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Abstract— We consider the problem of routing in a network
where QoS constraints are placed on network traffic. We provide
two optimal algorithms that are based on determining the
discontinuities of functions related to the optimization at hand.
The proposed algorithms have pseudopolynomial worst case
running time and for a wide variety of tested networks they
have fairly satisfactory running times. They perform significantly
better than the algorithm based on the direct application of
the Dynamic Programming equations and can also be used in
conjunction with known polynomial-time approximation algo-
rithms to provide good average case behavior, in addition to
guaranteeing polymonial worst-case running time.

Index Terms— Network Routing, QoS Routing, Graph theory,
Simulations

I. INTRODUCTION

Transmission of multimedia traffic presents many challenges
to the network designer. Voice and video packet streams
require certain bandwidth as well as bounds on delay, loss
probability and jitter in order to maintain reception quality.
These issues give rise to the problem of routing multimedia
traffic so that Quality of Service (QoS) is maintained, [11],
[13],[14] otherwise known as the Constrained Shortest Path
Routing Problem.

The QoS Routing Problem consists in finding an optimal-
cost path from a source to a destination subject to one or
more constraints (e.g., total delay and loss probability) on the
path. It is well known that this problem is NP-complete [5]
and several heuristics have been proposed for its solution [2],
[3], [8]. On the other hand, fully polynomial ε-approximate
solution schemes for the problem exist [7], [15]. These results
were recently improved in [9] and were applied to related
problems in [10]. In [6], polynomial algorithms have been
proposed that find the optimal solution from one source to all
destinations, within ε-deviation from the set path constraint.
The algorithms in [6] and [9] use as a subroutine the iterations
implied by the Dynamic Programming equation related to the
problem at hand.

In this paper we provide two optimal algorithms for the
QoS Routing problem. The algorithms consist in finding the
discontinuity points of functions related to the optimization
problem. Although pseudopolynomial, tests with a wide va-
riety of networks, link costs and link constraints, show that
the proposed algorithms have fairly satisfactory performance
and can be used in practical systems. Moreover, if guaran-
teed polynomial worst-case running time is also desired, the
algorithms can replace the dynamic programming recursions
in the approximate polynomial-time algorithms in [6] and [9],
to improve their average running time.
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The rest of the paper is organized as follows. In Section II
we define the problem and provide the optimal algorithms.
In Section III we provide a set of numerical experiments
that evaluate the performance of the proposed algorithms.
Conclusions are presented in Section IV.

II. PROBLEM FORMULATION AND ALGORITHMS

Let G = (N,L) be a graph with node set N and link
set L. A link with origin node m and destination node n is
denoted by (m,n). With N+(n) and N−(n) we denote the
set of incoming and outgoing neighbors to node n, that is,
respectively,

N+(n) = {m ∈ N : (m,n) ∈ L} ,
N−(n) = {m ∈ N : (n,m) ∈ L} .

With each link l = (m,n) , m, n ∈ N there is an associated
cost cmn ≥ 0 and delay dmn ≥ 0. If p = (m1, ...,mk) is a
directed path (a subgraph of G consisting of nodes m1, ...,mk,
mi �= mj for all 1 ≤ i, j ≤ k, i �= j, and links (mi,mi+1),
1 ≤ i ≤ k − 1) then we define the cost and delay of the path
respectively,

C(p) =
∑

(m,n)∈p

cmn,

D(p) =
∑

(m,n)∈p

dmn.

The set of all paths with origin node s, destination node n and
delay less than of equal to d is denoted by Psn(d). The set
of all paths from s to n is denoted simply by Psn. For any d,
we are interested in finding a path p∗ ∈ Psn(d) such that

C(p∗) ≤ C(p) for all p ∈ Psn(d).

Let C∗
n(d) be the minimum of the costs of the paths p ∈

Psn(d). If Psn(d) = ∅, we define C∗
n(d) = ∞. For node s,

we also define

C∗
s (d) =

{
∞ if d < 0
0 if d ≥ 0 .

The algorithms to be presented below depend heavily on
the properties of the functions C∗

n(d). These properties are
presented in the lemmas below.

Lemma 1: The functions C∗
n(d), n ∈ N, n �= s, satisfy the

following equations.

C∗
n(d) = min

m∈N+(n)
{cmn + C∗

m(d− dmn)}
Proof: These are the dynamic programming equations

for the problem at hand [1, Problem 4.46.]. We only note that
due to the fact that the links costs are nonnegative, we can use
the equations as stated in the lemma instead of

C∗
n(d) = min

{
C∗

n(d− 1),
minm∈N+(n) {cmn + C∗

m(d− dmn)}

}
,
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and we do not need to make any integrality assumptions on
d.

