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Abstract— This paper is focused on the influence of geometry
on the combination of inter-cell and intra-cell interferences in the
downlink of large cdma networks. We use an exact representation
of the geometry of the downlink channels to define scalable
admission and congestion control schemes, namely schemes that
allow each base station to decide independently of the others
what set of voice users to serve and/or what bit rates to offer
to elastic traffic users competing for bandwidth. We then study
the load of these schemes when the size of the network tends
to infinity using stochastic geometry tools. By load, we mean
here the distribution of the number of voice users that each base
station can serve and that of the bit rate offered to each elastic
traffic user.

I. INTRODUCTION

This paper concerns the evaluation of the load of the down-
link (forward channel) of CDMA networks, with a special
emphasis on the limitations of load due to inter-cell and own-
cell interferences. More precisely we analyze the maximal
number of customers that such a network can serve at a given
bit rate and/or the maximal bit rates that such a network can
provide to a given customer population.

The quantification of these load constraints is shown to
allow one to define

• Admission control policies in the case of predefined
customer bit rates (e.g. voice); i.e., schemes allowing one
to decide whether a new customer can be admitted or
should be rejected as its admission could make the global
power allocation problem unfeasible;

• Congestion control policies in the case of customers with
elastic bit rates (e.g. data); i.e., schemes allowing one
to determine the maximal fair customer bit rates that
preserve the feasibility of the power control problem at
any time, in function of the customer population in all
cells at this time.

The main practical aims of the present paper are to propose
decentralized and scalable admission and congestion control
protocols that guarantee that the network remains in a position
to solve the power allocation problem at any time and to evalu-
ate the two notions of load alluded to above, via mathematical
analysis and simulation.

The evaluation part relies on a model which uses planar
point processes and stochastic geometry. Indeed, the model
has several key components, the spatial location pattern of
base stations (BS’s), the spatial location pattern of users, the
attenuation (path loss) function and the policy of assignment
of users to BS’s, which are geometry-dependent, in addition to

the non-geometric components such as orthogonality factors,
pilot signals and external noise.

We will allow both patterns of locations to be countably
infinite so as to address the scalability questions, and to check
the ability of the proposed algorithms to continue to function
well as the size of the network goes to infinity.

The basic assignment policy will be that where each mobile
is served by the closest BS. It is basically equivalent to the
optimal-SIR-choice scheme and to the honeycomb model in
the classical hexagonal case.

This model will be studied under various stochastic settings,
which take into account the irregularities of both the infrastruc-
ture and the traffic, in a statistical way. Mimicking Kendall’s
notation in queueing theory, we can say that our most general
stochastic model is G/G, where G means general ergodic
spatial point process; the first G stands for the process of BS’s
and the second for the process of mobiles (BS/Mobiles). As
special cases we consider M/M and D/M and in particular
H/M , where M means, possibly inhomogeneous Poisson, D
general deterministic periodic, H hexagonal.

The new analytical results on these notions of load are of in-
dependent interest as these notions can be viewed as surrogates
of information theoretic definitions of capacity. (Note that we
use the notion “load” for the number of users served and
keep the notion “capacity” reserved for information-theoretic
description that concerns bit-rates pumped by the network.)
Their mathematical tractability (at least in some particular
cases) opens new ways of assessing e.g. CDMA networks
optimal design and economic planning.

The paper is organized as follows. We first give a brief
survey of the literature in §II. §III revisits the algebra of power
allocation. The admission and congestion control algorithms
are introduced in §IV and V respectively; some implemen-
tation issues are discussed in §VI. The stochastic geometry
models allowing one to evaluate load are introduced in §VII
and studied in §VIII. Simulation and numerical results are
gathered in §IX.

II. SITUATION

The problem of CDMA capacity (load) constraints has
already been considered by several authors. Nettleton and
Alavi [1] first considered the power allocation problem in the
cellular spread spectrum context.

In Gilhousen et al [2], the problem was posed in the
following way. Suppose Base Station number 1 (BS 1) emits at
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the total power S1 in the presence of K −1 other BS’s, which
emit at power S2, . . . , SK respectively. How many users N1
can then BS 1 accommodate assuming that the load of the
network is only interference-limited and that each user has
a required bit rate of W ? The sufficient condition (and thus
conservative load constraint) proposed in [2] reads

N1∑

i=1

Ci

(
1 +

K∑

k=2

(Sk)i
(S1)i

+
η

(S1)i

)
≤ 1 . (2.1)

In this formula, (Sk)i the power received by user i from BS
k and Ci = (Eb/N0)i/(βW/R), where (Eb/N0)i is the bit
energy-to-noise density ratio of user i, and R, β, η are the
bandwidth, the fraction of the total power devoted to the pilot
signal and the external noise, respectively.

This simple condition allows for the determination of Ns
but it does not reflect a key feature, which is the competition
of BS’s for allocating powers to their users: in reality the total
power emitted by the BS should depend on the number of
users, namely Sk should be a function Sk(N1, . . . , NK).

In order to address this issue, Zander [3], [4] expresses
the global power allocation problem by the multidimensional
linear inequality

ZS ≤ 1 + C

C
S (2.2)

with unknown vector S of emitted powers; here one assumes
the required signal-to-interference ratio C (or equivalently
the required user bit rate) to be given and one assumes the
matrix Z, the i, k-th entry of which gives the normalized path
losses/gain between user i and BS k, to be given too. The
main result is then that the power allocation is feasible if there
exists a non-negative, finite solution to (2.2); the necessary
and sufficient condition is that C ≤ 1/(λ∗ − 1), where λ∗

is the Perron-Frobenius eigenvalue of the (positive) matrix Z.
In order to simplify the problem, all same-cell channels are
assumed to be completely orthogonal and the external noise
is suppressed. In [3] the issue of decentralization for narrow-
band systems is also addressed.

