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Abstract— We consider a stochastic model of an ECN/RED
gateway with competing TCP sources sharing the capacity.
As the number of competing flows becomes large, the queue
behavior at the gateway can be described by a two-dimensional
recursion and the throughput behavior of individual TCP flows
becomes asymptotically independent. The steady-state regime
of the limiting behavior can be calculated from a well-known
TCP throughput model with fixed loss probability. In addition, a
Central Limit Theorem is presented, yielding insight into the
relationship between the queue fluctuation and the marking
probability function. We confirm the results by simulations and
discuss their implications for network dimensioning.

I. INTRODUCTION

One of the key mechanisms for operating the best-effort
service Internet is the congestion control mechanism in TCP
[1]. While there exist several variations of the basic TCP
congestion control mechanism, they all have in common the
additive increase/multiplicative decrease (AIMD) algorithm.
This AIMD algorithm is a self-clocking feedback mechanism
that enables TCP congestion-control to be robust under diverse
conditions, but at the expense of introducing additional com-
plexity into the behavior of network traffic. There has been a
number of efforts aimed at gaining insights into this complex
behavior, and by now the relationship between the throughput
of a single TCP, its round-trip time and loss probability is
fairly well understood [2] [3] [4] [5].

There remain, however, certain aspects of TCP that are not
well understood and which cannot be analyzed readily with the
models in these references. Among these outstanding issues
we include the buffer behavior at a bottleneck router and the
aggregate throughput that results from many TCP flows com-
peting for the bandwidth of a link. While the earlier models
could in principle be extended to answer some of these ques-
tions, the resulting models would not be scalable. Typically,
with each TCP flow modeled in great details, the size of the
state space for the model explodes when the number of flows
becomes large, and the analysis then becomes intractable.
Even numerical calculations or simulations of such models
are very complicated and become computationally prohibitive,
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therefore providing no additional advantages over full-scale
(system) simulation with existing simulation packages (e.g.,
NS [6]). To be sure, certain simplifying assumptions could be
made, but it is not clear from the onset which irrelevant details
can be omitted without reducing the predictive power of the
model.

To make matters worse, recent developments in Active
Queue Management (AQM) techniques have introduced ad-
ditional complexity in transport protocols. The development
of AQM was prompted by the observation that with simple
Tail-Drop gateways, TCP congestion-control leads to undesir-
able behavior, i.e., global synchronization [7]. When several
TCP flows compete for bandwidth in a Tail-Drop gateway,
it has been observed experimentally that packets from many
flows are usually discarded simultaneously, resulting in a
poor utilization of the network. AQM algorithms such as
Random Early Detection (RED) [8] and Explicit Congestion
Notification (ECN) [9] have been proposed to help alleviate
this problem by randomly dropping/marking packets with
probability depending on queue size. This allows each TCP
flow to react early to the growing congestion, thereby avoiding
heavy congestion and preventing global synchronization. As
can easily be imagined, the introduction of AQM further
exacerbates the difficulty of understanding issues associated
with buffer behavior and aggregate TCP traffic. Attempts have
been made to model the interactions between TCP and AQM,
but so far the analytically tractable models are either too crude
or too simplistic as we now discuss:

Analytical efforts to model the interactions between TCP
congestion-control and the bottleneck router/buffer usually
involve various ad-hoc assumptions in order to render the
analysis feasible. For example, Hollot et al. linearized the TCP
mechanism and studied the system using a control-theoretic
approach [10]. TCP being highly non-linear, the regime where
such a linearization provides an accurate approximation is
usually small. In [11], an analytical framework for multiple
TCP flows sharing a RED gateway was developed under
several potentially unrealistic assumptions. In [12], a simple
analysis was carried out with TCP connections operating as
Poisson processes under “slow” and “fast” rates.

Recently, there has been a growing interest in macroscale
modeling of TCP flows, as opposed to microscale models
where each TCP flow is modeled in detail. Macroscale TCP
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models can be developed by systematically applying limit
theorems to derive a limiting traffic model when the number
of TCP flows is large. The potential benefits of doing so
are three-fold. First, model simplification (with the promise
of scalability) typically occurs when applying limit theorems,
with irrelevant details filtered out without relying on ad-hoc
assumptions. Second, limit theorems are central to the modern
Theory of Probability, and as such have been the focus of a
huge literature that contains a large number of results and tech-
niques. Given this large body of knowledge, it is reasonable
to expect the existence of suitable limit theorems (under very
weak assumptions) which can be applied to the situation of
interest. Finally, in the networking context, resource allocation
problems are interesting only in networks operating at high
utilization, e.g., when the number of users is large in relation
to available resources. In such a scenario, the limit behavior
will become increasingly more accurate as the number of users
increases.

Limit theorems for a bottleneck queue under a large number
of rate-controlled TCP-like flows have been recently con-
sidered by a number of authors [13], [14], [15]; a survey
of the relevant literature can be found in [16]. While these
models already suggest some of the preliminary results to be
expected from aggregating a large number of TCP flows, they
all lack the explicit window mechanism of TCP congestion
control. In this paper, we incorporate this feature explicitly and
follow the approach of [14] to model the ECN-capable TCP
Reno congestion-control mechanism. We establish several
asymptotics when the number of flows is large, namely a
Law of Large Numbers for the aggregate traffic into the RED
buffer and a basic limit theorem for the normalized queue
size [Section IV]. We sharpen these results with a Central
Limit Theorem (CLT) complement [Section VI]. These results
help clarify the relationship between RED buffers and the
marking-probability function. The CLT result can help in the
network dimensioning problem by establishing a probability
distribution on the buffer utilization in RED gateways. The
concept of many source asymptotics used here has been well
studied in ATM networks but is more difficult to obtain for IP
networks because TCP traffic is feedback-based while ATM
traffic is open-loop.

