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Abstract— We consider the problem of providing delay bounds to re-
served traffic in high-speed input-queued switches. We assume that the
matrix of bandwidth demands is known and we use the now standard ap-
proach of decomposing this matrix into a convex combination of permuta-
tion matrices. Our problem therefore reduces to the problem of construct-
ing a schedule for these permutation matrices.

In this paper we derive delay bounds for four algorithms that are based
on probabilistic techniques. For each algorithm we first place tokens ran-
domly in continuous time for each permutation matrix. If the nth token
that appears corresponds to permutation matrix Mk then we schedule ma-
trix Mk in the nth time slot. The algorithms differ in how the random token
processes are defined. For two of the algorithms we are able to perform a
derandomization so as to obtain deterministic schedules.

We show through numerical computation that in many situations the
resulting delay bounds are smaller than the previously best-known delay
bounds of Chang, Chen, and Huang [1].

Keywords—Input-queued switches. Decomposition-based schedules. De-
lay bounds.

I. INTRODUCTION

IN recent years there has been a great deal of work on schedul-
ing algorithms for input-queued switches. The key feature of

an input-queued switch is that at each time step, each input can
be connected to at most one output and each output can be con-
nected to at most one input. The aim of the scheduler is to de-
termine how to configure the switch at each time step so as to
provide high throughput and low delays for the arriving packets.

Most of the previous work has concentrated on providing sta-
bility or 100% throughput for the switch. A scheduler is said to
be stable if the queues remain bounded as long as the load on
each port is less than the capacity of that port. Algorithms that
provide stability generally fall into two categories depending on
whether or not we know the arrival rates for each input-output
pair in advance. For the case in which we do know the arrival
rates we can decompose the rate matrix into a convex combi-
nation of permutation matrices. If the scheduler configures the
switch according to this decomposition then we have stability.
We refer to these schedulers as decomposition-based schedulers
(e.g. [1], [2], [3]). Specific algorithms for performing the de-
composition can be derived from results of Birkhoff [4] and von
Neumann [5]. Note that the schedule can be computed in ad-
vance of the arriving traffic and hence it is acceptable for the
calculation to have significant complexity.

For the case of high-speed optical switches it is reasonable
to assume that the arrival rates are known to us because such
switches are likely to be deployed in the core of networks where
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traffic engineering using MPLS is becoming more prevalent.
Switches that support MPLS must be able to provide bandwidth
guarantees for certain input-output pairs. For each MPLS path
that passes through input i and output j on a switch, the switch
will be required to reserve bandwidth for the path between these
two ports. Another justification that the input rates are known
can be found with Expedited Forwarding (EF) in the context of
differentiated services [6]. There it is commonplace to assume
the network is engineered such that the load of EF traffic at each
node is bounded by some configured value.

For the case in which we do not know the arrival rate matrix
in advance then most of the stable schedulers set up a bipartite
graph whose edge weights correspond to the queue sizes of the
corresponding input queues. At each time step the scheduler
finds an (approximate) maximum-weight matching in this graph
and configures the switch accordingly. These schedulers are
sometimes known as maximum weight matching (MWM) type
schedulers (e.g. [7], [8], [9], [10]). Note that an MWM sched-
uler must operate in real-time since it needs access to queue in-
formation and hence it must have extremely low complexity.

More recently, attention has been paid to the problem of min-
imizing the delay experienced by packets passing through an
input-queued switch. Leonardi et al. [11] analyzed the MWM
algorithm and showed that the mean delay through an arbitrary
pair of input-output ports of a switch with I input and I output
ports, uniformly loaded to ρ < 1, is bounded by (I−ρ)/(1−ρ).
A related work is that of Shah and Kopikare [12] who ob-
serve that for uniform Bernoulli arrivals to the switch with the
scheduling policy that at each time slot takes a matching uni-
formly at random from the entire set of I! matchings, the ex-
pected delay is (I − 1)/(1 − ρ). Note that this is smaller than
the bound obtained in [11].

In [1] Chang, Chen, and Huang showed how to derive
worst-case deterministic delay bounds for a Birkhoff-von Neu-
mann schedule in which the permutation matrices are sched-
uled according to Packetized Generalized Processor Sharing
(PGPS) [13] such that at an instant a matrix is served, it is placed
as a new arrival into the PGPS system.

In this paper we consider delay bounds for decomposition-
based schedules. We show that by using probabilistic techniques
we are able to tighten the bounds of [1] for the worst case input-
output pairs in many scenarios. We use the term “probabilistic
techniques” rather than “randomized algorithms” since for two
of our algorithms we are able to derandomize the random pro-
cesses so as to obtain deterministic algorithms.

It is interesting to observe that for a node to support EF
it needs to conform to a rigorous definition of the per-hop-
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behavior, namely, Packet Scale Rate Guarantee with rate r and
latency e; see [14]. Our work can be viewed as calculating what
the value of the latency e would be for an input-queued switch.
Before we present our algorithms and results in detail we must
present some notation and our goals.

Assumptions and Notation

We consider an I × I switch. Let ρij be the bandwidth that
needs to be reserved between input i and output j, normalized
by the link rate. Let M be the matrix whose ij entry is ρij . We
refer to M as the rate matrix. For the majority of this paper we
consider the case in which M is a doubly stochastic matrix, i.e.∑

i ρij = 1 and
∑

j ρij = 1. This corresponds to the case in
which the entire bandwidth of the switch is reserved. However,
we shall sometimes consider the substochastic case in which we
only have

∑
i ρij ≤ 1 and

∑
j ρij ≤ 1. In this case the residual

bandwidth of the switch could be used by best effort traffic.
By standard results of Birkhoff and von Neumann (see

e.g. [1]) we can decompose the matrix M into a convex com-
bination of permutation matrices,

M =
K∑

k=1

ϕkMk,

where K ≤ I2 − 2I + 2. Here, Mk is a permutation matrix (a
0 − 1 matrix with exactly one “1” in each row and column), ϕk

is the rate of matrix Mk and
∑K

k=1 ϕk = 1. Let Sij be the set
of matrices in the decomposition that have a 1 in the ij position.
Then ρij =

∑
k∈Sij

ϕk. Our aim is to create a schedule in which
exactly one of the permutation matrices is scheduled in each
time slot. Input-output pair ij is served whenever a matrix from
the set Sij is scheduled. Hence we require that a matrix from
Sij is scheduled approximately once every 1/ρij time slots.

As an example, suppose that,

M =




1/6 5/6 0
1/2 1/6 1/3
1/3 0 2/3



 .

Then,

M =
1
2
M1 +

1
3
M2 +

1
6
M3,

where,

M1 =




0 1 0
1 0 0
0 0 1



 ,M2 =




0 1 0
0 0 1
1 0 0



 ,

M3 =




1 0 0
0 1 0
0 0 1



 ,

and a possible schedule is,

M1,M2,M1,M2,M1,M3,

M1,M2,M1,M2,M1,M3, . . .