Foschini and Miljanic [5] and Hanly [6] introduced external
noise to the model: Foschini considered a narrow-band cellular
network and Hanly a two-cell spread spectrum network. On the
basis of the previous works, in several articles Hanly extended
the model. Hanly [7] extends this approach to the case with in-
cell interference and external noise (essentially for the uplink).
Using the block structure of Z, he solves the problem in
two steps: first the own-cell power allocation conditions are
studied (microscopic view) and then the macroscopic view
considers some aggregated cell-powers. He also interprets λ∗

as a measure of the traffic congestion in the network.
The evaluation of λ∗ can be done either from a centralized

knowledge of the state of the network, which is non practical
in large networks, or by channel probing as suggested in
§ VIII of [7] and described in [8]. When it exists, the minimal
finite solution of inequality (2.2) can also be evaluated in a
decentralized way (using Picard’s iteration of operator Z, cf.

the discussion in § IX of [9]). However this does not pro-
vide decentralized admission or congestion control algorithms,
namely scalable ways of controlling the network population
or bit rates in such a way that the power allocation problem
remains feasible, namely that λ∗ remains less than 1.

In the present paper, we continue the approach of [3],
[7] and propose decentralized admission congestion control
protocols for this context, based on a simple mathematical
fact saying that the maximal eigenvalue of any sub-stochastic
matrix (matrix with nonnegative entries, whose row sums are
less than 1) is less than 1.

We find that this, when applied to the downlink power
allocation problem, takes a form similar to (2.1), with the
powers received (Sk)i replaced by path losses/gains from
BS k to user i. Since path loss basically depends on the
geometry only and neither on the number of users served nor
on the powers emitted, our version of Equation (2.1) no longer
depends implicitly on Nk.

There is also a rich literature on the single BS case. For
recent advances on the downlink case see e.g. [10], [11].

Finally, we remark that our downlink load analysis is
essentially different from a typical approach to the uplink
load, where the main assumption says that all the mobiles
are received by their BS’s at the same level due to a perfect
power adaptation (see e.g. [12]).

III. POWER ALLOCATION ALGEBRA REVISITED

In this section, we remind the power allocation problem and
its reduction to a linear algebraic setting following the lines
of [7].

Let NBS = {Y j}j , Y j ∈ R2 be the locations of the base
stations (BS) in the plane (most results below extend to the
d-dimensional Euclidean space). Suppose that the BS located
at Y j is to serve a set of mobiles located at N j

M = {Xj
i }i,

Xj
i ∈ R2 at some given SINR Cji . Denote the power loss

of the signal (attenuation, fading, etc.) on the path from y to
x, x, y ∈ R2 by l(y, x). We assume also some local external
noise W j

i at Xj
i and pilot power Pj emitted by each BS j.

The network can handle this population of mobiles on the
downlink if each BS Y j can allocate some power Sji to mobile
Xj
i , s.t. the following set of inequalities on SINR is satisfied:

for all i, j,

Sji l(Y
j ,Xj

i )
W j
i + (Iji )own + (Iji )ext

≥ Cji . (3.1)

In this equation, (Iji )own = κj l(Y j ,X
j
i )(Pj+

∑
i′ �=i S

j
i′), and

(Iji )ext = γ
∑
k �=j l(Y

k,Xj
i )(Pk +

∑
i′ S

k
i′), where κj ≥ 0 is

the own-cell orthogonality factor in cell j, whereas γ ≥ 0 is
the other-cell orthogonality factor. (Our results will cover the
special cases κj = 0 and/or γ = 1.)

The set of inequalities (3.1) is equivalent to some linear
matrix inequality (understood coordinate-wise)

S̃ ≥ ÃS̃ + b̃ , (3.2)
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where S̃ =
((

Sji )
#N j

M
i=1

)#NBS

j=1
is the unknown vector of all

individual powers. So one can solve the power allocation
problem if and only if one can find a finite solution to this
set of linear inequalities. Of course this solution might be
non-implementable if the sum of the powers required on the
downlink of a given BS exceeds its maximal power. As in [9],
we will in a first step ignore the effects of transmitter power
constraints. We will return to this question in VI-A and ignore
these extra limitations in what follows.

Before studying the existence of finite solutions of this set
of linear inequalities, we use its block structure to obtain some
necessary conditions.

Proposition 3.1: Inequality (3.2) is equivalent to the fol-
lowing two-step problem:

• solving some linear inequality

S ≥ AS + b (3.3)

for the total powers S = (Sj)
#NBS

j=1 , Sj =
∑
i S
j
i emitted

by the BS’s on traffic channels,
• and for a given solution S =

(
Sj

)
j

of (3.3), for each j,
solving some linear inequality

S̃j ≥ ÃjjS̃j + d̃j (3.4)

for the individual powers S̃j = (Sji )
#N j

M
i=1 on the traffic

channels of BS j, under the constraint
∑
i S
j
i = Sj .

We will call (3.3) the global power allocation problem and
(3.4) the local or in-cell power allocation problem. The precise
definition of the last vectors and matrices, as well as conditions
under which there exist finite solutions to these problems are
given below (the proofs can be found in [13]).

A. Local Power Allocation Problem

Let

Hj
i =

Cji
1 + κjC

j
i

. (3.5)

The local power allocation problem (3.4) for the jth BS reads:
for all i

Sji ≥ Hj
i

(
W j
i

l(Y j ,Xj
i )

+ κj(Sj + Pj) (3.6)

+γ
∑

k �=j

l(Y k,Xj
i )

l(Y j ,Xj
i )

(Pk + Sk)
)

.

Proposition 3.2: Suppose a collection of non-negative, fi-
nite aggregated powers {Sj} satisfying (3.3) is given. The
following inequality

κj
∑

i

Hj
i < 1 (3.7)

is necessary and sufficient for the existence of a positive and
finite solution of (3.6) under the constraint

∑
i S
j
i = Sj . If it

holds then for all i

Sji = Hj
i Sj + dji + ξi , (3.8)

where

dji = Hj
i

(
W j
i

l(Y j ,Xj
i )

+ κjPj
∑

k �=j

l(Y k,Xj
i )

l(Y j ,Xj
i )

(Pk + Sk)
)

and any collection of non-negative {ξi}i satisfying
∑
i ξi =

Sj−
(
AS

)
j
−bj , with the elements of A given by (3.9)–(3.10),

and bj the elements of b given by (3.11).