The paper is organized as follows. We first outline its main
contributions in Section II. Then, in Section III the model
is described in detail, and a first set of asymptotic results are
presented in Section IV. Section V focuses on the calculations
of the limiting normalized queue size and the average window
size in steady state. Section VI contains a Central Limit
Theorem complement to the asymptotic results of Section IV.
Simulation results confirming the theoretical results are shown
in Section VII. Applications to network dimensioning and to
the design of marking probability function are discussed in
Section VIII. Conclusions and future work are given in Section
IX.

A word on the notation in use: Equivalence in law or in
distribution between random variables (rvs) is denoted by =st.
The indicator function of an event A is simply 1 [A], and we

use
P→ n (resp. =⇒n) to denote convergence in probability

(resp. weak convergence or convergence in distribution) with
n going to infinity.

II. CONTRIBUTIONS

This paper considers the scenario where N identical TCP
traffic sources compete for bandwidth in the bottleneck router.
The bottleneck capacity is NC and the router utilizes an
ECN/RED marking scheme with the dropping/marking prob-
ability function scaling with N (in the sense of Assumption
(A1) in Section IV). The main theoretical contributions of this
paper can be summarized as follows:
(i) Theorem 1 shows that the dynamics of the queue at

time t, denoted Q(N)(t), can be approximated by Nq(t)
with q(t) determined via a simple deterministic recur-
sion, which is independent of the number of users. This
approximation becomes more accurate as the number of
users becomes large. The limiting model is therefore
“scalable” as it does not suffer from the state space
explosion, nor does it require any ad-hoc assumptions.

(ii) Theorem 1 also shows that the dependency between each
TCP flow becomes negligible under a large number of
flows, i.e., “RED breaks the global synchronization when
the number of flows is large.”

(iii) The bottleneck capacity being NC, in non-trivial situa-
tions, the average (steady-state) throughput of each flow
is seen to be approximately C for large N , so that TCP
traffic does not realize the benefits commonly associated
with statistical multiplexing. Indeed, for N open-loop
independent traffic sources each operating at average rate
C, the bandwidth required to serve the aggregate flow
is typically less than NC under statistical multiplexing.
TCP flows, on the other hand, are correlated due to their
coupling via the bottleneck router, and multiplexing TCP
flows is not as effective.

(iv) The queue length in steady-state can be easily calculated,
while the steady-state distribution of the window size and
the average window size can be evaluated from well-
known TCP models.

(v) For a more accurate description of the queue dynamics,
a Central Limit Theorem-type analysis (summarized in
Theorem 2) yields the existence of a rv L0(t) such that

Q(N)(t) � Nq(t) +
√
NL0(t). (1)

(vi) This CLT analysis also reveals that the magnitude of
queue fluctuations is proportional to the derivative of the
marking probability function. This advocates the use of
a smooth marking probability function in line with the
RED “gentle” option recently suggested, but in contrast
to the original recommendation in [8], [17], [18]. This
finding coincides with the oscillatory behavior observed
with RED when the average packet drop rate exceeds
max p, in the absence of RED’s “gentle” modification
[19].

The analysis in this paper provides a solid foundation for
several assumptions that are made in other models of TCP and
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for many empirical observations. Some of the contributions
have been derived separately in other works, e.g., (iii) in
[20] and (vi) in [10] and [21]. However, the fact that these
conclusions can all be developed within a single model as
done here rebukes the arguments that these findings are the
byproducts of ad-hoc assumptions or models that are tailored
to derive such results.

III. THE MODEL

A. A brief review of TCP + ECN/RED dynamics

The TCP congestion control algorithm dynamically adjusts
the size of the congestion window (the amount of unacknowl-
edged packets in the network per round-trip) by the following
mechanism (assuming ECN/RED is utilized at the bottleneck
node). In a round-trip, if all the packets transmitted are not
marked, then the size of the congestion window is increased by
one packet for the next round-trip. On the other hand, if at least
one packet is marked in the round-trip, the congestion window
is halved. The probability that the router will mark packets in
the buffer depends on the average queue length of the time
of packet arrival. The average queue length is calculated by
an exponential average filter with large memory to prevent
RED from reacting too fast. As a result, consecutive incoming
packets into RED are marked with almost identical probability.
With this in mind, we now construct a model whose dynamics
are similar in spirit to the dynamics of TCP + ECN/RED.

B. The discrete-time model

Time is assumed discrete and slotted in contiguous timeslots
of duration equal to the round-trip delay of TCP connections.
We consider N traffic sources, all transmitting through a
bottleneck RED gateway with ECN enabled in both TCP and
RED. The capacity of this bottleneck link is NC packets/slot
for some positive constant C. The RED buffer is modeled as
an infinite queue, so that no packet losses occur due to buffer
overflow, and congestion control is achieved solely through
the random marking algorithm in the RED gateway.

Fix N = 1, 2, . . .. We write X(N) to indicate the explicit
dependence of the quantity X on the number N of connec-
tions.

C. Dynamics

Fix N = 1, 2, . . ., and suppose that each of the N sources
(i.e., TCP connections) has an infinite amount of data to
transmit and that in each timeslot it transmits as much as
allowed by its congestion window in that timeslot. So, for
i = 1, . . . , N , let W

(N)
i (t) be an integer-valued rv that

encodes the number of packets generated by source i (and
hence its congestion window) at the beginning of timeslot
[t, t + 1). We assume the integer W

(N)
i (t) to be in the range

{1, . . . ,Wmax} for some finite integer Wmax. Throughout we
assume Wmax ≥ 2 to avoid boundary cases of limited interest.

Upon arrival at the RED gateway, each packet from source
i may be marked according to a random marking algorithm
(to be specified shortly). We represent this possibility by the
{0, 1}-valued rv M

(N)
i,j (t + 1) (j = 1, ...,W (N)

i (t)) with the

interpretation that M
(N)
i,j (t + 1) = 0 (resp. M (N)

i,j (t + 1) = 1)
if the jth packet from source i is marked (resp. not marked)
in the RED buffer. Given that N sources are active, the total
number of packets which are accepted into the RED buffer at
the beginning of timeslot [t, t+1) is given by

∑N
i=1 W

(N)
i (t).