The class of the schedulers that we consider can be formulated
by the following unifying framework. We first place tokens for

Zn = 1 4 1 2 4 3

M4M1

2 1

M3M4M2M1M1M2

Tn Tn+1

Fig. 1. (Top) The token process. Tn is the time at which the nth token appears.
Zn is the type of the nth token, i.e. if the nth token corresponds to permu-
tation matrix Mk then Zn = k. (Bottom) The corresponding schedule.

each matrix Mk in continuous time. We schedule matrix Mk in
time slot n if the nth token to appear corresponds to matrix Mk.
(See Figure 1).

More formally, we associate with Mk a counting process Nk

defined on R+. For any interval I ⊆ R+, NkI equals the num-
ber of tokens for Mk that land in interval I. We require that Nk

has intensity ϕk, i.e. limt→∞ Nk[0, t)/t = ϕk.
We define the superposition process NI =

∑K
k=1 NkI to

which there is an associated point process (Tn)n≥0 defined on
R+. Next, let (Zn)n≥0 be the sequence of marks such that
Zn = k if and only if the n-th point of the superposition point
process, Tn, belongs to Nk. Let NijI be the number of to-
kens for input-output pair ij that land in the interval I, i.e.
NijI =

∑
k∈Sij

NkI. Likewise, let NijI be the number of
tokens that land in I, but do not belong to Sij .

The schedule is given by the sequence (Zn)n≥0. If for any
given n, Zn = k, then the matrix Mk is scheduled in the nth
slot. We say the nth token is of type k. Notice that by taking
(Zn)n≥0 we in fact construct a non-idle schedule. A key feature
of this schedule is,

Observation 1: The total number of slots in which input-
output pair ij can be served during the time slots n, n +
1, . . . , n + m − 1 is equal to Nij [Tn, Tn+m).

Service Characterization

We give different characterizations of the service offered to an
arbitrary input-output pair ij. Informally speaking, we would
like Nij [Tn, Tn+m) to be close to ρijm. The following is the
simplest, but weakest, service characterization: for any n ≥ 0
and m > 0, and some fixed Eij

1 ≥ 0,

{Nij [Tn, Tn+m) ≥ ρij(m − Eij
1 )}. (1)

If the above event holds with probability 1 − ε, ε ≥ 0, a prob-
abilistic interpretation of the service offered is: for any fixed
m one picks at random a slot n, then, the number of slots
given to the input-output pair ij in the next m slots is at least
ρij(m − Eij

1 ) with probability 1 − ε.
A natural extension of the above characterization is by requir-

ing that for any n ≥ 0 and some fixed Eij
2 ≥ 0,

{∀m>0 : Nij [Tn, Tn+m) ≥ ρij(m − Eij
2 )}. (2)

The strongest guarantee is offered by requiring, for some
fixed Eij

3 ≥ 0,

{∀n≥0∀m>0 : Nij [Tn, Tn+m) ≥ ρij(m − Eij
3 )}. (3)
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If this event holds then we lower bound the service offered to
input-output pair ij over any interval of time slots. In particu-
lar, it can be seen that f(m) = ρij max[m − Eij

3 , 0] is a strict
minimum service curve offered to the ijth pair (see Proposition
1.3.6, Section 1.3.2, [15]). The service curve is “rate-latency”
with rate ρij and latency Eij

3 .
The service characterizations introduced so far bound how

much the service offered is behind the service that would be
offered by an idealistic fluid system (which would serve ρijm
bits in m slots). Thus, these service characterizations bound the
lateness of the scheduler. Analogous characterizations can be
established to bound the earliness; one only needs to reverse the
inequalities in the above definitions, and replace minus with plus
in the rate-latency functions. Small earliness of the schedule is
desirable to reduce burstiness at the output of the switch.

What Can We Compute from the Service Characterizations?

Consider an arbitrary input-output port pair ij. Let Aij [n]
be number of the bits that arrive in [0, n] at input port i and
are destined for output port j. Then, by the result known for
variable-capacity nodes (see [15], Sec. 1.3.2, also Sec. 4.3.2),
we know that the number of bits in [0, n] observed at the output
port j that originate from i, A∗

ij [n], satisfies,

A∗
ij [n] = min

1≤m≤n
[Aij [m] + Nij [Tm, Tn)].

In particular, suppose that the arrivals are (σij , ρij)-bounded,
i.e., Aij [n] − Aij [m] ≤ ρij(n − m) + σij for all m ≤ n. Then,
the following is a classical network calculus result.

Fact 2: The backlog of ij packets waiting for service at the
switch is at most σij+ρijE

ij
3 . If FIFO scheduling is used within

the aggregate of ij packets then the maximum delay for these
packets is at most σij/ρij + Eij

3 .
If σij = 0 (i.e. the arrivals are bounded by a idealized fluid
system of rate ρij) then the packet delay is bounded by Eij

3 (as-
suming FIFO scheduling within the aggregate). However, in a
perfect schedule for ij, a matrix in Sij would appear exactly
once every 1/ρij time slots. In this case the packet delay would
be 1/ρij . Hence, if σij = 0 we have,

worst case packet delay
optimal packet delay

≤ ρijE
ij
3 .

For these reasons our objective is to keep Eij
3 small.

Algorithms and results

Our algorithms will be divided into two types, frame-based
and non-frame-based. Suppose that for some fixed integers �k
and L, ϕk = �k/L. (We note that this is always possible if the
ϕk are rational.) We can compute a schedule for the interval
[0, L) that contains exactly �k occurrences of the permutation
matrix mk and then simply repeat this schedule for all subse-
quent intervals of length L. We call such a schedule a frame-
based schedule of length L. Notice that the frame length L and
number of the permutation matrices K are related as K = L/�̄,
where �̄ is the arithmetic mean of �k, k = 1, . . . ,K. Since
�k ≥ 1 for all k it follows that L ≥ K, with equality if and only
if �k = 1 for all k.

If the schedule is not periodic in the above way then we say
that it is non-frame-based. For a non-frame-based schedule we
have to define it explicitly in the entire interval [0,∞).

In [1], Chang et al. propose a non-frame-based algorithm in
which the permutation matrices are scheduled according to a
PGPS [13] system that is fed with its own departures (which is
initialized such that all tokens arrive at time 0). In our setting,
this corresponds to placing the nth token for matrix Mk at time
n/ϕk. More formally, for each k = 1, . . . ,K,

Nk[0, t) =
∑

n≥0

1[0,t)(
n

ϕk
).

