( ) ( )i
i

a n a n≡∑ .  The 

available link capacity (or the service rate) for the queue in 
time slot n is the maximum number of bits that can be 
transmitted on the outgoing link during time slot n and is 
denoted by C(n).  The queue size at time n is the number of 
bits in the queue at the beginning of time slot n and denoted 
by Q(n). The queue deviation at time n is defined as 

*( ) ( )q n Q n Q≡ −  where *Q  is the target queue size. The 
queue output rate in time slot n is the total number of bits 
transmitted to the outgoing link and denoted by o(n). 
 
Queue and Output Update Equations: 
As discussed at the beginning of section 2, we use a discrete 
time update model for the queue size and output rates, viz.  
 ( 1) ( ( ) ( ) ( ))Q n Q n a n C n ++ = + −   (10) 
 ( ) min( ( ) ( ), ( ))o n Q n a n C n= +  (11) 
 
Initial Conditions for the Control: 

The initial conditions for the control are the initial queue 
size, 0(0)Q Q= , and the given arrival rates for each flow in its 
uncontrollable phase, viz. the tuple, 

0{ (0) ,{ ( ) : 0 } }i i iQ Q a n n D= = ≤ <I  
 
Full Notation for Queue Size Sequence: 
From the update equation, (10), it follows that the sequence of 
queue sizes is a deterministic function of the initial condition, 
arrival rate sequences in the controllable phase for each flow, 
and the link capacity sequence. In other words, the queue size 
sequence can be fully described by the notation ( , , , )Q nI C a  
where   

( ) { ( ) : }i i in a n n D= ≥a  
is the vector of controllable arrival rate sequences and 

( ) { ( ) : 0}n C n n= ≥C  
is the link capacity sequence. This notation ( , , , )Q nI C a  is 
needed to compare the queue sizes caused by the candidate 
time-optimal sequence and other sequences, in the subsequent 
proofs in this paper. The queue size deviation is then 

*( , , , ) ( , , , )q n Q n Q= −I C a I C a  
 
B.  The Time-Optimal Queue Control Problem 
 
Definition (Convergence): 
The queue size is said to have converged to a value at a given 
time n if it remains at that value from n onwards.  
 
Given initial condition I, the link capacity sequence C, and a 
vector of controllable arrival rate sequences a, the earliest time 
at which the queue size has converged to *Q , is called the 

convergence time to *Q and is denoted by *( , , , )cT Q I C a .  
 
The Single Queue Time-Optimal Control Problem can 

now be succinctly defined: 
Given an initial condition and the available link capacity 
sequence, find the vector of controllable arrival rate 
sequences that minimizes the convergence time to *Q while 
fully utilizing the available link capacity in every time slot. 
 
Some convenient terminology for comparing queue sizes 
caused by optimal and non-optimal arrival rate sequences: 
In the time-optimal control problem, the I and C are given and 
are therefore dropped from the notation. The queue at time n 
caused by arrival sequence a is therefore simply denoted by 

( , )Q na .   
To further simplify expressions in the proofs, 
a) the phrase “ *( , ) ( , )Q n Q n≤a a ∀a ” is replaced by 

“ *( , )Q na is the minimum” where *a  is the candidate 
sequence whose time-optimality is being proven. 

b) Q n( , )*a  is abbreviated as Q n( )  
c) a) and b) above also apply for q(.) and |q(.)| instead of 

Q(.). 
  
 

IV. SOLUTION TO THE TIME-OPTIMAL CONTROL 
PROBLEM 

 
In section 2, we made an intuitive guess at the solution by 

first looking at control of only a single flow arriving at the 
queue and then extending the solution to the case of multiple 
flows. This extension was done by showing that the queue 
update equation with multiple flows is equivalent to that of a 
single “controllable” flow crossing a queue with possible 
negative outgoing link capacities. The original single-flow 
control was then extended to handle negative link capacities. 
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In this section, we provide formal proofs to that these 
solutions are correct. The technique is to first prove that to 
achieve minimum convergence time, it is sufficient to keep a 
certain queue deviation magnitude term minimized at every 
time slot. Then we prove by induction on the time slots that 
the candidate control we guessed at, indeed minimizes the 
queue deviation magnitude at every time step and also keeps 
the link fully utilized. 
 