B. Global Power Allocation Problem

In view of Proposition 3.2, we assume from now on
that (3.7) holds for all j; i.e., that the local power allocation
problem can be solved, and we concentrate on the global
problem (3.3), with A = (ajk), b = (bj) given by

ajj =
∑

i

κjH
j
i , (3.9)

ajk = γ
∑

i

Hj
i l(Y

k,Xj
i )

l(Y j ,Xj
i )

, k 	= j (3.10)

bj =
∑

i

Hj
i

(
W j
i

l(Y j ,Xj
i )

+ κjPj (3.11)

+γ
∑

k �=j

l(Y k,Xj
i )

l(Y j ,Xj
i )

Pk

)
.

As it was mentioned for (3.2), the existence of solutions
of (3.3) depends on the spectral radius of the possibly infinite
matrix A.

Let us denote by An = (anjk)jk the nth power of A,
with A0 = I being the identity matrix. Moreover, let A∗ =
(a∗
jk)jk =

∑∞
n=0 An. Note that An for each n ≥ 0 and A∗

are well defined, but they may have some or all their entries
infinite. Assume now γ > 0 and Cji > 0. If #N j

M > 0
then anjk > 0 for all n > 1. Thus excluding BS’s serving no
mobiles, we get a positive (and therefore irreducible) matrix
A for which all the power series Ajk(z) =

∑n
n=0 anjkz

n for
j, k = 1, 2, . . . have a common convergence radius 0 ≤ R <
∞ called the convergence radius (or the spectral radius of A.
Moreover Ajk(R) < ∞ for all j 	= k, and Ajj(R) is finite
or infinite at the same time for all j making A respectively
transient or recurrent.

Proposition 3.3: A necessary condition for the global
power allocation problem (3.3) to have a positive finite so-
lution is that the convergence radius R of A be greater than
or equal to 1. In case of equality, A has to be transient. Then
any solution of (3.3) is of the form A∗(b + ξ) + z, where
ξ ≥ 0 and z ≥ 0 s.t. z = Az, with the last term existing only
in infinite-dimensional case.

It may happen that A∗ has all its entries finite and that the
minimal solution A∗ b has all its entries infinite. Note that any
solution S = (Sj) of (3.3) has the following coordinate-wise
solidarity property: if for any j, Sj = ∞, then Sj = ∞ for
all j.

Note that the successive iterations Ψn of the linear operator
Ψ on R#NBS , defined by Ψ(s) = As+b tend coordinate-wise
with n → ∞ to a solution A∗b+z and Ψn(0) tend (increase)
to the minimal solution.
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The following result gives two simple conditions: a suffi-
cient condition and a necessary one for the convergence radius
R of A to be greater that 1.

Proposition 3.4: If matrix A is strictly substochastic (i.e.
for each j,

∑
k ajk ≤ 1 and for some j0,

∑
k ajk < 1),

then R < 1. On the other hand if A has a super-stochastic
block (i.e.

∑
k in block ajk ≥ 1 for all j in a block and∑

k in block ajk > 1 for some j), then R < 1.

IV. DECENTRALIZED ADMISSION CONTROL PROTOCOL

Assume the bit rates of all users (or equivalently all Cji
parameters) to be specified. The admission control problem
can then be posed as follows: for a given mobile population
N j
M , for all j, check whether R > 1. Indeed, if this holds,

all mobiles can be served on the downlink, whereas if R = 1
and A is recurrent then (3.3) has a finite solution only if the
external noise W j

i = 0 and Pj = 0 for all i, j, and if R <
1, then the global allocation problem has no positive finite
solution. If R ≤ 1, one should then decrease the population
N j
M , that is, one should admit only some subset Ñ j

M ⊂ N j
M ,

for some or all j, s.t. the corresponding convergence radius R̃
is strictly larger than 1. The main difficulties with this scheme
are twofold:

• First the computation of the convergence radius requires
the knowledge of the whole A matrix, that is some cen-
tralized knowledge not only of fixed (or slowly varying)
data such as the positions of all BS’s, but in addition that
of quickly varying variables such as the the positions of
all mobiles in all cells. In the finite dimension case, the
fact that R = limn→∞ anjk/a

n+1
jk for all j, k, implies

(Ψn(s))j − (Ψn−1(s))j
(Ψn+1(s))j − (Ψn(s))j

→ R as n → ∞, (4.1)

which leads to some potential “on line” estimation of
R by channel probing as mentioned in § VIII of [7]
and described in [8]. Notice that (4.1) may not hold in
the infinite dimensional case, which indicates that the
quality of this estimation may not be satisfactory for large
networks.

• If the population is s.t. the power allocation problem
is not feasible, this estimation of R does not lead to
procedures allowing one to determine population or bit
rate reductions that might lead to a feasible allocation
problem.

A. DACP Principles

The admission control protocol described in this section
is based on the sub-stochastic condition on the matrix A
mentioned in Proposition 3.4. Let

f ji = κjH
j
i + γ

∑

k �=j

Hj
i l(Y

k,Xj
i )

l(Y j ,Xj
i )

, i ∈ N j
M . (4.2)

Note that matrix A is sub-stochastic if and only if
∑

i∈N j
M

f ji ≤ 1, (4.3)

for all j, with strict inequality for some j. The last condition is
only sufficient and non-necessary for the existence of solutions
of the problem and thus in principle it only gives a lower bound
on the load of the system.

Note that (4.3) has a form similar to (2.1), with the powers
received (Sk)i replaced by path losses/gains on the distance
form BS k to user i. Since path losses basically depend on the
geometry only and neither on number of users served nor on
the powers emitted, our equivalent of Equation (2.1) no longer
depends on Nk.

Also note that Condition (4.3) depends not only on the
number of mobiles in the cell of BS j, but also on their
locations in the cell. In case these users do move within the
cell, this mobility alone may lead to customer rejection.

Our interest in Condition (4.3) comes from the fact that it
leads to the following algorithm:

Decentralized Admission Control Protocol (DACP): Each BS
checks periodically whether Condition (4.3) is satisfied and if
not, enforces it by reducing the population N j

M of its mobiles
to some subset Ñ j

M s.t. inequality (4.3) holds when N j
M is

replaced by Ñ j
M . When a new mobile user applies to some

BS, the BS accepts it if Condition (4.3) is satisfied with this
additional user and rejects it otherwise.

The decentralized nature of these control schemes stems
from the fact that for each j, inequality (4.3) depends on the
characteristics of the mobiles in cell j but not on the location
or number of the mobiles of N k

M for k 	= j. So station j
can perform this check or this reduction independently of the
others, based on the sole knowledge of slowly varying global
data such as the locations of the other BS’s.