Chang et al. [1] show that for this algorithm,

Eij
3 ≤ min[

K

ρij
,
|Sij |
ρij

+ (K − 1)]. (4)

The aim of our work is to show that by using probabilistic tech-
niques, it is possible to tighten this bound in many scenarios.
Our results are as follows.
1. We begin in Section III-A with an extremely simple frame-
based scheduler in which the tokens for the permutation matri-
ces in a frame are randomly permuted. We call this the Random
Permutation scheduler. We require that (3) holds with probabil-
ity 1 − ε and we show that, as L → ∞,

Eij
3 →

√

A

(
1
ρij

− 1
)
L, (5)

where A is a constant depending on ε specified in this paper. For
Eij

2 the same expression holds, with A = 1
2 ln ε−1.

2. In Section III-B we present a deterministic frame-based al-
gorithm. We require that (3) holds with probability 1 and we
show that,

Eij
3 ≤ |Sij |

ρij
+ (2 +

√
2K ln(2L + 1)). (6)

We derive this algorithm from a randomized algorithm in which
the nth token for matrix Mk is placed at time Uk +n/ϕk where
Uk is chosen uniformly at random in [0, 1/ϕk). We call this the
Random-Phase Periodic Competition scheduler. We then show
how to derandomize this scheduler to obtain a deterministic al-
gorithm using the method of conditional probabilities [16]. In
Section IV we show that in many scenarios, (6) is significantly
smaller than (4), largely due to the presence of the square-root
in (6).
3. In Section III-C we present a deterministic non-frame-based
algorithm. We require that (3) holds with probability 1 and we
show that,

Eij
3 ≤ 1

ρij

√
2|Sij | lnD + (2 +

√
2K lnD), (7)

where D = 1 + (4(2I2 + 2)/mink ϕk). This algorithm is
derived from a randomized algorithm in which the nth token
for matrix Mk is placed uniformly at random in the interval
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[(n − 1)/ϕk, n/ϕk). We call this the Random-Distortion Pe-
riodic Competition scheduler. By using the method of condi-
tional probabilities we are able to derandomize this scheduler al-
though the analysis is more complex than it was for the random-
phase scheduler since we now have to consider the entire inter-
val [0,∞) instead of a finite frame. In Section IV we show that
in many scenarios, (7) is significantly smaller than (4), largely
due to the presence of the square-roots in (7).
4. In Section III-D we analyze a non-frame-based scheduler in
which the tokens for matrix Mk are placed according to a Pois-
son process. We call this the Poisson Competition scheduler.
For this scheduler only we assume that the load ρ on each input
and output is strictly less than 1. We show using the Brownian
approximation [17] that,

Eij
2 ≈ 1

2
ln ε−1 ρ

1 − ρ

(
1 − ρ

ρij
+ ρ

)
. (8)

The latency Eij
3 does not make much sense for this scheduler

since the event in (3) would fail with probability 1 as we require
that the inequality in (3) holds for all n.

Comparison with single server polling

We remark that our problem is significantly different from
the single server polling problem (e.g. see [18] and references
therein) in which a single server has to poll a set of clients at
predetermined frequencies. Note that in our problem it is not
sufficient for each matrix Mk to be served at evenly spaced inter-
vals of 1/ϕk slots. This is because input-output pair ij is served
whenever a matrix in Sij is served. If k, � ∈ Sij and Mk and
M� are served close together then the service to ij is bursty even
though each permutation matrix might receive smooth service.
Note however that we cannot in isolation change the schedule to
improve service for one particular input-output pair since each
permutation matrix is a member of Sij for I different pairs ij.

Previous work

As mentioned earlier, papers that analyze schedulers based on
decomposing the rate matrix include [1], [2], [3]. Analyses of
MWM-type schedulers can be found in, for example, [7], [8],
[9], [10], [11]. Some frame-based schedulers were presented
in [19], [20]. If the switch fabric has an internal speedup of
2 then it is known that it can emulate output-queued switches
(in which there is no contention at the inputs) [21], [22], [23].
In [24], an algorithm is presented whose aim is to “track” an
idealized fluid policy.

If the switch is sufficiently underloaded then tight delay
bounds can be achieved. In [25] it is shown that if the total
load on any input or output is at most one quarter of the link
rate, then it is possible to serve each ij pair at least once every
1/ρij steps.

The remainder of the paper is organized as follows. In
Section II we derive some useful facts about the event,
{Nij [Tn, Tn+m) ≥ ρij(m − E)}. In Section III we present our
four schedulers and analyze them in detail. In Section IV we
present some numerical results to evaluate our bounds for spe-
cific rate matrices. We defer the proofs of some of our results to
the Appendix.

II. PRELIMINARY ANALYSIS

Note that the event (1) is equivalent to

{∃t>0 : Nij [Tn, Tn + t) ≥ ρij(m − Eij
1 ),

N [0, Tn + t) = n + m − 1}.

This can be further equivalently written as

{∃t>0∃s<t : Nij [s, s + t) ≥ ρij(m − Eij
1 ),

N [0, s + t) = n + m − 1, N [0, s) = n − 1}.

Unfortunately, it is hard in general to calculate the probability
of the above event since there is too much dependence between
the constituent events. It is however feasible for the case of point
processes with independent increments. An example of this spe-
cial case is the Poisson Competition scheduler that we analyze
in Section III-D using a Geo/D/1 queue.

In the remainder of the section, we try to define a subevent
of (1) whose probability is easier to bound in the general case.
To that end, let Gn,m be the good event {Nij [Tn, Tn+m) ≥
ρij(m − E)}. Let Bn,m be the bad event Bn,m = Gn,m.

Let ∆1,∆2 ∈ Z+ and ∆3,∆4 ∈ R+ satisfy,

∆1 + ∆2 + (∆3 + ∆4)/ρij ≤ E,

where E = Eij
1 , Eij

2 or Eij
3 , depending on our calculation.

Let t = n + m − ∆1 and let s = n + ∆2. Note that s and t
are integers.

Lemma 3: Suppose that Nij [s, t) ≥ ρij(t − s) − (∆3 + ∆4)
and [s, t) ⊆ [Tn, Tn+m). Then, Nij [Tn, Tn+m) ≥ ρij(m−E).1

Proof: We have,

Nij [Tn, Tn+m) ≥ Nij [s, t)
≥ ρij(t − s) − (∆3 + ∆4)
= ρij((n + m − ∆1) − (n + ∆2)−

−(∆3 + ∆4)/ρij)
= ρij(m − (∆1 + ∆2) − (∆3 + ∆4)/ρij)
≥ ρij(m − E).

The first two inequalities come from the assumptions of the
lemma. The first equality comes from the definitions of s and t.
The final inequality comes from our constraint on the ∆’s.
From the definition of Gn,m, Lemma 3 implies,

Gn,m ⊇ {Nij [s, t) ≥ ρij(t − s) − (∆3 + ∆4)}∩
∩{[s, t) ⊆ [Tn, Tn+m)}.