A.   Single-Flow Time-Optimal Control 
 
Lemma 1  (Sufficient Condition for Minimum Convergence 
Time (C1)) 
Given initial conditions I and the capacity sequence C. Let a 
be an arrival rate sequence such that for all n ≥ 0 ,  | ( , )|q na  is 
the minimum. Then a achieves minimum convergence time. 
Proof: Consider any arrival sequence a’.  Let ( ')cn T≥ a . 
Then  | ( , )|q na  ≤ | ( ' , )|q na = 0 . Hence ( ) ( ')c cT T≤a a . 

 
Theorem 1 (Time-Optimal Arrival Rates) 
 
The arrival rate sequence 

*( ) ( ( ) ( ))a n C n q n += −  
solves the single-queue time-optimal control problem.  
 
Proof: We prove by induction on n that the following two 
conditions hold true for all n: 
C1(n): | ( ) |q n  is the minimum.  
C2(n): if ( ) 0q n > , then ( , ) 0q n >a  ∀a . 
By Lemma 1, C1 will guarantee minimum convergence time. 
C2 facilitates the proof by strengthening the induction step. 
 
Base Case:  Since 0( ,0)Q Q=a  is a given initial condition in 
the problem, C1(0) and C2(0) are satisfied trivially. 
 
Induction Step: Let C1(n), C2(n) hold true. We have, 

Q n( )+ 1  = ( ( ) ( ( ) ( )) ( ))Q n C n q n C n+ ++ − −  
 
 Case 1: ( ) ( )q n C n≤ .  Then by the above equation we have 

( 1)Q n +  = *Q  and hence | ( )|q n + =1 0  and is the minimum. 
This satisfies both C1(n+1) and C2(n+1). 
 
 Case 2: ( ) ( ) 0q n C n> ≥ .  Therefore q n q n( ) | ( )|=  and is also 
the minimum by the inductive assumptions C1(n) and C2(n). 
Since *( ) 0a n = , we have from (10), 

q n( )+ 1  = ( ) ( )q n C n−  > 0 
Hence,  

∀a ,   ( , 1) ( , ) ( ) ( ) ( ) ( 1) 0q n q n C n q n C n q n+ ≥ − ≥ − = + >a a    
 
which satisfies both C1(n+1) and C2(n+1). 
 

For proving full utilization of link bandwidth, it is sufficient 
to prove that the total demand is always greater than link 
capacity, i.e. *( ) ( ) ( )a n Q n C n+ ≥ . But this is always true 
because  

*( ) ( )a n Q n+ ≥  ( ) ( ) ( )C n q n Q n− + ≥  *( )C n Q+  
 

 
B.  Multiple-Flow Time-Optimal Control 

Lemma 2 below proves a sufficient condition similar to that 
Lemma 1, but for the case of possibly negative capacities. The 
difference is that the target queue size *Q  is replaced by a 
reduced target queue size *( ( 1))Q S n ++ − . This reduction by  
S(n-1) leaves room in the queue at the beginning of time slot n 
for the total negative capacity (the total data going to be 
dumped into the queue due to overload) in the future. Thus, 
the deviation whose magnitude is to be minimized at every 
point in time now becomes  
  *( , ) ( , ) ( ( 1))q n Q n Q S n += − + −a a)   (12) 
We call ( , )q na)  as the overload-aware queue deviation at time 
n. 
 
Lemma 2 (Sufficient Condition for Minimum Convergence 
Time (S1)) 
Given initial conditions I and the capacity sequence C. Let a 
be a vector of controllable arrival rate sequences such that for 
all n ≥ 0 ,  | ( , ) |q na)  is the minimum. Then a achieves 
minimum convergence time. 
Proof: Consider any arrival rate sequence ′a . Let ( )cn T ′≥ a . 
Then, 

( , ) 0q m′ =a  m n∀ ≥  
=> 0 '( ) ( )a m C m≤ =  m n∀ ≥   

=> ( 1) 0S m − =  m n∀ ≥  
From (12) this implies, 

| ( , ) | | ( , ) | | ( ', ) | | ( ', ) | 0q m q m q m q m= ≤ = =a a a a) )  
=> T Tc c( ) ( ' )A A≤  

 
Theorem 2 below proves the time-optimality of the control 

given by (7,8).  
 