If Q(N)(t) denotes the number of packets in the buffer
at the beginning of timeslot [t, t + 1), then Q(N)(t) +∑N

i=1 W
(N)
i (t) packets are available for transmission in that

timeslot. Since the outgoing link operates at the rate of NC

packets/timeslot,
[
Q(N)(t) +

∑N
i=1 W

(N)
i (t) − NC

]+
pack-

ets will not be transmitted during timeslot [t, t+1), and remain
in the buffer, their transmission being deferred to subsequent
timeslots. The number Q(N)(t+1) of packets in the buffer at
the beginning of timeslot [t + 1, t + 2) is therefore given by

Q(N)(t + 1) =

[
Q(N)(t) − NC +

N∑

i=1

W
(N)
i (t)

]+

. (2)

D. Statistical assumptions

In order to fully specify the model, we need to specify
the joint statistics of the rvs {M (N)

i,j (t + 1),W (N)
i (t), i =

1, . . . , N ; j = 1, 2, . . . ; t = 0, 1, . . .}. To do so we introduce
the collection of i.i.d. [0, 1]-uniform rvs {Vi(t + 1), Vi,j(t +
1), i, j = 1, . . . ; t = 0, 1, . . .} which are assumed indepen-
dent of the rvs W

(N)
1 (0), . . . ,W (N)

N (0) and Q(N)(0). We also
introduce a mapping f (N) : IR+ → [0, 1] which acts as the
marking probability function of the RED gateway.

The process by which packets are marked is described first:
For each i = 1, . . . , N , we define the marking rvs

M
(N)
i,j (t + 1) (3)

= 1
[
Vi,j(t + 1) > f (N)(Q(N)(t))

]
, j = 1, 2, . . .

so that the rv M
(N)
i,j (t+1) is the indicator function of the event

that the jth packet from source i is not marked in timeslot
[t, t + 1). Thus, in a round-trip, each packet coming into the
router is marked with identical (conditional) probability which
depends only on the queue length at the beginning of the
timeslot. This model approximates the case where the memory
of the queue averaging mechanism is long, which is the case
for the recommended parameter settings of RED [18].

Next we introduce the rvs

M
(N)
i (t + 1) =

W
(N)
i

(t)∏

j=1

M
(N)
i,j (t + 1) (4)

so that M (N)
i (t+1) = 1 (resp. M (N)

i (t+1) = 0) corresponds
to the event that no packet (resp. at least one packet) from
source i has been marked in timeslot [t, t + 1). The evolution
of the window mechanism for source i can now be described
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through the recursion

W
(N)
i (t + 1) (5)

= min
(
W

(N)
i (t) + 1,Wmax

)
M

(N)
i (t + 1)

+ min

(
	W

(N)
i (t)
2


,Wmax

)
(1 − M

(N)
i (t + 1)).

This equation emulates the interaction between TCP and RED
as follows: If no packet from source i is marked in timeslot
[t, t+1), then the congestion window size in the next timeslot
is increased by 1. On the other hand, if one or more packets
are marked in timeslot [t, t+1), then the congestion window in
the next timeslot is reduced by half. The size of the congestion
window is limited by the maximum window size Wmax

1.

IV. THE ASYMPTOTICS

The first result of the paper consists in the asymptotics
for the normalized buffer content as the number of TCP
flows becomes large. This result, contained in Theorem 1, is
discussed under the following assumptions (A1)-(A2):

(A1) There exists a continuous function f : IR+ → [0, 1] such
that for each N = 1, 2, . . .,

f (N)(x) = f(N−1x), x ≥ 0;

(A2) For each N = 1, 2, . . ., the dynamics (2) and (5) start
with the conditions

Q(N)(0) = 0 and W
(N)
i (0) = W, i = 1, . . . , N

for some integer W in the range {1, . . . ,Wmax}.
Assumption (A1) is a structural condition while (A2) is

made essentially for technical convenience as it implies that
for each N = 1, 2, . . . and all t = 0, 1, . . ., the rvs
W

(N)
1 (t), . . . ,W (N)

N (t) are exchangeable. Assumption (A2)
can be omitted but at the expense of a more cumbersome
discussion.

Theorem 1: Assume (A1)-(A2) to hold. Then, for each
t = 0, 1, . . ., there exist a (non-random) constant q(t) and an
{1, . . . ,Wmax}-valued rv W (t) such that the following holds:
(i) The convergence results

Q(N)(t)
N

P→ Nq(t) and W
(N)
1 (t) ⇒N W (t) (6)

take place;
(ii) For any function g : IN → IR,

1
N

∑N
i=1g(W

(N)
i (t)) P→ NE [g(W (t))] . (7)

(iii) For any integer I = 1, 2, . . ., the rvs {W (N)
i (t), i =

1, . . . , I} become asymptotically independent as N be-
comes large, with

lim
N→∞

P
[
W

(N)
i (t) = ki, i = 1, . . . , I

]

=
I∏

i=1

P [W (t) = ki] (8)

1If W
(N)
i (0) lies in the range {1, . . . , Wmax} for each i = 1, . . . , N ,

then so does W
(N)
i (t) for each t = 0, 1, . . . and the minimum with Wmax

in the second term of (5) can be omitted.

for any k1, . . . , kI in IN.