(9)

By the above results we can focus on the quantity Nij [s, t)
and the relationship between the intervals [s, t) and [Tn, Tn+m).
However, for the random processes we consider, each interval
[s, t) will be dependent on too many other intervals. The way
to solve this problem is to concentrate on intervals that have one
of their endpoints fixed. For this purpose we must refine our
results.

Lemma 4: If N [0, t) < t + ∆1 and N [0, s) ≥ s − ∆2 then
[s, t) ⊆ [Tn, Tn+m).

1Note that we are interested in the values of m such that m ≥ E. This implies
m ≥ ∆1 + ∆2, which is equivalent to s ≤ t. For m < E the inequalities in
(1), (2), (3) do indeed hold.
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Proof: Since t = n+m−∆1, N [0, t) < t+∆1 ⇒ [0, t) ⊆
[0, Tn+m). Similarly, since s = n + ∆2, N [0, s) ≥ s − ∆2 ⇒
[0, s) ⊇ [0, Tn). Therefore, [s, t) ⊆ [0, Tn+m)\[0, Tn) =
[Tn, Tn+m).

Lemma 5: If Nij [0, t) ≥ ρijt−∆3 and Nij [0, s) ≤ ρijs+∆4
then Nij [s, t) ≥ ρij(t − s) − (∆3 + ∆4).

Proof: We have, Nij [s, t) = Nij [0, t) − Nij [0, s) ≥
(ρijt − ∆3) − (ρijs + ∆4) = ρij(t − s) − (∆3 + ∆4).
Lemma 4, Lemma 5 and (9) imply,

Gn,m ⊇ {N [0, t) < t + ∆1}∩
∩{N [0, s) ≥ s − ∆2}∩
∩{Nij [s, t) ≥ ρij(t − s) − (∆3 + ∆4)},

(10)

and,
Gn,m ⊇ {N [0, t) < t + ∆1}∩

∩{N [0, s) ≥ s − ∆2}∩
∩{Nij [0, t) ≥ ρijt − ∆3}∩
∩{Nij [0, s) ≤ ρijs + ∆4}.

(11)

If we are interested in calculating Eij
1 then we only need to

focus on some fixed n and m.
However, if we are interested in Eij

3 then we need to know
whether Gn,m for all n,m. For the latter case we have,
⋂

n,mGn,m ⊇
⋂

t{N [0, t) < t + ∆1}∩⋂
s{N [0, s) ≥ s − ∆2}∩⋂
s,t{Nij [s, t) ≥ ρij(t − s) − (∆3 + ∆4)}.

(12)
and,

⋂
n,mGn,m ⊇

⋂
t{N [0, t) < t + ∆1}∩⋂
s{N [0, s) ≥ s − ∆2}∩⋂
t{Nij [0, t) ≥ ρijt − ∆3}∩⋂
s{Nij [0, s) ≤ ρijs + ∆4}.

(13)

We note that since s and t are integers we only need to take the
intersection over a discrete set of events.

III. FOUR SCHEDULERS

A. Random Permutation

We consider a frame-based scheduler in which the permuta-
tion matrices in a frame are scheduled in random order. More
formally, denote by z = (z1, z2, . . . , zL) some fixed order of
the token types such that there are exactly �k tokens of type k,
k = 1, . . . ,K. Let π = (π(1), π(2), . . . , π(L)) be a random
permutation of the elements (1, 2, . . . , L).

For n = 1, . . . , L we define the schedule by randomly per-
muting the elements of z, i.e.,

Zn = zπ(n), n = 1, . . . , L.

The schedule is extended for n > L by concatenating replicas
of the schedule Zn, n = 1, . . . , L.

As an aside, note that the scheduler as defined above can be
formulated in the framework of point processes. We can first
construct the counting processes Nk, k = 1, . . . ,K, on [0, 1]
by placing �k points uniformly at random in [0, 1]. Then, Nk is
extended to the whole positive real line by periodic extension of
the points in [0, 1].
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Fig. 2. Normalized variance of Nij [Tn, Tn+m) for varying frame size L, and
ρij = φ = 1/10.

We first discuss some elementary properties of the scheduler
as described above, and then display the latencies. By a routine
combinatorial argument we obtain, for l = 1, . . . ,min[�ij ,m],

P(Nij [Tn, Tn+m) = l) =

(
m
l

)(
L − m
�ij − l

)

(
L
�ij

) ,

where �ij =
∑

k∈Sij
�k. Notice that the probability does not

depend on n, which reflects the fact that the counting process is
stationary. The above explicit expression enables us to compute
the latency Eij

1 defined by (1).
As an aside, we remark that for any fixed m, Nij [Tn, Tn+m)

converges in distribution to Binomial random variable (m, ρij),
as L → ∞. (This can be checked, for example, by Stirling’s
formula.)

One may check that the variance of Nij [Tn, Tn+m) is

σ2
ij(m) =

L2

L − 1
ρij(1 − ρij)

m

L

(
1 − m

L

)
.

We omit this calculation for the benefit of space. Note that the
variance forms a bridge (σ2

ij(0) = σ2
ij(L) = 0, with the global

maximum at m = L/2); see Figure 2. Note also that, σ2
ij(m) →

Lρij(1 − ρij)mL
(
1 − m

L

)
, as L → ∞.

We finally show the main results of this section; asymptotic
expressions for the latencies Eij

2 and Eij
3 . The proofs are given

in Appendices A and B.
Proposition 6: As L → ∞,

Eij
2 →

√
1
2

ln
1
ε

(
1
ρij

− 1
)
L.

Note that Eij
2 scales with the frame length L as O(

√
L).

We have the following result for the latency Eij
3 .
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Proposition 7: As L → ∞,

Eij
3 →

√

A

(
1
ρij

− 1
)
L, (14)

where A is the positive solution of
∞∑

�=1

(
4�2A − 1

)
e−2�2A =

1
2
ε.

Note that Eij
3 also scales with the frame length L as O(

√
L),

but with a different constant. In Figure 3, we plot values for Eij
2

and Eij
3 obtained empirically, together with the above limits, for

different values of L.

B. Random-Phase Periodic Competition

Let Uk, k = 1, . . . ,K, be a collection of independent uni-
formly distributed random variables on [0, 1]. We define the
scheduler as follows; for each k = 1, . . . ,K,

Nk[0, t) =
∑

n≥0

1[0,t)(
n − 1
ϕk

+
1
ϕk

Uk).

Thus the tokens for matrix Mk form a periodic stream of period
1/ϕk with the random phase shift Uk/ϕk.