B. DACP Reduction Schemes

If a given pattern of users yields a sum (4.3) larger than 1,
then a reduction of mobiles should be applied.

Here are some natural reduction candidate algorithms which
reflect the load versus coverage tradeof.

1) An admission algorithm that maximizes the number of
mobiles served by each BS: station j ranks the mobiles
of N j

M according to the cost function f ji and serves the
largest subset of N j

M obtained when starting with the
mobiles having the smallest cost. This clearly maximizes
the total number of mobiles served by the network under
this admission control scheme. The drawbacks of this are
clear. For instance in the case when all thresholds Cji
are the same, small cost mobiles are those in the vicinity
of the BS; in other words, the coverage of this scheme
is poor as mobiles that are at the edge of the cell are
discriminated against. In addition, since the positions of
mobiles change over time, this scheme might lead to
the interruption of some communications e.g. due to the
arrival of a newcomer located in the vicinity of the BS.

2) An admission algorithm that uniformizes coverage: Sta-
tion j admits customers of N j

M in a random order until
inequality (4.3) is satisfied. The main advantage of this
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scheme is that since customers are not admitted based
on their location, it ought to lead to a more uniform
coverage, and also to a better robustness to mobility (see
§VII).

Admission control schemes should try to take into account
other goals as e.g. protection of calls in progress.

V. DECENTRALIZED CONGESTION CONTROL PROTOCOL

In this section, we do not assume the bit rates of users
(or equivalently the Cji parameters) to be specified. We are
interested in a scheme for elastic traffic, namely for traffic
which can accommodate bit rate variations.

We first consider the case with no admission control, where
an increase of the number of users in a cell is just coped
with via a reduction of the bit rates of the users of this cell,
like in TCP where the increase of the number of competitors
eventually results in a decreased bit rate for all, and where no
user is ever rejected.

We will look for fair schemes, where all users in a given cell
are supposed to have the same bit rate, namely the same SIR
Cj for all users in the cell of BS j. If the mobile population
N j
M is fixed for all j, then (3.3) reads

Cj

1 + κjCj
∑

i∈N j
M



κj + γ
∑

k �=j

l(Y k,Xj
i )

l(Y j ,Xj
i )



 ≤ 1, (5.4)

for all j, with strict inequality for some j. That is, the maximal
fair SIR that BS j can offer to its users is

Cj = 1(
κj(#N j

M − 1) + γ
∑
i∈N j

M

∑
k �=j

l(Y k,Xj
i )

l(Y j ,Xj
i )

)

+

(5.5)

where x+ is max(x, 0). Using a Gaussian channel approxi-
mation, one can deduce the maximal fair bit rate offered to
users of cell j is

Bj = B log(1 + Cj), (5.6)

with B the CDMA channel bandwidth and with Cj the quantity
defined above. Even when the number of mobiles in the cell
of BS j does not vary, the denominator of (5.5) varies with
time when users move.

A. DCCP Principles

Decentralized Congestion Control Protocol (DCCP): Each
BS periodically allocates the fair rate given by Equation (5.6)
to all mobiles in its cell. This fair rate is also updated at any
time when a customer joins or leaves the cell.

VI. VARIANTS AND IMPLEMENTATION ISSUES

A. DACP/DCCP with Security Margin

One can solve the power allocation problem if and only
if the convergence radius R of matrix A is greater than 1.
However the solution might be non-implementable if the sum
of the powers that a BS has to allocate to its mobiles exceed
the maximal power of the BS. It is not the purpose of the
present paper to investigate the effects of transmitter power

constraints in detail. However we will make the following sim-
ple observation. Suppose that the model is perfectly periodic,
i.e., all the lines of A are identical ajk = a1k. This makes
anjk = a1k(

∑
i a1i)n and a∗

jk = a1k
∑∞
n=0(1/R)n, where the

spectral radius R = 1/
∑
i a1i (note by the way, that in this

case substochasticity is equivalent to R > 1). Consequently,
for all j

Sj = S1 =
∑

k

a∗
1kbk =

1
1 − 1/R

∑

k

a1kbk .

Thus the global power allocation solution S is sensitive to b
if R is close to 1, which may lead to situations where the
minimal solution exceeds the maximal power of a BS.

Due to this fact, it may by useful to introduce some security
margin in the congestion control, namely imposing a stronger
condition R > 1 + δ for some δ > 0. In this case, the
DACP/DCCP condition takes the form

∑
i∈N j

M
f ji ≤ 1 − δ.

B. DACP/DSCP Implementation

For each mobile i ∈ N j
M the two terms it contributes

to the sum (4.3) can be rewritten as follows: f ji =
Hj
i (total path loss of user i)/(own-BS path loss of user i).

Although the SIR threshold of a mobile Hj
i is known to the

BS, the ratio of the path losses is not. This could be measured
by the user as the (inverse) of the SIR ratio on a “virtual”
isolated common channel on which all the BS transmit with
the same power. The pilot channels could possibly be used to
estimate these path losses. The path-loss measurements can
then be transmitted to the BS when the mobile applies for
access, and periodically updated. From the knowledge of f ji
for all i in its cell, and that of a newcomer, the BS can judge,
before trying to allocate powers, whether it is possible take
the newcomer, and this regardless the populations of users
served by other BS (provided they all apply DACP).

C. DACP and “Join the Less Loaded BS”

A natural modification of the DACP is that where each
mobile joins the BS that is less loaded. Suppose that each
BS broadcasts the current value Σj of its sum (4.3). Then
each newcomer able to calculate its f ji factor with respect to
neighboring BS’s is in a position to choose the BS minimizing
the sum Σj + f ji , provided this is less than 1.

There are of course interesting implementation issues per-
taining to the broadcasting of the Σj sums that we will not
address here.

D. Mixing DACP and DCCP

One can adapt the last algorithms to the case of a mix of
fixed and elastic bit rate populations, which will be denoted
by N j

F and N j
E respectively for cell j.

A first algorithm that requires little control overhead is that
where a proportion 0 < βj < 1 of the budget of BS j
is reserved for fixed bit rate, which leads to the admission
of a subset Ñ j

F of N j
F s.t.