Moreover, with initial conditions q(0) = 0 and W (0) = W , it
holds that

q(t + 1) = (q(t) − C + E [W (t)])+ (9)

and

W (t + 1) (10)

=st min (W (t) + 1,Wmax)M(t + 1)

+ min
(

	W (t)
2


,Wmax

)
(1 − M(t + 1)),

where

M(t + 1) = 1
[
V (t + 1) ≤ (1 − f(q(t)))W (t)

]
(11)

for i.i.d. [0, 1]-uniform rvs {V (t + 1), t = 0, 1, . . .}.
A proof of Theorem 1 is available in Appendix A. As should

be clear from the discussion given there, Theorem 1 readily
flows from a weak Law of Large Numbers for the triangular
array

{W (N)
i (t), i = 1, . . . , N ;N = 1, 2, . . .}. (12)

The numerical calculations for the limiting model are very
simple. The number of states required for the calculation for
each time step is only Wmax + 1 regardless of N . We can
determine q(t) through the following steps:

(i) For t = 0, start with some given values q(0) = 0
and W (0) = W , i.e., P [W (0) = j] = δ(j,W ) for
j = 1, . . . ,Wmax, and use E [W (0)] = W to calculate
q(1) via (9);

(ii) Given q(t) and P [W (t) = j] (j = 1, . . . ,Wmax) for
some t = 0, 1, . . ., use (10)-(11) with q(t) to calculate
the transition probabilities and P [W (t + 1) = j] for j =
1, . . . ,Wmax. Then calculate E [W (t + 1)];

(iii) Use E [W (t + 1)] in (ii) to update q(t + 2) from (9);
(iv) Increase t by one and repeat Step (ii)-(iv).

V. STEADY-STATE REGIME

We now turn our attention to the steady state regime of the
limiting two-dimensional recursion (9)-(11), more specifically
to the calculation of the limiting queue and average window
size in statistical equilibrium, i.e., large t asymptotics. We
show that there is a close relationship between this limiting
behavior in steady state and the now standard TCP throughput
model with stationary loss developed in [2] [22]:

Throughout, we assume the following assumptions (A3)-
(A4), where

(A3) The marking function f : IR → [0, 1] is monotonically
increasing with

f(0) = 0 and lim
x→∞

f(x) = 1;

(A4) The sequence {(q(t),W (t)), t = 0, 1, . . .} admits a
steady state in the sense that

(q(t),W (t)) ⇒t (q�,W �)
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for some pair (q�,W �) where q� is non-random and W �

is an {1, . . . ,Wmax}-valued rv.
Although the two-dimensional sequence {(q(t),W (t)), t =

0, 1, . . .} is a time-homogeneous Markov chain with values in
IR+ × {1, . . . ,Wmax}, we do not address here the existence
of the limit posited in (A4) as complications arise due the
fact that the first component is degenerate (i.e., deterministic).
However, under the condition Wmax ≤ C, it is a simple matter
to check that (A4) holds with q� = 0 and W � = Wmax as
would be expected; related details are given in Section V-
B (Case 1). Thus, only the case C < Wmax needs to be
considered.

A. TCP Throughput With Fixed Loss Probability

In order to discuss the limit (q�,W �) postulated in (A4),
we first need to review the results from the TCP throughput
model with stationary loss [2] [22]:

Fix γ in [0, 1] and write γ = 1 − p with p interpreted
as the stationary dropping/marking probability. Consider the
recursion

W γ
0 = W0;

W γ
n+1 = min (W γ

n + 1,Wmax)M
γ
n+1

+ min
(

	W
γ
n

2

,Wmax

)
(1 − Mγ

n+1)

for all n = 0, 1, . . . and some {1, . . . ,Wmax}-valued rv W0,
with

Mγ
n+1 = 1

[
Vn+1 ≤ γW γ

n

]
, n = 0, 1, . . . (13)

where the rvs {Vn+1, n = 0, 1, . . .} are i.i.d. [0, 1]-uniform
rvs which are independent of W0.

The rvs {W γ
n , n = 0, 1, . . .} form a time-homogeneous

Markov chain on the finite set {1, . . . ,Wmax}. For γ in the
open interval (0, 1), this chain is irreducible, positive recurrent
and aperiodic, thus ergodic. Consequently,

W γ
n ⇒n W γ (14)

for some {1, . . . ,Wmax}-valued rv W γ . This rv W γ satisfies
the distributional equation

W γ =st min (W γ + 1, ,Wmax)Mγ (15)

+ min
(

	W
γ

2

,Wmax

)
(1 − Mγ)

where
Mγ = 1

[
V ≤ γW γ

]
(16)

for some [0, 1]-uniform rv V which is independent of the rv
W γ . In fact, the ergodicity of the Markov chain guarantees that
the equation (15)-(16) has a solution and that this solution is
unique.

For sake of completeness, we also consider the boundary
cases: For γ = 0 (resp. γ = 1), it is easy to see that (14) also
takes place with W γ = 1 (resp. W γ = Wmax). The converse
is also true as we now demonstrate: If W γ = 1 under (14),
then (15)-(16) read

1 =st min (1 + Mγ ,Wmax)

with Mγ = 1 [V ≤ γ], so that necessarily Mγ = 0 under
(A4), whence γ = 0.

On the other hand, if W γ = Wmax under (14), then (15)-
(16) now reduce to

Wmax =st WmaxM
γ + 	Wmax

2

(1 − Mγ)

with
Mγ = 1

[
V ≤ γWmax

]
.

Consequently,


Wmax

2
� =st 
Wmax

2
�Mγ .

so that Mγ = 1, whence γ = 1.
Although we can numerically compute the steady-state

distribution determined by (15)-(16) (which is a special case of
[22]), we take notice that this model is actually that of a single
TCP connection with a constant loss probability 1−γ. This is
a well-studied problem (e.g., [2], [3]) with known results. If
we replace 
W γ

n

2 � in (15) with W γ
n

2 , then we can invoke Eqn.
(33) in [2] to get the approximation

E [W γ ] � min

(
Wmax,

√
3

2(1 − γ)

)
. (17)

B. Steady-state regime for the model in Section III

Under Assumption (A4), it is a simple matter to see that

(q(t),W (t),M(t + 1)) ⇒t (q�,W �,M�)

with
M� = 1

[
V ≤ (1 − f(q�))W �

]
(18)

where the [0, 1]-uniform rv V is independent of the pair
(q�,W �).

Upon letting t go to infinity in (9) and (10), we obtain the
relations

q� = (q� − C + E [W �])+ (19)

and

W � =st min (W � + 1,Wmax)M�

+ min
(

	W
�

2

,Wmax

)
(1 − M�). (20)

With q� given, the solution to (20) with (18) exists and is
unique; it is in fact given by

W � = W γ with γ = 1 − f(q�)

where the rv W γ is defined through (14). Several cases are
possible when considering (19) and (20).