Theorem 2 (Time-Optimal Arrival Rates) 
Any vector of controllable arrival rate sequences that satisfies 

*( ) ( ( ) ( ))c c ea n C n q n += −  where *( ) ( )e eq n Q n Q= −  and 
* *( ( ))eQ Q S n += +  solves the single-queue time-optimal 

control problem. 
Proof: We prove by induction on n that the following two 
conditions hold true for all n: 
S1(n): | ( ) |q n)  is the minimum.  
S2(n): if ( ) 0q n >) , then ( , ) 0q n >a)  ∀a . 
By Lemma 2, S1 will guarantee minimum convergence time. 
S2 facilitates the proof by strengthening the induction step. 
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The full-link-utilization property will be proven at the end. 
The proof by induction is given in Appendix A.   
 
Fairness: 

Once the optimal total controllable arrival rate sequence is 
found, it can be divided in any desired proportion in each time 
slot among the individual controllable flows. In general, this 
proportion itself varies from time slot to time slot. Denoting 

( )iw n  as the fraction of *( )ca n  that is given to controllable 
flow i at time n, we have the general flow rate allocation as, 

 * *( ) ( ) ( )c
i ia n w n a n=  in D∀ ≥  

where  

( )

( ) 1i
i P n

w n
≤

=∑  

P(n), as we recall from section 2, is the total number of 
controllable flows at time n. The simplest fair allocation 
scheme is ( ) 1/ ( )iw n P n= . In the most general case one could 
vary ( )iw n  with n in such a way as to ensure long term 
weighted fairness on any required time-scale. 
 
Independence of Time-Optimal Control Law on Buffer Size: 

So far we have assumed an infinite buffer to be holding the 
queue of data in the network node. With a finite buffer of size 
B, the queue update equation (1) is modified to 
 ( 1) min( , ( ( ) ( ) ( )) )Q n B Q n a n C n ++ = + −  (A.1) 
Note that ( 1)Q n +  is still a monotonically increasing function 
of ( )Q n  and ( )a n . Because of this, all inequality 
comparisons in the proof of Theorem 2 still hold true even 
after replacing (Q(n)+a(n)-C(n))+ with min(B, (Q(n)+a(n)-
C(n))+). Hence Theorem 2 is true even with a finite buffer. 

Other than through a technical examination of the proof 
steps, one can also guess the reason for this intuitively: the 
control of (7,8) always tries to converge the queue towards the 
effective target queue size and away from the buffer limit. In 
the next section, the switch algorithm will use the finite buffer 
equation (A.1) instead of (1) in order to predict the future 
queue sizes correctly. 

 
V. A SWITCH-SOURCE PROTOCOL TO ACHIEVE 

TIME-OPTIMAL CONTROL 
 

The control feedback framework we consider is a similar to 
that of the ATM-ABR service, but simpler. Control packets 
regularly travel from the source through each node in its path 
upto the destination and then reverse their paths back to the 
source. Explicit rates (ERs) are computed for each time slot 
for each flow by the switch in a node. On receiving a control 
packet from a downstream switch, the switch replaces the ER 
in that packet with the minimum of that ER and the locally 
computed ER for the current time slot. The source thus 
receives the minimum of the ERs of each switch in its flow 
path. The source then equates its transmission rate to the latest 
ER it has received.  

In this paper, we assume the ERs of the non-bottleneck 
switches to be always larger than that of the bottleneck switch. 
Therefore a flow ER sent by the bottleneck switch to the 
source is actuated one round-trip time later as a data arrival 
rate. Thus, denoting the bottleneck switch ER fed back to 
source i  at time m by ( )iR m  we have, 

( ) ( ) ( )i
i i fi ia m A m d R m D= − = −  

Substituting the above equation in (6), we have, 

:

( ) ( ) ( )
i

c i
i

i m D

C m C m R m D
<

= − −∑      

Note that the (6) and the above equation hold for a control 
starting from time 0. The switch however re-predicts future 
capacities and re-computes the control afresh at every the 
beginning of every time slot in general. For a control to be re-
computed at time slot n, the above equation now has to be 
time-shifted by n  and therefore becomes, 
 

:

ˆ ˆ( , ) ( , ) ( )
i

c i
i

i m n D

C n m C n m R m D
< +

= − −∑  (13) 

where ˆ ( , )C n m  is the switch’s prediction of ( )C m  at time n.  
Note that the summation term in (13) goes to zero for 

Nm n D≥ + . Hence  

 ˆ ˆ( , ) ( , ) 0cC n m C n m= ≥   for Nm n D≥ +  (14) 
Because of (14), the predicted future overload for time m from 
negative controllable capacities becomes  