We assume that the ϕk have the property that we can define
a frame-based scheduler (see the Introduction). Therefore we
only need to concentrate on the time interval L. For any interval
[s, t), Nk[s, t) ≥ ϕk(t − s) − 1. This implies,

Nij [s, t) ≥
∑

k∈Sij

(ϕk(t−s)−1) ⇒ Nij [s, t) ≥ ρij(t−s)−|Sij |.

We follow the method of Section II and set t = n+m−∆1, s =
n + ∆2, where ∆1,∆2 are defined below. For any permutation
matrix Mk, let ak = �ϕkt�. Then Nk[0, t) = ak + Xk where
Xk is a binary random variable with mean ϕkt − ak. Let µ =
E[

∑
k Xk] =

∑
k(ϕkt − ak) = t −

∑
k ak. We have,

N [0, t) ≥ t + ∆1 ⇔
∑

k(ak + Xk) ≥ t + ∆1

⇔
∑

k Xk ≥ t + ∆1 −
∑

k ak

⇔
∑

k Xk ≥ µ + ∆1.

Therefore, by Hoeffding’s inequality [26], P(N [0, t) ≥ t +
∆1) ≤ exp(−2(∆1)2/K). Similarly, P(N [0, s) < s − ∆2) ≤
exp(−2(∆2)2/K).

Let,

∆1 = ∆2 =
⌈√

(K/2) · ln(2L + 1)
⌉
,

∆3 = ∆4 = |Sij |/2,
Eij

3 = (|Sij |/ρij) + (2 +
√

2K ln(2L + 1)).

Then, by the above Hoeffding bounds and the containment (12)
from Section II we have,

P(
⋂

ij

⋂
nm{Nij [Tn, Tm) ≥ ρij(m − Eij

3 )})

≥ 1 −
∑L

t=1 P(N [0, t) ≥ t + ∆1)−
−

∑L
s=1 P(N [0, s) < s − ∆2)

≥ 1 −
∑L

t=1 exp(−2(∆1)2

K ) −
∑L

s=1 exp(−2(∆2)2

K )
≥ 1 − 2L

2L+1 .

(15)

(Note that since we are considering a finite frame we only need
sum over s, t ∈ {1, . . . , L}.)

Hence with probability 1 − 2L/(2L + 1), the rate-latency
condition (3) holds for all ij. We now show how to derandomize
the algorithm so that condition (3) holds with probability 1.

Derandomization

We use the method of conditional probabilities (see e.g. [16])
that is motivated by the following lemma (which we prove in
Appendix C).

Lemma 8: Let Y1, . . . , Yn1 be a set of random variables, let
X1, . . . , Xn2 be a set of independent binary random variables
and let σ1, . . . , σn3 be a set of events such that for some func-
tions fij(·),

P(σi|A) ≤ E[
n2∏

j=1

fij(Xj)|A], (16)

for any event A. Then there exists a set of values y1, . . . , yn1

such that,

∑

i

P(σi|Y1 = y1, . . . , Yn1 = yn1) ≤
∑

i

E[
n2∏

j=1

fij(Xj)].

In particular if
∑

i E[
∏n2

j=1 fij(Xj)] < 1 and σi is completely
determined by Y1, . . . , Yn1 then,

∑

i

P(σi|Y1 = y1, . . . , Yn1 = yn1) = 0.

To compute yv given y1, . . . , yv−1 we minimize,
∑

i E[
∏n2

j=1 fij(Xj)|Y1 = y1, . . . , Yv = yv] =
=

∑
i

∏n2
j=1 E[fij(Xj)|Y1 = y1, . . . , Yv = yv],

as we vary yv over the full range of Yv . (Recall that the ran-
dom variables Xj are independent and so we can exchange the
expectation with the product).

To apply this lemma in our setting we take Y1, . . . , Yn1 to be
the random phase shifts U1, . . . , UK ; X1, . . . , Xn2 to be binary
random variables of the form Nk[0, t) − �ϕkt� and σ1, . . . , σn3

to be events of the form {N [0, t) ≥ t + ∆1} or {N [0, s) <
s − ∆2}. The functions fij(·) are defined by,

P(N [0, t) ≥ t + ∆1) ≤ e−θ(t+∆1)E[
∏K

k=1 e
θNk[0,t)], (17)

where θ = ln(b(1 − a)/a(1 − b)), a = (t −
∑K

k=1�ϕkt�)/K,
b = (t + ∆1 −

∑K
k=1�ϕkt�)/K. A similar inequality holds for

P(N [0, s) < s − ∆2).
In the derivation of (15) we showed that,

L∑

t=1

P(N [0, t) ≥ t+∆1)+
L∑

s=1

P(N [0, s) < s−∆2) ≤ 2L
2L + 1

,

using Hoeffding bounds that are derived from (17). Hence by
Lemma 8 there exist fixed values u1, . . . , uK for the initial phase
shifts such that N [0, t) < t+∆1 for all t and N [0, s) ≥ s−∆2
for all s.

The one complication that arises in the calculation of the uk
is that the Uk are continuous random variables, they do not
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take discrete values. However, as Uk is varied between 0 and
1, Nk[0, t) − �ϕkt� changes from 0 to 1 at one discrete point.
Hence it is sufficient to consider only L + 1 values of Uk. The
right-hand side of (17) may be computed in time polynomial in
K and L, even if some of the phase shifts have already been
fixed. Hence, we can fix the value of Uk in time polynomial in
K and L.

Theorem 9: The resulting deterministic scheduler satisfies
(3) with,

Eij
3 =

|Sij |
ρij

+ (2 +
√

2K ln(2L + 1)).

C. Random-Distortion Periodic Competition

Let Ukn, k = 1, . . . ,K, n ∈ Z+, be a collection of indepen-
dent uniformly distributed random variables on [0, 1]. We define
the scheduler as follows; for each k = 1, . . . ,K,

Nk[0, t) = n + 1Ukn<ϕkt−n,

where n = �ϕkt�. Another interpretation is: the nth point of
the kth token type is placed uniformly at random in the interval
[n/ϕk, (n + 1)/ϕk).

We make use of the containment (13) from Section II. We ap-
ply Hoeffding bounds in a similar manner to the previous sub-
section to obtain.

P(N [0, t) ≥ t + ∆1) ≤ exp(−2(∆1)2/K),
P(N [0, s) < s − ∆2) ≤ exp(−2(∆2)2/K),

P(Nij [0, t) ≤ ρijt − ∆3) ≤ exp(−2(∆3)2/|Sij |),
P(Nij [0, s) ≥ ρijs + ∆4) ≤ exp(−2(∆4)2/|Sij |).