Case 1 – f(q�) = 0: Then, q� is finite under (A3), M� = 1
and (20) reduces to

W � =st min (W � + 1,Wmax)

with unique solution W � = Wmax (in agreement with the
discussion in Section V-A). In that case, (19) gives

q� = (q� − C + Wmax)
+
. (21)
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Therefore, either q� = 0 in which case Wmax ≤ C as
should be expected, or q� > 0 (still with f(q�) = 0),
in which case C = Wmax. However, under the condition
Wmax ≤ C, it is clear that if Q(N)(0) = Q ≥ 0 for all
N = 1, 2, . . ., then Q(N)(t) ≤ Q and the conclusion q(t) = 0
holds for all t = 0, 1, . . ., so that q� = 0. In other words,
if q� in (A4) is such that f(q�) = 0, then necessarily q� = 0.

Case 2 – f(q�) = 1: Then q� > 0, M� = 0 and (20) now
reduces to

W � =st min
(

	W
�

2

,Wmax

)

with only solution W � = 1 (also in agreement with the
discussion in Section V-A).

Case 3 – 0 < f(q�) < 1: Then, 0 < q� < ∞ and from (19)
it is necessarily the case that E [W �] = C. Thus, the existence
of a steady state requires at the very least that the equation2

E [W γ ] = C, γ ∈ [0, 1] (22)

has a unique solution, say γ�, in which case we must have

γ� = 1 − f(q�).

By known results on finite state Markov chains [23], the
mapping γ → E [W γ ] is continuous on [0, 1] with

E [W γ ]γ=0 = 1 and E [W γ ]γ=1 = Wmax.

By continuity, {E [W γ ] , γ ∈ [0, 1]} must contain the interval
[1,Wmax]. On the other, it is always the case that

1 ≤ E [W γ ] ≤ Wmax, γ ∈ [0, 1],

and we conclude that {E [W γ ] , γ ∈ [0, 1]} = [1,Wmax].
Therefore, there exists at least one solution to (22) provided
1 ≤ C ≤ Wmax. The uniqueness of the solution would
be ensured by the strict monotonicity of the mapping
γ → E [W γ ] illustrated in Figure 1 (and also suggested by
the approximation (17)).

VI. A CENTRAL LIMIT THEOREM

In this section, we present a Central Limit Theorem (CLT)
which complements the limiting results obtained earlier. The
discussion is carried out in the setup of Section IV, but with
Assumption (A1) strengthened to read as Assumption (A1b),
where

(A1b) Assumption (A1) holds with mapping f : IR+ → [0, 1]
which is continuously differentiable, i.e., its derivative
f ′ : IR+ → IR exists and is continuous.

For each t = 0, 1, . . ., let q(t) and W (t) be as in Theorem
1, and set

L
(N)
0 (t) :=

Q(N)(t)
N

− q(t)

2Equation 22 forms the basis for item (iii) in Section II.
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Fig. 1. The mapping γ → E [W γ ] when Wmax = 5 vs. the approximation
(17).

and

L̄(N)(t) =
1
N

(
N∑

i=1

W
(N)
i (t) − E [W (t)]

)
.

Theorem 2: Assume (A1b)-(A2) to hold. Then, for each t =
0, 1, . . ., there exists an IR2-valued rv L(t) = (L0(t), L̄(t))
such that the convergence

√
N

(
L

(N)
0 (t), L̄(N)(t)

)
⇒N L(t) (23)

holds. Moreover, the distributional recurrence

L0(t + 1) =st






0 K(t) > 0
L0(t) + L̄(t) K(t) < 0(
L0(t) + L̄(t)

)+
K(t) = 0

(24)

holds where we have set

K(t) = C − q(t) − E [W (t)] .

For any t = 1, 2, . . ., if there exists an integer r < t such that
K(r) > 0 and K(s) �= 0 for all s = r, r + 1, . . . , t, then the rv
L0(t) is Gaussian.

The convergence (23) suggests the approximation (1). We
can interpret K(t) as the residual capacity per user in the
limit in timeslot [t, t+1). If there exists extra capacity for the
average user rate to increase (K(t) > 0), then there is no fluc-
tuation in the limiting queue. On the other hand, when there is
congestion (K(t) < 0), the (non-trivial) limiting distribution
can be found recursively. Some technical difficulties arise in
the special case K(t) = 0.

A distributional recursion is available for L̄(t), but is much
more complicated to describe due to feedback interaction
present in the system. Due to space constraints, this dis-
tributional recursion and the proof of Theorem 2 will be
omitted; details can be found in [24]. However, we do note
the following interesting fact: As part of the proof of Theorem
2 we find that

L̄(t + 1) =st c(t)f ′(q(t))L0(t) + ξ(t)
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for some rv ξ(t) and non-random constant c(t). It turns out
that we have the decomposition ξ(t) = η(t) + ζ(t) with ζ(t)
a zero mean Gaussian rv which is independent of the pair
(L0(t), η(t)) and η(t) is associated with a CLT-type result for
the array (12). Thus, in general neither component of L(t)
may be normally distributed. Moreover, the magnitude of the
queue fluctuations is seen to be proportional to the derivative
of f around the limiting (normalized) queue size q(t). Since
the original drop probability function of RED is discontinuous
around max thresh, our analysis is very much in line with the
reported oscillatory queue behavior when the average queue
exceeds max thresh and with the finding that the addition of
the “gentle” option can improve the queue behavior [19].

To understand why the derivative of the marking function
plays such an important role, note that f(Q(N)(t)

N ) is the only
feedback information from the RED gateway to the TCP
sources. However, this feedback information also fluctuates
around its limiting value f(q(t)). It is easy to imagine that
the uncertainty in the feedback information will also lead
to fluctuations in the limiting queue as is suggested by the
following result (also known as the Delta Method [26, p. 214]).