  
1

ˆ ˆ( , ) ( ( , ))
Nn D

c

l m

S n m C n l
+ −

−

=

= ∑  (15) 

We now develop the switch pseudo-code. At the beginning 
of every time slot, the future capacities are predicted by a 
separate procedure, predict_capacities(). Then in procedure 
compute_optimal_rates(), (13), (15), (8) and (7) are used in a 
co-iterative computation of the optimal input rates and future 
queue sizes from m=n to m= Nn D+ . The data variables ˆ( )S m  

and ˆ ( )C m  hold the computed values of  ˆ ( , )C n m  and ˆ( , )S n m  
at time n. The pseudocode for the computation at a switch is 
thus: 
 

 
main() { 
   // n is current time  
   // predict the future ( )C m s 

   for (m = n to Nn D+ ) ˆ ( )C m = predict_capacities(m);      
   compute_optimal_rates (n, Nn D+ ); 
} 

Algorithm 1: Switch Control Algorithm 
 

 
where the procedure compute_optimal_rates() is as follows: 
 

 
compute_time_optimal_rates( window_start, window_end ) { 
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  // B is the size of the buffer holding the queue of data 
  // P(m) is the control phase in which m resides 
 
  //compute the current and future controllable capacities first  
  for (m = window_start to window_end)  { 
      if ( Nm n D< + )  

        
:

ˆ ˆ( ) ( ) ( )
i

c i
i

i m n D

C m C m R m D
< +

= − −∑ ; 

      else 
        ˆ ˆ( ) ( )cC m C m← ; 
  } 
     
   //compute the overload terms using a backward recursion on 
time m 
   ˆ( ) 0NS n D+ ← ; 
(L1)  for  (m = 1Nn D+ −  to n) 

  ˆ ˆ ˆ( ) ( 1) ( ( 1))cS m S m C m −← + + + ; 
  
  // compute one window full of optimal input rates into the 
future 
(L2)  for (m = window_start to window_end)   
         { 
               // the controllable rates start only from 1n D+  
 if  ( 1m n D≥ + )   
               { 
                    *ˆ ˆˆ ( ) ( ) ( ( ))eq m Q m Q S m +← − − ; 

     * ˆˆ ˆ( ) ( ( ) ( ))c c ea m C m q m +← − ; 
(L3)   for all i such that im n D≥ +   

                       
*

* ˆ ( )( )
( )

c
i

i
a mR m D
P m

− ← ; 

                }   
               *ˆ ˆ ˆˆ( 1) min( ,( ( ) ( ) ( )) )c cQ m B Q m a m C m ++ ← + − ;  
           } 
} 
 Algorithm 2: Switch procedure to compute time-optimal rates 

 
 
Note, from the for-loop labeled L3, that in order to compute 
all desired input rates all the way upto *ˆ ( )c

Na n D+ , it has 
been necessary to compute not only the current explicit rate 
but also pre-compute future explicit rates for flows 1 to N-1. 
Specifically, flow k, the rates becomes controllable at 

km n D= +  and hence *( )k
kR m D−  is computed for 

km n D= +  to Nm n D= + . These rates for the future remain 
stored in memory at the switch until they are fed back to the 
source at the appropriate time. 
 
A. Time-Optimality of the Switch Algorithm 

We see that if the future capacities are predicted correctly at 
time n, i.e. if  

ˆ ( ) ( )C m C m=  for Nn m n D≤ ≤ + , 

then by induction on the time m in the ‘for’ loop L2 in the 
pseudo-code above, it is trivial to prove by induction on m  
that for m n=  to Nm n D= + , 

ˆ ( ) ( )c cC m C m= , 
ˆ( ) ( )S m S m= , 
* *ˆ ( ) ( )c ca m a m= , 

*( ) ( ) ( )i
i i ia m R m D a m= − =   i∀ ,  and 

ˆ ( 1) ( 1)Q m Q m+ = + . 
 

In other words, if the future link capacities are predicted 
correctly one maximum RTT ( ND  time units) into the future, 
the switch algorithm simulates the future correctly as well as 
calculates the optimal arrival rates correctly. 
 
B. Time-Optimality to a Step-Disturbance in Available 
Capacity or Set of Flows 

A simple switch algorithm would merely predict the future 
capacities as equal to the current capacity, i.e. at time n, 
ˆ ( ) ( )C m C n=  for Nn m n D≤ ≤ + . In that case, under a step 

disturbance, i.e. with ( ) ( )C m C n=  for Nn m n D≤ ≤ + , the 
future capacities get predicted correctly and the hence the 
switch algorithm computes the exact time-optimal rates.  