∑
i∈Ñ j

F
f ji ≤ βj , whereas the
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complement 1 − βj is reserved for elastic traffic, which leads
to a fair share SIR of

Cj =
1 − βj(

κj(#N j
E − 1) + γ

∑
i∈N j

E

∑
k �=j

l(Y k,Xj
i )

l(Y j ,Xj
i )

)

+

(6.7)

for each elastic traffic mobile.
A second and more adaptive algorithm is that where the

elastic traffic mobiles use the part of fixed rate budget that
is not used (if any); in this case, the fair share SIR of each
elastic traffic mobile is

Cj =
1 −

∑
i∈Ñ j

F
f ji(

κj(#N j
E − 1) + γ

∑
i∈N j

E

∑
k �=j

l(Y k,Xj
i )

l(Y j ,Xj
i )

)

+

. (6.8)

The last version of the algorithm require that BS j broadcast
the value of

∑
i∈Ñ j

F
f ji on some periodic basis.

One can of course consider versions of these algorithms
with security margin.

VII. MATHEMATICAL ANALYSIS OF THE MODEL

Suppose the pattern of BS’s is fixed and assume that
each BS applies DACP. Assume also that some parametric
stochastic model is given for the population of mobiles, with
some spatial intensity say λj in cell j. Then the probability
with which (4.3) holds for BS j (i.e., the probability with
which BS j can accept all the mobiles in its cell under DACP)
is a BS-centered measure of the admission level in this cell.
User-centered admission level measures, like the frequency of
call admissions in cell j, can then also be derived.

One can also invert the problem and define the admission
load of cell j as follows: given a BS-centered or user-centered
QoS level, the admission load of cell j within this parametric
context can then be defined as the maximal intensity λj s.t.
(4.3) is satisfied with a large enough probability.

Similar questions can be formulated on DCCP as well.
Here a stochastic setting will allow one to define the law
of the fair rate obtained by the mobiles of a given cell. The
inverse problem is that where one asks for the maximal mobile
intensity that allows one to guarantee a fair bit rate higher than
X with a large enough probability.

Making the above notions precise requires some parametric
setting for the geometry-dependent components of the model,
and in particular of the patterns. The next subsection will
discuss some of the possible settings.

A. Periodic Models – Classical Calculations Revisited

In order to retrieve from our model the classical load (ca-
pacity) calculations, we have to assume the following ideally
periodic model. Suppose that the BS’s {Y j} are located in
space according to a perfect (e.g. hexagonal) grid and suppose
that each hexagonal cell has the same number N of mobiles,
and that these N mobiles are located exactly in the same way
with respect to each BS. Assume that all parameters of our
model are constant i.e. Cji ≡ C, W j

i ≡ W , κj ≡ κ, and
Pj = 0 for simplicity; if one looks for constant solutions

Sj ≡ S of the global power allocation problem. Then (3.3)
written for the BS (say 0) located at the origin, reduces to

S

(
1 − NH(κ + γI2)

)
≥ NWI1H , (7.1)

where H = C/(1 + κC),

I1 = 1N
∑

i

1
l(0,X0

i )
,

and

I2 =
1
N

∑

k �=0

∑

i

l(Y k,X0
i )

l(0,X0
i )

.

It is easy to see that (7.1) has a positive solution if and only
if

N <
1

κH(1 + γI2/κ)
. (7.2)

Note that N < H is the well know pole (one cell) capacity
Condition (3.7) for the ideal model and γI2/κ is a correcting
term traditionally called other-cell-to-in-cell interference ratio.

The last model is unsatisfactory for several reasons, and in
particular because of the regularity of both the antenna and
the user patterns. In the next sections we propose stochastic
models allowing one to relax this assumption.

B. Stochastic Models

In the remaining part of this section we give a review of
some possible stochastic settings for the general model and
we discuss probabilistic properties of the power allocation
problem with and without admission or congestion control.
Specifically, we model locations with point processes, and
powers, noises, SINR’s with random variables so as to capture
the space-time variability of configurations. In contrast to the
cases typically considered in the literature, we are primarily
interested in models on the whole plane that allow one to
address scalability. In what follows, we will consider the case
when l(y, x) = L(x − y).

1) General Stationary Ergodic Model (G/G): Suppose
ÑBS =

{(
Y j ,N j

M , {Cji ,W
j
i }i, κj

)}

j
is a general stationary

ergodic marked point process on R2.
Proposition 7.1: The power allocation problem (3.1) in the

model driven by a general ergodic process ÑBS has a positive
and finite solution with probability either 0 or 1.

Proof: Note that the events { inequality (3.7) holds
for all j }, {A∗b < ∞}, { convergence radius R ≤ 1 },
{ convergence radius R > 1 }, { matrix A is transient },
{ matrix A is recurrent } are invariant with respect to the
discrete shift of ÑBS in R2. Thus each of them has probability
0 or 1. In view of Propositions 3.1–3.3, the event that (3.1)
has a positive and finite solution can be expressed by means
of standard boolean operations on the above events.

Note that the convergence radius R of the random matrix A
in the general ergodic model is deterministic. We will call the
property expressed in Proposition 7.1 (stochastic) solidarity of
the solution of the power allocation problem.
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2) The Homogeneous Poisson-Voronoi Model (M/M): Sup-
pose now that NBS = {Y j} is a homogeneous Poisson
point process with intensity 0 < λBS < ∞. Assume that
the sequence ({Cji ,W

j
i }i, κj) is made of independent and

identically distributed (i.i.d.) random variables, and suppose
that for each j the sequence (Cji ,W

j
i ) is also i.i.d. in i and

independent of κj .
Suppose moreover that the point process NM describing the

locations of all mobiles is another independent homogeneous
Poisson point process with intensity 0 < λM < ∞. Let the
pattern N j

M of mobiles served by the BS located at Y j be the
set of points of NM located in the Voronoi cell of point Y j

w.r.t. the point process NBS ; i.e., N j
M = NM ∩V j(NBS), for

all j, where

V j(NBS) =
{
x ∈ R2 : |x − Y j | ≤ |x − Y k| for all k

}
.

Note that with probability one no point of NM is shared by
two or more BS’s.