Lemma 1: If f : IR+ → [0, 1] is differentiable with
derivative continuous at x = q(t), then the convergence√
N(Q(N)(t)

N − q(t)) ⇒N L0(t) implies
√
N(f(Q(N)(t)

N ) −
f(q(t))) ⇒N f ′(q(t))L0(t).

VII. SIMULATION RESULTS

In this section, we present results from (Monte-Carlo)
simulations of the model presented in Section III and from
NS-2 simulations [6] to illustrate the behaviors suggested by
both Theorems 1 and 2. For the NS-2 simulations, we use the
system shown in Figure 2. Each server establishes a TCP Reno
connection to a corresponding client, thereby competing for
the capacity in the ECN/RED gateway. Each TCP has a fixed
packet size of 1500 bytes and a maximum window size of 200
packets. The marking probability function in the ECN/RED
gateway is specified as in (A1) with f : IR+ → [0, 1] taken to
be

f(x) = min
(
0.01(x − 1)+, 1

)
, x ≥ 0. (25)

We choose this simple marking probability function with only
one major slope in order to later demonstrate the relationship
between the magnitude of the queue fluctuations and the slope
of f as mentioned in the end of Section VI.

The “time constant” parameter wq for the Exponential
Weighted Moving Average is set to 0.002, similar to the
recommended value in [18]. Every round equals the round-
trip propagation delay of 200 milliseconds. At the beginning
of each round, we collect the instantaneous queue length in
the ECN/RED buffer for a total duration of 200 seconds.
Figure 3 shows the queue length normalized by the number
of connection (N) as a function of time. We note a behavior
similar to that discussed in Theorem 1 as fluctuations in
the normalized queue length decrease with an increasing
number of connections. Figure 3 also suggests the existence
of a steady-state for the limiting model, with a steady-state

N servers N clients

10 Mbps 50 ms. 10 Mbps 50 ms.

100N kbps 50 ms
Buffer = 2000N packets
ECN/RED

Fig. 2. The simulation setup in NS-2.
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Fig. 3. The normalized queue length of the ECN/RED gateway in NS-2
simulation.

normalized queue length being constant at approximately
4.85 packets/user, corresponding to the steady-state marking
probability of 0.0385 = f(4.85).

To simulate the model described in Section III, we use the
same parameter setup as in the NS simulation, i.e., Wmax =
200, simulation time of 1000 timeslots and the same marking
function. The capacity per user (C) of the bottleneck router
can be calculated from (17) and (22) when the marking
probability p is 0.0385 (obtained from the NS simulation,
so that γ = 1 − p = .9615). A simple calculation yields
C = 6.24 packets/timeslot. The simulation results are shown
in Figure 4. A quick comparison to Figure 3 indicates a
qualitative similarity in that the fluctuations decrease as the
number of users increases. Further inspection reveals that the
average normalized queue length is around 4.93 packets/user,
very close to 4.85 packets/user produced by the NS simulation.
Therefore, the limiting stochastic model appears to capture the
essential behavior of queue dynamics in ECN/RED gateways,
although the model exhibits somewhat greater fluctuations than
in the NS simulation. This is due to the fact that all flows in
the model are synchronized at the beginning of each timeslot,
i.e., they adapt at the same time while in the NS simulator,
the flows react asynchronously to the mark from the RED
gateway.

To gauge the rate of convergence, we assume that the queue
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is in steady state after the first 100 samples and that the
magnitude of the queue fluctuations around its steady state
mean is Gaussian3 and ergodic. Therefore, the steady-state
standard deviation of the queue can be approximated from
the sample standard deviation of the queue at timeslot 101
and beyond. The comparison between the sample standard
deviation from the model and NS simulations is displayed in
Figure 5. They clearly follow a similar trend. We also expect
from Theorem 2 that the standard deviation will decrease
as 1/

√
N for large N . Let SN denote the sample standard

deviation of the normalized queue when the number of users
is N . We can see from Figure 5 that S1/

√
N provides a good

approximation of the standard deviation SN for large N .
To demonstrate the relationship between the slope of the

marking probability function and the magnitude of the queue
fluctuation (as mentioned at the end of Section VI), we use

3By Theorem 2 the fluctuation L0(t) is Gaussian if K(s) �= 0, s =
0, . . . , t.
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Fig. 6. The normalized queue length of the ECN/RED gateway in NS-2
simulation with the marking probability function (26).
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Fig. 7. The normalized queue length of the model with the marking
probability function (26).

the same network setup as before but with a slope increased
ten-fold, i.e.,

f(x) = min
(
0.1(x − 1)+, 1

)
, x ≥ 0. (26)

Figures 6 and 7 show the simulation results in the case of
the steeper function (26). In both the Monte-Carlo and NS-2
simulations it is clear that the magnitude of queue fluctuation is
much larger than in the original simulation. As the number of
flows increases, the convergence becomes much slower than
in the original setup. In the control-theoretic view of [10],
this phenomenon can be interpreted as the control system
becoming oscillatory with too large a feedback gain.

VIII. APPLICATION TO NETWORK DIMENSIONING

We now consider a simple application of these limiting
results: An ISP currently services up to N TCP flows at peak
hour through an ECN/RED access gateway connecting to the
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core network with link speed of NC packets/sec. The network
manager can roughly determine the buffer utilization in the
ECN/RED gateway as follows:

(i) Determine the marking probability per flow (p = f(q))
from the relation C = E

[
W 1−p

]
by using a TCP throughput

formula such as (17). If Wmax ≤ C, the steady-state analysis
in Section V suggests that the link is already over-provisioned
and no congestion control action is required, i.e., the marking
probability per flow is simply f(q) = 0.

(ii) Calculate the limiting queue length q in steady state by
solving p = f(q);

(iii) Approximate the queue length distribution in steady
state via the CLT complement. If the steady state exists, the
CLT complement determines the distribution of the queue size
fluctuations around q. The delay and overflow distributions can
also be approximated via the CLT complement.