In practice, such a step disturbance in capacity will occur 
when a new flow from a higher priority class, such as a real-
time traffic class joins or an existing flow exits thereby 
causing a fixed change in the available capacity to this flow-
controlled class of flows.  
 
C.      Efficient Version of the Switch Algorithm 

In general, at the beginning of every time slot n, the switch 
must check if there has been a capacity disturbance, i.e. if 
there has been a change in the current or future predicted 
capacities or a change in the set of flow-controlled flows. If 
so, the time-optimal rates are recomputed for a window of one 
max-RTT into the future according to the procedure 
compute_optimal_rates() above. However, during 
disturbance-free periods, the window of computed optimal 
rates has to be merely advanced by one time-step, i.e. we only 
need to compute *ˆ ( )c

Na n D+ . This efficient version of the 
algorithm of Table 1 is shown in Table 3 below. The 
compute_optimal_rates() procedure used in Table 3 is 
exactly that specified in Table 2. 

 
 

main() 
{ 
    // n is current time 
    // predict available capacities upto one max-RTT ahead 
    for (m = n to Nn D+ ) ˆ ( )C m = predict_capacities(m);    
     
    if (capacity_disturbance() or change in the set of flows) 
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         // compute full window of rates upto max-RTT ahead 
         compute_optimal_rates(n, Nn D+ ); 
    else 
         // compute only the rates at max-RTT ahead 
         compute_optimal_rates( Nn D+ , Nn D+ );    
} 
capacity_disturbance() 
{ 
    // disturbance: previous predicted value of capacity for m 
is not same as current predicted value 
    if there exists m such that Nn m n D≤ ≤ +  and   

    ˆ ˆ( ) ( )previousC m C m≠  
         return (true); 
  } 

 
Algorithm 3: Efficient switch control algorithm that 

recomputes previous time-optimal rates only at a disturbance 
 

 
 
D. Scalability of the Time-Optimal Switch-Source Protocol 

In the time-optimal control, all individual user flows with 
the same round-trip delays, in units of time slots, are 
aggregated and considered jointly as a single flow. Thus the 
number of flows, N, can be at most equal to the largest round 
trip delay. That is, NN D≤ . Consequently, each procedure in 
the switch computation is seen by inspection of Tables 2,3, to 
have the following complexity: 
1. capacity_disturbance() involves ( )NO D comparisons 

2. compute_optimal_rates involves 2( )
N

O D  additions, 
multiplications, and memory accesses in each of its 3 
“for” loops only if there is a capacity or flow-set 
disturbance. Otherwise the window of rates is merely 
pushed forward by one time slot in statement L3. Note 
that in L3, the number of different rates to be computed is 
actually only equal to the number of different fairness 
weights. Thus, for a simple equal-fairness control where 
the weights are the same, only one explicit rate is 
computed in L3.  

3. In a simple implementation of predict_capacities(), the 
entire future RTT of capacities can be predicted as a 
constant equal to the exponentially weighted moving 
average of past capacities. This requires only O(1) 
computation if the average is computed iteratively from 
one time slot to another.  

 
In summary, an equal-fairness time-optimal protocol has a 

control complexity of 2( )
N

O D  at the time of a disturbance and 
(1)O  otherwise. In contrast, linear control-theoretic protocols 

involve ( )NO D  computations at each time step, irrespective 
of whether a disturbance occurs or how capacities are 
estimated.  

 

VI. ROBUSTNESS OF TIME-OPTIMAL CONTROL 
 

In this section, we show that the time-optimal control of 
(7,8) is robust to errors in capacity and queue size estimation. 
In other words, bounded estimation errors give rise to bounded 
deviations from the optimal queue size achieved with no 
estimation errors.  