The Voronoi model of assignment of the active BS to each
mobile, although simple, seems to be quite reasonable from
the DACP/DCCP point of view. For instance, in a simplified
case when Cji = Ci (i.e, when the throughput required by
the mobile does not depend on the BS that serves it), when
κi ≡ κ and when the path loss function l is monotonic in
the Euclidean distance, then the choice of the nearest BS
minimizes the cost f ji (4.2) of acceptance of the user by a
BS. We now give two negative results.

Proposition 7.2: For the Poisson-Voronoi model, (3.7) does
not hold for some j with probability 1.

Proof: By independent marking and the spatial mixing
of N j

M .
This means that with probability 1, we will find a BS that

has too many mobiles to be able to solve its local power
allocation problem.

In order to proceed with our Poisson-Voronoi model we first
have to reduce each pattern N j

M that violates (3.7).

R1. For each j, let N j

M be a maximal subset of N j
M s.t.

∑

Xj
i ∈N j

M

Hj
i < 1/κj . (7.3)

Of course this maximal set is not uniquely defined (see
the discussion on reduction schemes in §IV-B). Our only
assumption here will be that the reduction policy leads to some
stationary ergodic sequence {(Y j ,N j

M , {Cji ,W
j
i }i, κj)}j . As

shown by the following proposition, this still does not lead to
a feasible configuration of mobiles either.

Proposition 7.3: Assume the Poisson-Voronoi model with
maximal patterns of mobiles {N j

M} given by R1. The (de-
terministic) convergence radius R of matrix A with entries
calculated with respect to N j

M is strictly less than 1 (in fact
for this Poisson-Voronoi model, R = 0 a.s.).

Proof: With probability 1 the Poisson point process
{(Y j ,N j

M , {Cji ,W
j
i }i, κj)}j has a cluster of points (BS’s)

that leads to a super-stochastic block of matrix A. Thus by
Proposition 3.4, the spectral radius of A is larger than 1. In

fact, for arbitrary large x we can find a block with line-sums
greater than x and this shows that R = 0.

So under Poisson assumptions, any local ergodic R1 reduc-
tion of {N j

M}j leads to a pattern {N j

M}j that is almost surely
not feasible.

This surprising property reveals some feature of the Poisson-
Voronoi model in an infinite plane: the possible clustering of
the BS’s allowed by the Poisson model renders the global
power allocation problem unfeasible whatever the parameters
of the model. In other words, even for very low density of
mobiles or very high density of BS, some admission control
should be enforced.

3) The Poisson-Voronoi Model under DACP: In this
section we consider the Poisson Voronoi model assuming
each BS applies DACP. As previously we assume that the
maximal subset Ñ j

M in DACP is obtained by means of
some reasonable reduction policy, that leads to a stationary
ergodic sequence {(Y j , Ñ j

M , {Cji ,W
j
i }i, κj)}j . Then the

convergence radius of A is R > 1 and this means Ñ j
M is

almost surely feasible. Then DACP naturally leads to the
following notion of admission load:

(Admission-Load of the Poisson Voronoi Model): For a given
λBS > 0 and ε > 0 let λεM = λεM (λBS) be the maximal
intensity of NM s.t.

Pr
(

inequality (4.3) holds for j = 0
)

≥ 1 − ε . (7.4)

The function λεM has the following interpretation. Suppose
each BS applies DACP, which leads to a feasible global and
local power allocation. For a given BS (say BS 0) and for any
intensity of mobiles λM > 0 there is a positive probability that

Ñ 0
M

⊂
�= N 0

M , meaning that at least one mobile of the initial
pattern N 0

M has to be rejected. Then, λεM is the maximal
mobile intensity that makes the probability of outage of at
least one mobile of this (or any other) BS less than ε.

We postpone the calculation of the probability in (7.4) to
§ VIII. As we shall see there, closed form formulas are known
for the expectations of the left-hand-side (lhs) of (4.3), which
will be used in the next subsection.

4) Homogeneous Poisson-Voronoi Mean Model: One of the
consequences of the stationarity of NBS is that the expected
values of the random coefficients of the operator A and vector
b given by (3.9)–(3.10) and (3.11) are equal for each column.
Moreover {Sj} should form another stationary marking of the
point process. The Poisson-Voronoi Mean Model consists in
simplifying the problem (3.3) by replacing the random coef-
ficients by their means. We then get the following inequality
on (the deterministic) power S: S ≥

∑
k E[a0k]S + E[b0] .

This has a finite solution if
∑
k E[a0k] < 1, which gives

E

[
κ0

∑

i∈N 0
M

H0
i + γ

∑

k �=0

∑

i∈N 0
M

H0
i L(Y k − X0

i )
L(0 − X0

i )

]
≤ 1. (7.5)

This condition is the mean-value version of Condition (4.3)
and, as we shall see, it gives load estimates different
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from (7.4).

VIII. EXACT FORMULAS BOUNDS AND APPROXIMATIONS

FOR DACP/DCCP

In this section, we concentrate on the Poisson-Voronoi
model of § VII-B.2and algebraically analyze its admission load
under DACP and DCCP.

Consider a Poisson point process NBS = {Y j} of the BS’s,
with intensity λBS and assume that there is a BS located at
Y0 = 0. Let V0 = V0(NBS) be the Voronoi cell of point Y0 =
0. Also assume a Poisson process NM = {Xi} of mobiles,
with intensity λM .

Our main task is to find the probability of the event (4.3)
for j = 0. Denote for convenience its complement by

E0 =
{
κ0

∑

Xi∈V0

H0
i + γ

∑

k �=0

∑

Xi∈V0

H0
i L(Y k − Xi)
L(0 − Xi)

> 1
}
.(8.1)

More specifically we want to approximate the function
Pr(E0) = Pr(E0)(λM ) (near the origin) in order to be able
to find, for any given ε > 0, the maximal λM s.t. Pr(E0) < ε.
Our main tools are explicit formulas for expectations, bounds
for the Laplace transforms and some simulation techniques.