Let,

Γ1(t) = P(N [0, t) ≥ t + ∆1)+
+

∑
ij P(Nij [0, t) < ρijt − ∆3),

Γ2(s) = P(N [0, s) < s − ∆2)+
+

∑
ij P(Nij [0, s) > ρijs + ∆4),

D = 1 + (4(2I2 + 2)/mink ϕk),

∆1 = ∆2 =
⌈√

(K/2) · lnD
⌉
,

∆3 = ∆4 =
√

(|Sij |/2) · lnD,

Eij
3 = ∆1 + ∆2 + (∆3 + ∆4)/ρij .

For fixed s and t we have,

Γ1(t) + Γ2(s) ≤ (2I2 + 2)
D

.

Note that we cannot apply a union bound over s and t as we
did in the previous subsection because s and t range over the
entire interval [0,∞). However, note that if Γ1(t) = Γ2(s) = 0
for all s, t then from (13) we know that (3) holds for all i, j with
probability 1. Hence we focus on derandomizing the algorithm.

Derandomization

Instead of placing the nth token for matrix Mk at random
into the interval [n/ϕk, (n + 1)/ϕk), we now wish to place it

deterministically. Let P = �2/mink ϕk�. We divide time into
intervals of length P , namely, [0, P ), [P, 2P ), . . .. Let Aω be
the set of tokens that fall into the interval [ωP, (ω + 1)P ) with
probability 1, i.e. the nth token for matrix Mk is in Aω if and
only if [n/ϕk, (n + 1)/ϕk) ⊆ [ωP, (ω + 1)P ). Let Bω be the
set of tokens that are not in Aω′

for any ω′ and that fall into
the interval [(ω − 1

2 )P, (ω + 1
2 )P ) with probability 1. We have

chosen P sufficiently large so that all tokens are in Aω ∪Bω for
some ω.

Suppose inductively that for ω′ < ω we have fixed the posi-
tions of all the tokens in Aω′ ∪ Bω′

. Since none of the tokens
that have already been fixed affect the interval [ωP, (ω + 1)P ),
our previous analysis implies,

∑(ω+1)P
ωP Γ1(t) +

∑(ω+1)P
ωP Γ2(s) ≤ P (2I2+2)

D .

By applying the method of conditional probabilities in a similar
manner to Section III-B, we can fix the positions of tokens in
Aω one after the other so that we still have,

∑(ω+1)P
ωP Γ1(t) +

∑(ω+1)P
ωP Γ2(s) ≤ P (2I2+2)

D .

Here, the constituent probabilities of Γ1(t) and Γ2(t) are now
conditioned on the fact that the tokens in Aω are fixed. We ob-
tain,

∑(ω+ 1
2 )P

(ω− 1
2 )P Γ1(t) +

∑(ω+ 1
2 )P

(ω− 1
2 )P Γ2(s)

≤
∑(ω+1)P

(ω−1)P Γ1(t) +
∑(ω+1)P

(ω−1)P Γ2(s)

≤ 2P (2I2+2)
D < 1.

By the method of conditional probabilities we can fix the posi-
tions of tokens in Bω so that we still have,

∑(ω+ 1
2 )P

(ω− 1
2 )P Γ1(t) +

∑(ω+ 1
2 )P

(ω− 1
2 )P Γ2(s) ≤ 2P (2I2+2)

D < 1.

All tokens in Aω ∪ Bω are now fixed and so we have a deter-
ministic schedule up to time (ω + 1

2 )P . Recall that Γ1(t) and
Γ2(s) are sums of probabilities. Therefore Γ1(t) = Γ2(s) = 0
for all s, t ∈ [(ω− 1

2 )P, (ω+ 1
2 )P ). This process can be repeated

indefinitely.
Theorem 10: The resulting deterministic scheduler satisfies

(3) with,

Eij
3 =

1
ρij

√
2|Sij | lnD + (2 +

√
2K lnD).

Adaptation to the substochastic case

For the previous three schedulers, we have assumed that
the rate matrix M is doubly stochastic, i.e.

∑
i ρij = 1 and∑

j ρij = 1. For the case in which M is only substochastic, i.e.∑
i ρij ≤ 1 and

∑
j ρij ≤ 1, it is known by a result of von Neu-

mann (see e.g. [1]) that there exists a matrix M ′ with ij entry
ρ′
ij such that ρij ≤ ρ′

ij for all ij and M ′ is doubly stochastic. In
this case, we can apply all the results of this paper to the matrix
M ′ to obtain latencies Eij

1 , Eij
2 and Eij

3 . Note that the ij traffic
might not be able to use all the service it is offered. In this case
the residual bandwidth can be used for best-effort traffic.
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Fig. 3. 0.99-quantile empirical and theoretical limit latencies of Random Per-
mutation Scheduler: (Bottom curve) Eij

2 and (Top curve) Eij
3 . The empiri-

cal quantiles are computed from 5 independent samples each of 500 samples
of random permutations. The empirical quantiles are shown as averages over
the 5 samples along with 0.95-confidence intervals.

D. Poisson Competition

For our final scheduler we require that the load on each in-
put and output is strictly less than 1. Let Nk be Poisson with
intensity ϕk, all k = 1, . . . ,K. Then the following holds.

Lemma 11: For any ij, and n,m ≥ 0, l = 1, 2, . . . ,m,

P(Nij [Tn, Tn+m) = l) =
(

m
l

)
ρlij(1 − ρij)m−l.

The above result may be obvious to many; we give an elemen-
tary proof in Appendix D. We note that (Tn, Zn)n≥0 is a marked
point process with independent identically distributed marks,
where Zn = k with probability ϕk. Our naming of this sched-
uler is inspired by the Poisson competition theorem (Theorem
1.3, Chapter 8 [27]).

We continue further by observing the following queueing in-
terpretation of the latencies defined in (2) and (3). Locally to
this section, assume

∑K
k=1 ϕk < 1; we impose this condition

to ensure stability. Moreover, for a fixed ij, let ρ < 1 be such
that

∑
k	Sij

ϕk = ρ(1−ρij). We also assume that the counting
processes Nk are extended to R, the whole real line. Then, it is
not difficult to observe that (2) is equivalent to

{Vij [0] ≤ ρijE
ij
2 },

where Vij [n], n = 0,±1,±2, . . ., is the unfinished work of a
slotted single server queueing system with infinite buffer capac-
ity, service rate (1 − ρij) and an arrival process that is 0 or 1
with the probability of an arrival equal to ρ(1 − ρij). The above
observation follows immediately by Reich’s formula,

Vij [n] = max
m≥1

[Nij [Tn, Tn+m) − (1 − ρij)m].

0 2 4 6 8 10 12 14 16 18 20
10
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10
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10
0
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ρ=0.95 

Fig. 4. Complementary distribution of Vij : (dots) empirical estimates, (dot-
ted line) M/D/1, (solid line) Brownian approximation. Vij is estimated by
averaging over 1000 random samples of length 10000. ρij = 0.1.