Intuitively this can be seen as follows. First, consider the 
errors that can arise in computing the current optimal input 
rate in the control equation of (7,8), 

* *( ) ( ( ) ( ) ( ))c c ea n C n Q n Q n += − +  

By adding the errors in estimating ( )Q n and *( )eQ n  to the 

error in estimating ( )cC n , the problem reduces to considering 

only errors in estimating ( )cC n . The next queue size is then 
given by 

*( 1) ( ( ) ( ) ( ))c cQ n Q n a n C m ++ = + −  
*ˆ( ( ) ( ( ) ( ) ( )) ( ))c e cQ n C n Q n Q n C n+ += + − + −  

where ˆ ( )cC n  is the estimated value of ( )cC n .  In the above 
expression, that the deviations-from-optimal of ( )Q n and 

( )Q n− tend to cancel each other out and what basically 
remains to contribute to the deviation-from-optimal of 

( 1)Q n +  is the difference between ˆ ( )cC n  and  ( )cC n . This is 

obvious for the case where the estimate of *( )ca n is positive in 
which case the ‘( )+’ nonlinearity above disappears. However a 
formal proof of robustness shows the above argument to also 
hold when the nonlinearity is reached, i.e. when the estimate 

of *( )ca n  is zero or the next queue size is zero. Once again, 
the trick is to use induction on time: if the queue size deviation 
from the optimal is bounded at time n, show that it remains 
bounded at n+1. The following robustness theorem therefore 
holds with the formal proof provided in [11]. 
 
Theorem 3 (Robustness of Time-Optimal Control): 

If the total error in estimating ( )cC n , ( )Q n and *( )eQ n  
remains bounded in magnitude by ε  for all n, then 

*| ( ) ( ) |Q n Q n ε− ≤  for all n where *{ ( )}Q n  is the time-optimal 

queue size sequence resulting when ( )cC n , ( )Q n and *( )eQ n  
are estimated perfectly. 
 

This in turn implies that the switch procedure 
compute_optimal_rates() of the previous section achieves 
bounded deviation from the optimal as long as its estimation 
errors ˆ ( ) ( )c cC m C m− and ˆ ( ) ( )e eq m q m−  always remain 
bounded. 

 
VII. CONCLUDING DISCUSSIONS 

 
In this paper, we derived the time-optimal control of a 

single network queue shared by multiple flows from sources 
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located at arbitrary distances from the queue. The time-
optimal control has a simple and easily implementable 
structure: the desired arrival rate is simply a controllable 
capacity term minus an effective queue deviation term. A 
switch-centric protocol to achieve the time-optimal control 
was also presented. The protocol computation is periodic and 
scalable with a complexity of O(D2) when a disturbance is 
detected and O(W) otherwise, where W is the number of 
different flow fairness weights. 

We showed that the time-optimal control is robust to errors 
in measuring the available link capacity or queue size. 
Intuitively, this should also lead to protocol robustness to 
errors in estimating the packet delays between source and 
switch, as long as a delay estimation error contributes to a 
bounded error in estimating future queue sizes. Robustness to 
delay errors will however be investigated in detail in a future 
paper. While time-optimal control provides assurances on 
optimal queue convergence under large step disturbances in 
bandwidth, it is also important to investigate the performance, 
such as queue mean and variance, under stochastically varying 
bandwidths [1,2] . 

The generalization of time-optimal control to multiple 
congested nodes has been developed in [11]. The solution is 
first derived for a single flow for general *Q  . We provide a 
rough description of this solution here for the case of zero link 
delays and * 0Q =  here (the solution for arbitrary link delays 
is then obtained by appropriate time-shifting of the optimal 
source rates) : At every time slot, a sequence of desired arrival 
rate (DAR)s is calculated for each link, in a backward iteration 
from the destination towards the source as follows. The 
effective capacity of a link is computed as the minimum of its 
actual capacity and the downstream DAR. The DAR of the 
link is this effective capacity minus the local queue size. 
Finally, the source rate is set to the DAR of the first (access) 
link.  

It can be shown that an alternate way to express this DAR 
algorithm is as follows. For each link, subtract the total of 
upstream and local queue sizes from the capacity. This is the 
queue-reduced equivalent (QRE) capacity of the link. Then set 
the source rate to the minimum of the QRE capacities of all 
links in its path.  

Generalizing this solution for a general network of flows 
and general *Q  is a hard problem. However, in [11], we have 
intuitively derived the general network solution for the special 
case of * 0Q = . A QRE capacity is computed for each link as 
its capacity minus the total of upstream and local queue sizes 
of all flows crossing it. A feasible set of source rate sequences 
is then defined as one where the sum of source rates of flows 
at any link always remains less than its QRE capacity. Any 
such feasible set is then shown to minimize convergence time. 
An additional condition is then added to maximize link 
utilization. The formal proofs of these are being worked on 
presently. 