A. Expectations

First we give closed form formulas of the expectations of
the terms in the right-hand-side of (8.1) obtained via Neveu’s
exchange formula (see [13]). At the same time they allow for
calculation of E[ajj ], E[ajk] and E[bj ]. We will adopt from
now on a typical assumption that L(y, x) = L(|y − x|) (with
a little abuse of notation); i.e., the path loss only depends on
the Euclidean distance. We have

E

[
κ0

∑

i

H0
i

]
=

λM
λBS

E[κH] , (8.2)

E

[∑

i

H0
iWi

L(|Xi|)

]
= λM2π E[HW ]

∫ ∞

0

re−λBSπr
2

L(r)
dr (8.3)

E

[∑

k �=0

∑

i

H0
i L(|Xi − Y k|)

L(|Xi|)

]
= λMλBS4π2 E[H] (8.4)

×
∫ ∞

0

{
re−λBSπr

2

L(r)

∫ ∞

r

uL(u) du
}

dr ,

where κ, (C,W, T ) are generic random variables.
The integrals in the above formulas can be analytically eval-

uated for some particular attenuation functions. For example,
if L(r) = (Amax(r0, r))−α for some A > 0, r0 > 0 and
α > 2, then

(8.3) = E[HW ]
λMAα

λBS

×
(
Γ(1 + α/2, r2

0λBSπ)
(λBSπ)α/2

− rα0

(
1 − e−r20λBSπ

))

(8.4) = E[H]
λM

λBS(α − 2)

×
(
αe−r20λBSπ + λBSπr

2
0α − α + 2

)
,

where Γ(a, z) is the incomplete gamma function Γ(a, z) =∫ ∞
z

e−ttα−1 dt.
If L(r) = (1 + Ar)−α for some A > 0 and α > 2, then

(8.4) = E[H]
λM

λ
3/2
BSA

2(α − 1)(α − 2)

×
(
αAλBSπ + 2αA2λ

1/2
BS − 2A2λ

1/2
BS + 2πλ3/2

BS

)

and for α = 3,

(8.3)=
E[HW ]λM (3A3 + 6AπλBS + 4πλ3/2

BS + 12A2λ
1/2
BS )

4λ5/2
BSπ

.

A formula, albeit complicated, can be obtained for general
α too. Notice that for both forms of the attenuation function
L, for large A and small r0 (eg. A ≈ 1000, r0 ≈ 1/1000)
and for reasonable values of λBS (i.e. λBS < 10BS/km2,
λM < 100, mobiles /km2), the above expectations can be
well approximated by the following formulas

(8.3) ≈ E[HW ]
λMAα

λBS

Γ(1 + α/2)
(λBSπ)α/2

(8.4) ≈ E[H]
2λM

λBS(α − 2)
,

where Γ(a) is the complete gamma function Γ(a) =∫ ∞
0 e−ttα−1 dt, which correspond to a simplified attenuation

function L(r) = (Ar)−α. It follows that the ratio of the
other-cell-interference (8.4) to the other-cell-interference (8.2)
is approximately 2/(α − 2). This value coincides with the
analogous ratio calculated in [14] for the M/M CDMA uplink
model.

Finally, we remark, that the equation (8.2)+ (8.4) = 1 can
easily be solved in λM , and this gives ann explicit formula
for the (DACP) load of the M/M mean model of §VII-B.4.

B. Bounds

The expectations calculated in the previous section give
bounds on other capacities. The most direct one (and rather
crude) is based on the Markov inequality: Pr(E0) ≤ (8.2) +
(8.4). Thus the solution in λM of the equation (8.2)+(8.4) = ε
is a very conservative (but explicit) bound of the Admission-
Load of § VII-B.3.

Suppose κ0 = const; by Jensen’s inequality, the mean SIR
C0 in (5.5) can be bounded by

E[C0] ≥ 1/
(
κ0(8.2)′ + (8.4)′ − κ0 Pr(#N 0

M > 0)
)
,

where (8.2)′ and (8.4)′ are given by formulas, (8.2) and
(8.4) respectiveley, with the factor E[H] suppressed. This
bound can be made explicit because Pr(#N 0

M > 0) ≥
λM/(λM + λBS).

If C0 is small enough for justifying the approximation
log(1 + C0) ∼ C0, then one deduces from the last bounds
and from (5.6) that under DCCP,

E[B0] ≥ B/
(
κ0(8.2)′ + (8.4)′ − κ0 Pr(#N 0

M > 0)
)
.
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More precise bounds of the distribution function of
the lhs of (4.3), can be obtained via Chernov’s in-
equality Pr(lhs of (4.3) ≥ z) ≤ infθ>0 E[exp{−θ(z −
[lhs of (4.3)])}]. Although the Laplace transform of the lhs
of (4.3) is not known in explicit form, it can be shown by
Jensen’s inequality that

E
[
eθ[lhs of (4.3) for j = 0]

∣∣∣#N 0
M = N

]

≤ E

[
exp

{
θNH0

(
κ0 + γ

∑

k �=0

L(|Y k − X∗
0 |)

L(|X∗
0 |)

})]
,

where X∗
0 is a point uniformly chosen within the cell V (0).

This inequality corresponds to the situation when N users
originally independently distributed in V (0) are gathered in
one “hot spot” at X∗

0 . If L(r) = (Ar)−α, then the right hand
side of the last inequality can be bounded in an explicit way
that results in the following LDP-type bound

Pr
(
[lhs of (4.3) for j = 0] ≥ z

∣∣∣#N 0
M = N

)
(8.5)

≤ inf
θ>0

E

[
λBS E1/2[|V (0)|2]e−θ(z−Nκ)

1 − J(2θNγ)

]
,

where J(t) = t2/α
∫
t−1/α t(et

−α − 1) dt, and infθ>0 is taken
over θ : 0 < J(...) < 1 (see [13] for the details). Note
that (8.5) can be used for the bounding of Pr(E0), or for that of
Pr(C0 ≤ c) for small c, or equivalently for that of Pr(B0 ≤ b)
for small b.

IX. SIMULATION

A. Static DACP Load Simulation

We now describe briefly how to get an estimator of
Pr(E0)(λ) from simulation. For simplicity we concentrate on
the homogeneous case. We choose a discrete set of test intensi-
ties (of mobiles) λ0 < λ1 < . . . λk and simulate k independent
patterns of Poisson point processes Ni (i = 0, . . . , k) with
respective intensities λ0 and ∆i = λi − λi−1 in the Voronoi
cell V (0) generated by a given pattern NBS . Let F i be
the event that (8.1) holds for NM =

∑i
j=0 N j

M . Obviously
Pr[F i] = Pr(E0)(λi) and F i is increasing in i. The same
holds for F i(n) = 1/n

∑n
u=1 F i,u, where (F i,u, i = 0, . . . , k),

u = 1, . . . , n are independent copies of (F i, i = 0, . . . , k). In
addition, F i(n) converges a.s. to Pr[F i] as n → ∞.