From Lemma 11, it follows that the unfinished work is of
a Geo/D/1 queue. The distribution of the unfinished work of
a Geo/D/1 queue is known in closed form [28], which in our
context amounts to

P(Vij [0] ≤ v) =

= 1−qD
(1−q)v+1

∑j
l=0[q(1 − q)D−1]l(−1)l

(
v − (D − 1)l

l

)
,

where j is the integer such that jD ≤ v ≤ (j + 1)D − 1,
q := ρ(1 − ρij), and D := 1/(1 − ρij) is implicitly assumed
to be an integer. (If D would be a real, then one may redefine
D := �1/(1 − ρij)� to obtain a lower bound, provided that
ρD < 1.)

The last would enable one at least in theory to exactly com-
pute the latency Eij

2 in (2). In practice one may expect numer-
ical instability as ρD → 1. The following heuristic argument
gives us an approximation that is numerically stable, but also
brings us some insight about the latency. By appealing to the
Brownian approximation (see [17], Sec. 5.7, Equation (7.16))
we claim

P(Vij [0] ≤ ρijE
ij
2 ) ≈ 1 − e

−2 1−ρ
ρ(1−ρ(1−ρij))ρijE

ij
2 .

Hence, we have

Eij
2 ≈ 1

2
ln ε−1 ρ

1 − ρ

(
1 − ρ

ρij
+ ρ

)
.

Another approximation can be obtained by considering M/D/1
queue, a continuous time analog2 of Geo/D/1. A simple ex-
ponential approximation is known for M/D/1 ([29], Equation

2A notable difference is that with Geo/D/1, in contrast to M/D/1, the number
of arrivals over any interval of length m is bounded by m.
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6.1.6, Section 6.1.2). In Figure 4 we show a numerical compari-
son of the approximations mentioned above with their empirical
companions. We observe that the above approximation for Eij

2
should be good in the heavy-traffic limit as ρ → 1. It is perhaps
interesting to observe that in the heavy-traffic limit Eij

2 becomes
insensitive to ρij .

As mentioned in the Introduction, the latency Eij
3 does not

make much sense for this scheduler since the event in (3) would
fail with probability 1 as we require that the inequality in (3)
holds for all n.

IV. NUMERICAL RESULTS

In this section we evaluate some of our bounds for specific
rate matrices. Recall that the best possible latency for input-
output pair ij is 1/ρij . Hence the ratio between the latency
provided by the scheduler, Eij

3 , and the best possible latency is
ρijE

ij
3 . For this reason we define maxij ρijE

ij
3 to be the figure

of merit for a scheduler.

We evaluate the bounds (6) and (7) for the deterministic algo-
rithms derived from Random-Phase Periodic Competition and
Random-Distortion Periodic Competition. We compare them
with the bound (4) for PGPS. We would like to use matrices
drawn uniformly from the set of doubly-stochastic matrices.
However, we do not know of a method to generate such a ma-
trix uniformly. Hence we use the following method to generate
our example matrices. We start with a uniform matrix in which
all entries are equal to I/L where L = I × I . We then repeat-
edly choose parameters i1, i2, j1, j2 and δ uniformly at random
such that δ ≤ min{ρi1j1 , ρi2j2}. We subtract δ from ρi1j1 and
ρi2j2 and we add δ to ρi1j2 and ρi2j1 . We carry out this opera-
tion 100000 times. Note that it preserves the doubly stochastic
nature of the matrix. We also ensure that all entries of the rate
matrix are integer multiples of 1/L. Hence we can define frame-
based schedulers with frame-length L.

In Figure 5 we plot the value of maxij ρijE
ij
3 for different

values of I , the switch size. We see that except for extremely
small switches, the bound for the Random-Distortion sched-
uler is smaller than the bound for the Random-Phase scheduler
which is in turn smaller than the bound for PGPS.

In Figure 6 we examine how ρijE
ij
3 varies for different pairs

ij. In particular we examine a 64 × 64 matrix for which K =
2423. For each value of x we plot the fraction of ij pairs for
which ρijE

ij
3 ≤ x. We see that the bound (6) for the Random-

Phase based algorithm is consistently smaller than the bound
(4) for PGPS. The bound (7) for the Random-Distortion based
algorithm has a smaller range than the other two bounds. There
are fewer pairs ij with large values of ρijE

ij
3 but there are also

fewer pairs ij with small values of ρijE
ij
3 . The reason for the

latter phenomenon is that the bound (7) is typically larger than
the bounds, (4), (6) when the value of |Sij | is small.

We remark that we cannot directly compare the expressions
(5) and (8) for the Random Permutation and Poisson Competi-
tion schedulers with the bounds (4), (6) and (7) considered in
this section. This is because the expression (5) is a limit and the
expression (8) is for Eij

2 , not Eij
3 .
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Fig. 5. The value of maxij ρijEij
3 for switches of varying size.
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Fig. 6. Fraction of ij pairs for which ρijEij
3 ≤ x. The matrix has I = 64,

L = 4096 and K = 2423.

V. CONCLUSION

In this paper we have analyzed the latency of four
decomposition-based schedulers for input-queued switches. We
believe that there are a number of interesting open problems.
First, it is possible that a tighter analysis of our framework
of point processes could lead to better bounds for the existing
schedulers, and may even motivate the construction of new ones.
Second, we know of no non-trivial lower bounds on the best pos-
sible latency. It would be interesting to know what is the best
value of maxij ρijE

ij
3 that can be achieved.
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APPENDIX

I. PROOF OF PROPOSITION 6

Proof: Note that by periodicity of the counting process
Nij , (2) is equivalent to

{
max1≤m≤L[ρijm − Nij [Tn, Tn+m)] ≤ ρijE

ij
2

}
⇔{

max1≤m≤L[Nij [Tn, Tn+m) − (1 − ρij)m] ≤ ρijE
ij
2

}
.

Now, it is a standard result (e.g. Theorem 1, Section 6.3.7 [30])
that as L → ∞ we have the convergence in distribution

max1≤m≤L[Nij [Tn, Tn+m) − (1 − ρij)m] ⇒

⇒
√

ρij(1 − ρij)L sup0≤t≤1 B0(t),

where B0 is Brownian bridge, the Gaussian process with
E[B0(t)] = 0 and cov[B0(s)B0(t)] = s(t − s), 0 ≤ s ≤ t ≤ 1.
Another definition of Brownian bridge is given by B0(t) =
B(t) − tB(1), t ∈ [0, 1], where B(t), t ≥ 0, is standard Brow-
nian motion. Hence, Brownian bridge is a Brownian motion
conditioned on hitting 0 at t = 1.