Although these limiting results apply only to TCP flows
with identical round-trip times, they would be of use in a
number situations, e.g., an intercontinental Internet link where
this link is typically a bottleneck, its large propagation delay
dominates the round-trip and the number of flows is extremely
large.

IX. CONCLUSIONS

We have developed a stochastic model of an ECN/RED
gateway under competing TCP flows. We have shown that,
as the number of flows grows large, the aggregate behavior
of the queue can be described by a two-dimensional recursion
and TCP flows become asymptotically independent, thus no
longer synchronized. In addition, a method to calculate the
buffer utilization at the steady-state is proposed. The CLT
complement yields further insight on the relationship between
the queue fluctuations and the marking probability function.

Although we have yet to prove the existence of a steady state
regime for the limiting recursion identified here, the limited
simulation results are compatible with the existence of such a
steady state under some conditions on the marking probability
function.

Future work on this class of models includes (i) a proof of
the existence of a steady state for the limiting dynamics and
its evaluation; (ii) the incorporation of additional features, e.g.,
the slow-start phase, random round-trip delays and heteroge-
neous populations of TCP flows; and (iii) the modeling of
non-responsive UDP flows and short-lived TCP flows. Some
progress on the issues in (ii) is reported in [25].
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A. A PROOF OF THEOREM 1

A. Some useful facts

To facilitate the presentation of the proof of Theorem 1, we
begin with a few simple and useful facts. Fix i = 1, . . . , N
and consider an arbitrary mapping g : IN → IR: It follows
from (5) that

g(W (N)
i (t + 1))

= M
(N)
i (t + 1)g(min

(
W

(N)
i (t) + 1,Wmax

)
)

+ (1 − M
(N)
i (t + 1))g(min

(
	W

(N)
i (t)
2


,Wmax

)
).
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Let Ft denote the σ-field generated by the rvs
{Q(N)(0),W (N)

i (0), Vi(s), Vi,j(s), i, j = 1, 2, . . . ; s =
1, . . . , t}. The rvs Q(N)(t) and W

(N)
i (t) (i = 1, . . . , N ) being

all Ft-measurable, it holds under the enforced independence
assumptions that

E
[
M

(N)
i,j (t + 1)|Ft

]
= 1 − f (N)(Q(N)(t)), j = 1, 2, . . .

so that
E

[
M

(N)
i (t + 1)|Ft

]
= Z

(N)
i (t) (27)

by conditional independence, where we have set

Z
(N)
i (t) =

(
1 − f (N)(Q(N)(t))

)W
(N)
i

(t)
. (28)

It is now plain that

M
(N)
i (t + 1) =st 1

[
Vi(t + 1) ≤ Z

(N)
i (t)

]
. (29)

It readily follows from (27) that

E
[
g(W (N)

i (t + 1))|Ft

]
= Fg(Z

(N)
i (t),W (N)

i (t)) (30)

where the mapping Fg : [0, 1] × IN → IR is associated with g
through

Fg(z, w) = zg(min(w + 1,Wmax)) (31)

+(1 − z)g(min(	w
2


,Wmax)).

Upon taking expectations on both sides in the relation above,
we get

E
[
g(W (N)

i (t + 1))
]

= E
[
Fg(Z

(N)
i (t),W (N)

i (t))
]
. (32)

B. A Weak Law of Large Numbers

For each t = 0, 1, . . ., the statements [A:t], [B:t], [C:t] and
[D:t] below refer to the following convergence statements:

[A:t] For some non-random q(t), it holds that

Q(N)(t)
N

P→ Nq(t); (33)

[B:t] For some {1, . . . ,Wmax}-valued rv W (t), it holds that

W
(N)
1 (t) ⇒N W (t); (34)

[C:t] For any integer I = 1, 2, . . ., the rvs {W (N)
i (t), i =

1, . . . , I} become asymptotically independent with large
N as described by (8) where W (t) is the rv occurring in
[B:t];

[D:t] For any mapping g : IR → IR, the convergence (7) holds
with W (t) the rv occurring in [B:t].

Through a series of lemmas, we prove the validity of the
statements [A:t]–[D:t] for all t = 0, 1, . . .. We do so by
induction on t and in the process we establish Theorem 1.

Lemma 2: Under (A1), if [A:t] and [B:t] hold for some t =
0, 1, . . ., then [B:t+1] holds with W (t + 1) related to W (t) by
(10).

Proof: Together the convergence [A:t] and [B:t]
imply [26, Thm. 5.28, p. 150] the joint convergence
(N−1Q(N)(t),W (N)

1 (t)) ⇒N (q(t),W (t)). Next the conti-
nuity of the mapping f implies that of (x,w) → (1 − f(x))w

on IR+ × (0,∞), so that

(Z(N)
1 (t),W (N)

1 (t)) ⇒N (Z(t),W (t)) (35)

by the Continuous Mapping Theorem [26, Thm. 5.29, p. 150]
with Z(t) = (1 − f(q(t)))W (t).

Consider (32) for an arbitrary mapping g : IN → IR, and
observe that the mapping Fg defined by (31) is continuous on
[0, 1]× IN 4. Consequently, the Continuous Mapping Theorem
can again be invoked to yield

Fg(Z
(N)
1 (t),W (N)

1 (t)) ⇒N Fg(Z(t),W (t)), (36)

whence

lim
N→∞

E
[
Fg(Z

(N)
1 (t),W (N)

1 (t))
]

= E [Fg(Z(t),W (t))]

by the Bounded Convergence Theorem [26, Thm. 4.16, p.
108]. Combining this last convergence with (32), we get

lim
N→∞

E
[
g(W (N)

1 (t + 1))
]

= E [Fg(Z(t),W (t))] (37)

and the mapping g being arbitrary, it follows immediately that
W

(N)
1 (t + 1) ⇒N W (t + 1) for some {1, . . . ,Wmax}–valued

rv W (t + 1), with

E [g(W (t + 1))] = E [Fg(Z(t),W (t))] . (38)

A moment of reflection and a comparison to the analysis in
(30)-(32) will convince the reader that (38) is equivalent to
(10) and (11).