 

VIII. APPENDIX 1 
 
Proof of Theorem 2:  
For convenience, we drop the “c” superscript from ca and 

cC in all that follows. The abbreviated terminology developed 
at the end of section 3 will be used for convenience. 
 
Base Case (n=0): Since ( , ) (0)q n q=a is a given initial 
condition, S1(0) and S2(0) are satisfied trivially. 
 
Induction Step: Let S1(n), S2(n)  hold true.  
 
Case 1:  ( ) 0C n ≥ . 

=> ( 1) ( )S n S n− =  
=> ( ) ( )eq n q n=)   

Then S1(n+1) and S2(n+1) hold true by exactly the same 
steps in the proof of Theorem 1 except that “q” gets replaced 
by “ q) ” and *Q  by *( ( 1))Q S n ++ −  everywhere. 
 
Case 2:  ( ) 0C n < . 
   => ( 1) ( ) ( )S n S n C n− = +  (16) 
and 

  
( , 1) ( , ) ( ) ( )

( , ) ( )
Q n Q n a n C n

Q n C n
+ = + −

≥ −
a a

a
   ∀a  (17) 

 
Case 2.1: * ( ) 0Q S n+ ≤ . 
  => * *( 1) ( ) ( ) 0Q S n Q S n C n+ − = + + ≤  

=> ( , ) ( , )q n Q n=a a)    ∀a  
and 
 ( , 1) ( , 1)q n Q n+ = +a a)    ∀a  (18)  
  ( ) ( ) ( ) ( )eq n q n Q n C n= = >)  (19) 
 => *( ) 0a n =   and ( 1) ( ) ( )Q n Q n C n+ = −  (20) 
 
Then because of (16-20) above, S1(n+1) and S2(n+1) hold 
true by exactly the same steps of Case 2 in proof of Theorem 1 
except that “q” gets replaced by “ q) ” and the first expression 
“ ( ) ( ) 0q n C n> ≥ ” gets replaced by “ ( ) 0q n ≥) ”. 
 
Case 2.2: * ( ) 0Q S n+ > . 

  => 
*

*

( , 1) ( , ) ( ) ( ( ))

( , ) ( ( 1))

q n Q n C n Q S n

Q n Q S n

+ ≥ − − +

= − + −

a a

a

)

 (21) 

  
 Case 2.2.1: ( ) ( )eq n C n> . Then,  

*( ) 0a n =   and ( 1) ( ) ( )Q n Q n C n+ = −    
 Case 2.2.1.1: * ( 1) 0Q S n+ − > .  
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In this case, from (16), ( ) 0q n ≥)  holds by the following 
reasoning, 

*( ) ( ) ( ( 1))q n Q n Q S n= − + −)  
     *( ) ( ( )) ( ) ( ) ( ) 0eQ n Q S n C n q n C n≥ − + − = − ≥  

Hence by inductive assumption S1, ( )q n)  is the minimum. 
From (21) above and because ( )q n)  is the minimum, we have, 

*

*

( , 1) ( , ) ( ( 1))

( ) ( ( 1)) ( 1) 0

q n Q n Q S n

Q n Q S n q n

+ ≥ − + −

≥ − + − = + ≥

a a)

)  

which satisfies conditions S1(n+1) and S2(n+1). 
    
Case 2.2.1.2: * ( 1) 0Q S n+ − ≤ . Then as in case 2.1,  

( , ) ( , ) 0q n Q n= ≥a a)    ∀a  
Then by inductive assumption S1, ( )q n) is the minimum and 
so is ( )Q n . Therefore from (21), 

*

*

( , 1) ( , ) ( ( 1))

( ) ( ( 1)) ( 1) 0

q n Q n Q S n

Q n Q S n q n

+ ≥ − + −

≥ − + − = + ≥

a a)

)  

which satisfies conditions S1(n+1) and S2(n+1). 
  
Case 2.2.2: ( ) ( )eq n C n≤ . Then we get, 

*( 1) ( )Q n Q S n+ = +  
=> | ( 1) | 0q n + =)  

which satisfies conditions S1(n+1) and S2(n+1). 
 
Full Link-Utilization Property: Since 

*( ) ( )a n Q n+ ≥ ( ) ( ) ( )eC n q n Q n− + ≥  *( ) ( ( ))C n Q S n ++ +  
( )C n≥ , 

the link capacity is always fully utilized.   
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