An exact expression for the complementary distribution of the
maximum of Brownian bridge is known (Doob [31]),

P( sup
0≤t≤1

B0(t) > b) = e−2b2 .

From the above convergence and equating the last limit distribu-
tion with ε, we obtain the stated result.

II. PROOF OF PROPOSITION 7

Proof: Note that (3) is equivalent to

{ max
n≥0,m>0

[Nij [Tn, Tn+m) − (1 − ρij)m] ≤ ρijE
ij
3 }.

From the periodicity of Nij , it follows

Y := maxn≥0,m>0[Nij [Tn, Tn+m) − (1 − ρij)m]
= max1≤k≤m≤2L[Nij [Tk−1, Tm−1) − (1 − ρij)(m − k)]
= max1≤k≤2LXk − min1≤k≤2LXk,

where Xk := Nij [T0, Tk−1) − (1 − ρij)k, k = 1, 2, . . ..
Now, similarly as in the proof of Proposition 6, we conclude
that, as L → ∞, Y ⇒

√
ρij(1 − ρij)LW , where W =d

sup0≤t≤1 B0(t) − inf0≤t≤1 B0(t), the range of the Brownian
bridge. It is known that the range of the Brownian bridge
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is equal in distribution to the maximum Brownian excursion
(see Vervaat [32] and [33]). The Brownian excursion can
be represented in terms of standard Brownian motion B as
(Z(t))t∈[0,1] =d ((τ+ − τ−)−1/2|B((1 − t)τ+ + tτ−)|)t∈[0,1],
where τ− is the last zero of B before 1 and τ+ the first zero after
1. It is known that ([34] Theorem 5.2.10), for z > 0,

P( sup
0≤t≤1

Z(t) > z) = 2
∞∑

�=1

(4�2z2 − 1)e−2�2z2
.

Now let Eij
3 be equal to the right-hand side in (14) for some

A > 0. It follows from the above convergence in distribution
that

P(maxn≥0,m>0[Nij [Tn, Tn+m) − (1 − ρij)m] > ρijE
ij
3 ) →

→ 2
∑∞

�=1

(
4�2A − 1

)
e−2�2A, as L → ∞.

Lastly, we equate the limit in the last display to ε, for a fixed
ε ≥ 0, which completes the proof.

III. PROOF OF LEMMA 8

We now prove Lemma 8.
Proof: Suppose inductively that we have already chosen

y1, . . . , yv−1 such that,

∑
i E[

∏n2
j=1 fij(Xj)|Y1 = y1, . . . , Yv−1 = yv−1]

≤
∑

i E[
∏n2

j=1 fij(Xj)].

This can trivially be done for v = 1. Then,

∑

y

∑

i

P(Yv = y|Y1 = y1, . . . , Yv−1 = yv−1) ·

·E[
n2∏

j=1

fij(Xj)|Y1 = y1, . . . , Yv−1 = yv−1, Yv = y]

=
∑

i

E[
n2∏

j=1

fij(Xj)|Y1 = y1, . . . , Yv−1 = yv−1] ≤

≤
∑

i

E[
n2∏

j=1

fij(Xj)].

Since
∑

y P(Yv = y|Y1 = y1, . . . , Yv−1 = yv−1) = 1, there
exists a fixed value yv such that,

∑
i E[

∏n2
j=1 fij(Xj)|Y1 = y1, . . . , Yv−1 = yv−1, Yv = yv]

≤
∑

i E[
∏n2

j=1 fij(Xj)].

Then, by Inequality (16),

P(σi|Y1 = y1, . . . , Yv−1 = yv−1, Yv = yv)

≤
∑

i

E[
n2∏

j=1

fij(Xj)|Y1 = y1, . . . , Yv−1 = yv−1, Yv = yv]

≤
∑

i

E[
n2∏

j=1

fij(Xj)].

The proof follows by induction.

To find yv we minimize,
∑

i E[
∏n2

j=1 fij(Xj)|Y1 = y1, . . . , Yv−1 = yv−1, Yv = y] =
=

∑
i

∏n2
j=1 E[fij(Xj)|Y1 = y1, . . . , Yv−1 = yv−1, Yv = y],

over all possible values of y. We can exchange the expec-
tation with the product due to the independence of the Xj .
Hence we only need to be able to calculate the E[fij(Xj)|Y1 =
y1, . . . , Yv−1 = yv−1, Yv = y] in isolation. This is feasible in
all our applications of Lemma 8.

IV. PROOF OF LEMMA 11

Proof: Let us first recall definition of Poisson process. A
counting process N on R is Poisson with intensity λ if for any
two disjoint intervals I and J on R, NI and NJ are indepen-
dent, and in addition, for any I on R,

P(NI = m) =
(λ|I|)m

m!
e−λ|I|, m = 0, 1, . . . .

Now, it is an elementary result that, if Nk k = 1, 2, . . . ,K are
Poisson counting processes with respective finite intensities ϕk

k = 1, 2, . . . ,K, then NijI =
∑

k∈Sij
NkI, for any ij and

I ∈ R, is Poisson with intensity ρij =
∑

k∈Sij
ϕk.

Thus, we can write

P(Nij [Tn, Tn+m) = l)
= P(Nij{Tn} = 0, Nij(Tn, Tn+m) = l)+

+P(Nij{Tn} = 1, Nij(Tn, Tn+m) = l − 1)
= (1 − ρij)P(Nij(Tn, Tn+m) = l)+

+ρijP(Nij(Tn, Tn+m) = l − 1).

(18)

We exercise a simple calculus, for any l = 0, 1, . . . ,m − 1,

P(Nij(Tn, Tn+m) = l)
=

∫ ∞
0 P(Nij(Tn, Tn + t) = l, N(Tn, Tn + t) = m − 1)dt

=
∫ ∞
0 P(Nij(Tn, Tn + t) = l, Nij(Tn, Tn + t) = m − 1 − l)dt

=
∫ ∞
0 P(Nij(0, t) = l, Nij(0, t) = m − 1 − l)dt

=
∫ ∞
0 P(Nij(0, t) = l)P(Nij(0, t) = m − 1 − l)dt

= ρk
ij(1−ρij)m−1−l

k!(m−1−l)!

∫ ∞
0 tm−1e−tdt

= (m−1)!
(l−1)!(m−l)!ρ

l
ij(1 − ρij)m−1−l.

The second equality is obtained by NI = NijI + NijI, any
I ⊂ R; the third equality is by independence and stationarity
of the increments of Nij and Nij ; the forth equality follows
by the independence of Nij and Nij ; in the fifth equality we
utilize the fact that for any fixed I ∈ R, NijI and NijI are
Poisson random variables; and finally, the last equality follows
from

∫ ∞
0 tme−tdt = m!, for m an integer.

The statement of the lemma follows by plugging the resulting
identity in the last above display into (18).
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