Lemma 3: Under (A1), if [A:t] and [D:t] hold for some t =
0, 1, . . ., then [A:t+1] also holds.

Proof: Using [A:t] and [D:t] (with g(x) = x), we
conclude that

Q(N)(t)
N

− C + 1
N

∑N
i=1W

(N)
i (t)

P→ N q(t) − C + E [W (t)] (39)

and the desired result is now a simple consequence of the
continuity of the function x → x+ since

Q(N)(t + 1)
N

=
[
Q(N)(t)

N
− C + 1

N

∑N
i=1W

(N)
i (t)

]+

for all N = 1, 2, . . ..
The proof of Lemma 3 also shows that

Q(N)(t + 1)
N

P→ Nq(t + 1)

with non-random q(t + 1) determined by (9).
Lemma 4: Under (A1)–(A2), if [A:t], [B:t] and [C:t] hold

for some t = 0, 1, . . ., then [C:t+1] also holds.

4This continuity is with respect to the product topology on [0, 1]×IN where
IN is topologized according to the usual discrete topology.
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Proof: Fix a positive integer I . The rvs V1(t +
1), . . . , VI(t + 1) are i.i.d. [0, 1]-uniform rvs which are in-
dependent of Ft. Thus, upon making use of the representation
(5) with (29), we see that the rvs W

(N)
1 (t+1), . . . ,W (N)

I (t+1)
are mutually independent given Ft. Consequently, for arbitrary
mappings g1, . . . , gI : IN → IR, we get

E

[
I∏

i=1

gi(W
(N)
i (t + 1)|Ft

]

=
I∏

i=1

E
[
gi(W

(N)
i (t + 1)|Ft

]

=
I∏

i=1

Fgi
(Z(N)

i (t),W (N)
i (t))

with the help of (30) and (31).
Now it follows from (8) in [C:t] that the joint convergence

(W (N)
1 (t), . . . ,W (N)

I (t)) ⇒N (W1(t), . . . ,WI(t))

holds with limiting rvs W1(t), . . . ,WI(t) which are i.i.d. rvs,
each distributed according to W (t). As in the proof of Lemma
2, the arguments leading to the convergence (36) also lead to

(Fg1(Z
(N)
1 (t),W (N)

1 (t)), . . . , FgI
(Z(N)

I (t),W (N)
I (t)))

⇒N (Fg1(Z1(t),W1(t)), . . . , FgI
(ZI(t),WI(t)))

with the limiting rvs (Z1(t),W1(t)), . . . , (ZI(t),WI(t)) being
i.i.d. rvs, each distributed according to the pair (Z(t),W (t)).
Therefore, by the Bounded Convergence Theorem,

lim
N→∞

E

[
I∏

i=1

gi(W
(N)
i (t + 1)

]

= lim
N→∞

E

[
I∏

i=1

Fgi
(Z(N)

i (t),W (N)
i (t))

]

= E

[
I∏

i=1

Fgi
(Zi(t),Wi(t))

]

=
I∏

i=1

E [Fgi
(Zi(t),Wi(t))]

=
I∏

i=1

E [gi(Wi(t + 1)] (40)

where the last equality made use of the relation (38). The
desired result [C:t+1] now follows from (40) given that the
mappings g1, . . . , gI are arbitrary.

Lemma 5: Under (A1)–(A2), if [A:t], [B:t] and [C:t] hold
for some t = 0, 1, . . ., then [D:t] holds.

Proof: Pick a mapping g : IN → IR. We begin with the
observation that under (A2) the rvs W

(N)
i (t), . . . ,W (N)

N (t) are

exchangeable. As a result, we get

var
[

1
N

∑N
i=1g(W

(N)
i (t))

]

= N−2
N∑

i=1

var[g(W (N)
i (t))]

+N−2
N∑

i,j=1,i �=j

cov[g(W (N)
i (t)), g(W (N)

j (t))]

= N−1var[g(W (N)
1 (t))]

+
N − 1
N

cov[g(W (N)
1 (t)), g(W (N)

2 (t))]. (41)

Now let N go to infinity in (41): The validity of [C:t] and
the Bounded Convergence Theorem already imply

lim
N→∞

cov[g(W (N)
1 (t)), g(W (N)

2 (t))]

= cov[g(W1(t)), g(W2(t))] = 0

by asymptotic independence. On the other hand, with
G := max{|g(x)|, x = 1, . . . ,Wmax}, we have
supN var[g(W (N)

1 (t))] < G2. Combining these observations
we readily see that

lim
N→∞

var
[

1
N

∑N
i=1g(W

(N)
i (t))

]
= 0,

whence, by Chebyshev’s Inequality,

1
N

∑N
i=1g(W

(N)
i (t)) − E

[
1
N

∑N
i=1g(W

(N)
i (t))

]
P→ N0.

This last convergence is equivalent to

1
N

∑N
i=1g(W

(N)
i (t)) − E

[
g(W (N)

1 (t))
]

P→ N0

by exchangeability, and the desired convergence result
(7) is now immediate once we remark under [B:t] that
limN→∞ E

[
g(W (N)

1 (t))
]

= E [g(W (t)].
To conclude the proof of Theorem 1, we note that under

(A1)-(A2) the statements [A:t]–[D:t] trivially hold for t = 0
with q(0) = 0 and W (0) = W . Moreover, if [A:t]–[C:t]
hold for some t = 0, 1, . . ., then so do the statements [D:t]
[B:t+1], [A:t+1] and [C:t+1] by Lemma 5, Lemma 2, Lemma
3 and Lemma 4, respectively. Consequently, the statements
[A:t]–[D:t] do hold for all t = 0, 1, . . . by induction and the
validity of Claims (i)-(iii) of Theorem 1 is now established.
The dynamics (9) is a byproduct of the proof of Lemma 3,
while (10)-(11) are already contained in Lemma 2.
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