B. Dynamic DACP Load Simulation

The static DACP load simulation, considered previously
yields estimates on the probability of no-outage (or the
complement: at least one outage) in a typical cell. This is
a BS-centered QoS parameter. Now we show how to draw
conclusions concerning the pattern of users accepted in a long
run of DACP.

For each given realization of the process of BS’s NBS ,
we want to simulate a spatio-temporal process ÑM |V (0)(t)
of users in the cell V (0) = V (0)(NBS ∪ {0}) under Con-
dition (4.3). The evolution of ÑM |V (0)(t) is such as in a
conditional birth-and-death process: points are generated at

exponential periods (with an exponential distribution param-
eter equal to Λ =

∫
V (0) λM (dx)) and located in V (0) with

the distribution λM (·)/Λ, but only if their presence does not
violate (4.3). Points located in V (0) stay there for exponential
times (with parameter 1) and are then removed. A long run
of ÑM |V (0) yields a (temporal) steady state of those points
of the Poisson point process with intensity measure λM (·),
which are accepted under DACP. A more sophisticated scheme
of exact simulation of the steady state of ÑM |V (0), similar to
this proposed in [15], can be employed too (see [16]).

We repeat the above simulation of the (almost or exact)
steady state of ÑM |V (0) for many realizations of NBS and get
the estimates on the density of the process of users accepted
under DACP.

C. DCCP Load Simulation

DCCP load estimations are based on the simulation of NBS
and NM in V (0)(NBS ∪ {0}). From this, we obtain samples
of the SINR ratio C0 given by (5.5).

X. DISCUSSION OF THE NUMERICAL RESULTS

The default assumptions of the model that we study are as
follows:

• attenuation function: L(r) = (1 + 1000r)−3, r in km,
• λBS = 0.1768BS/km2,
• C = 0.011797, κ = 0.2, γ = 1.

We begin our study by the mean model. Inequality (7.5),
together with the explicit form of the expectations given in
§ VIII-A, yield an explicit bound on the average number λM of
mobiles per km2 that can be served by a network of λBS BS’s
per km2 (see Figure 1). Note that the dependance in λBS < 10
is nearly linear, with a slope of appr. 38.54Mobiles/BS, for all
three attenuation functions considered in § VIII-A. For larger
values of λBS , the shape of the attenuation close to the antenna
becomes important for the evaluation of load. The curve for
L(r) = (Ar)−α remains linear, while the two attenuations that
are bounded at the origin give ultimately bounded capacities:
there is an upper bound (which is larger for the attenuation
L(r) = (1 + Ar)−α) on the number of mobiles that can be
served on 1 km2, whatever the density of BS’s. This effect
can of course be neglected in present CDMA networks, but
it should probably be taken into account for planning more
dense networks.

In order to estimate the stochastic load under DACP, we
used the simulation schemes described in § IX. Figure 2 [a]
shows the estimates of the outage probability obtained via the
static DACP scheme of § IX-A for the M/M model (the flater
curve) and the H/M model (steeper curve). The straight line
0.1465λM corresponds to the expectation in (7.5), i.e. to the
mean model, wich gives a load 6.824 mobiles per km2 or
38.54 mobiles per BS. Figure 2 [b] compares the simulated
value of the static DACP outage probability (per cell) for M/M
model to the Markov (linear) and Chernov (exponential) bound
via (8.5) and the simulated value.

Now we consider the dynamic scheme of § IX-B. Fig-
ure 3 [a] shows the density of users λ̃M (r) accepted in the
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Fig. 1. Maximal intensity λM of mobiles per km2 and ρ = λM/λBS

of mobiles per base-station satisfying (7.5) for M/M model; the real and
extremely dense case.
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Fig. 2. [a] Outage probability (per cell) for M/M model (more flat curve)
and H/M model (more steep) curve. The straight line corresponds to the
expectation in (7.5). [b] Markov bound, Chernov bound, and the simulated
value for M/M model.

long run by DACP as a function of the distance r to the BS
(lower curve). For comparison, the upper line represents the
density λVM (r) of all users who apply for this BS (all points
of the Poisson process in the cell) and the flat line is the
constant density of all users on the plane corresponding to
λM = 0.5 users /km2. Note that the ratio λ̃M (r)/λVM (r) is
an estimator of the probability of the acceptance of a customer
within the distance r to the BS by DACP in the stationary
regime. Figure 3 [b] shows these estimates for initial intensities
λM = 0.5, λM = 0.04 and λM = 0.024 (from bottom to
top). Figure 4 shows the mean load E[C0] under DCCP
as a function of the intensity of users λM estimated by the
simulation scheme of (see § IX-C) and its explicit lower bound
(see § VIII-B).

CONCLUSIONS, FUTURE WORK

This paper shows that the algebraic approach to power
control leads to scalable admission and congestion control
algorithms for large CDMA networks. In contrast to most
studies, the geometry of the inter-cell interference is repre-
sented in an exact way, and not via a fraction of the own-cell
interference. Stochastic geometry was used to prove that these
algorithms yield a positive load in infinite networks and to
give estimates of the mean values and the fluctuations of load
within this context. In particular, the analysis using the mean
Poisson spatial model offers explicit formulas for the maximal
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Fig. 3. [a] Density of users λ̃M (r) accepted in the long run by DACP as a
function of distance to BS (lower curve). [b] Estimates of the probability of
the rejection of a customer within the distance r to the BS by DACP.
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Fig. 4. The mean load E[C0] under DCCP as a function of the intensity
of users λM .

traffic that can be served. Moreover, this approach allows one
to address the interplay between several traffic classes (with
fixed and elastic bit rates). (For other papers using stochastic
geometry for networks, see eg. [17], [18], [19].)

Future work will concentrate on the extension of this
approach to the joint analysis of the downlink and the uplink
with maximal power constraints.
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