Lemma 2: For any n ∈ N , C∗
n(d) has the following

properties

1) C∗
n(d) is nonincreasing

2) If C∗
n(d) < ∞ for some d, then C∗

n(d) is a piecewise
constant, right continuous function of d. If C∗

n(d) is
discontinuous at d0, then

a) There is a path p∗
d such that C∗

n(d) = C(p∗
d) and

D(p∗
d) = d0 .

b) There is an m ∈ N+(n) such that C∗
m(d) is

discontinuous at d0−dmn and C∗
n(d0) = C∗

m(d0−
dmn) + cmn.

3) The set Dn, of points ( real number pairs) (d,Cn(d)) at
which discontinuities of Cn(d) occur, is finite.

Proof: 1) The fact that C∗
n(d) is nonincreasing follows

directly from the definition.
2.a) Observe that if C∗

n(d) < ∞, then there must exist
a path p ∈ Psn(d) with C(p) = C∗

n(d). Let p∗
d be a path

with smallest delay among the paths that have cost C∗
n(d). By

definition,

C∗
n(d) = C(p∗

d). (1)

Moreover it holds that

C∗
n(d′) > C∗

n(d) for d′ < D(p∗
d). (2)

To see this note that if C∗
n(d′) = C∗

n(d) then there must exist
a path q with delay at most d′ < D(p∗

d) such that C(q) =
C∗

n(d′) = C∗
n(d), which contradicts the definition of p∗

d. Since
C∗

n(d) is nonincreasing, the only possibility is that C∗
n(d′) >

C∗
n(d) for d′ < D(p∗

d).
Next, let p̂d be the path with smallest delay among the paths

in the set

P (d) = {p ∈ Psn : C(p) < C∗
n(d)} .

In case P (d) = ∅ define D(p̂d) = ∞. Then, it holds

C∗
n(d′) = C(p∗

d) for D(p∗
d) ≤ d′ < D(p̂d). (3)

To see this note that if C∗
n(d′) < C(p∗

d) for some d′ such that
D(p∗

d) ≤ d′ < D(p̂d), then there must exist a path q with delay
at most d′ < D(p̂d) such that C(q) = C∗

n(d′) < C∗
n(p∗

d) =
C∗

n(d), which contradicts the definition of p̂d. Since C∗
n(d) is

nondecreasing, the only possibility is that C∗
n(d′) = C∗

n(d) for
D(p∗

d) ≤ d′ < D(p̂d).
The fact that C∗

n(d) is a piecewise constant, right continuous
function, as well as 2.a, follow from (1), (2) and (3).

2.b) Let M be the set of nodes k ∈ N+(n) for which it
holds

C∗
n(d0) = C∗

k(d0 − dkn) + ckn.

It follows from Lemma 1 that M is non empty and

C∗
n(d0) < C∗

k(d0 − dkn) + ckn, for k ∈ N+(n) − M (4)

Since C∗
n(d) is discontinuous at d0, the continuity of the

function min {•} implies that for at least one node m in M,
C∗

m(d) is discontinuous at d0 − dmn.

3) According to 2), if C∗
n(d) is discontinuous a dl, there

exist a path p∗
dl

such that D(p∗
dl

) = dl. Hence to different
discontinuities (i.e., different dl) correspond different paths
and the statement follows from the fact that the number of
paths in the network is finite.

The following observations that follow from the lemmas are
important in the development of the algorithms below.

• Since C∗
n(d) is piecewise constant, knowing its disconti-

nuity points in fact determines the whole function.
• Let C∗

n(d) be discontinuous at d0. According to Lemma
2, 2.b, there is an m ∈ N+(n) such that C∗

m(d) is
discontinuous at d0−dmn and C∗

n(d0) = C∗
m(d0−dmn)+

cmn. Moreover, according to Lemma 2, 2.a, there is a path
q ∈ Psm(d0 − dmn) such that C∗

m(d0 − dmn) = C(q)
and D(q) = d0 − dmn. Therefore, the path p∗

d obtained
by adjoining link (m,n) to q, is a path with delay
d0 and cost C∗

n(d0). The triple (d0 − dmn, C
∗
m(d0 −

dmn), m) is called predecessor of (d0, C∗
n(d0), n), and

(d0, C∗
n(d0), n) successor of (d0 −dmn, C

∗
m(d0 −dmn),

m).
• Suppose that we know that for m ∈ N , C∗

m(d0) is
discontinuous at d0 and in addition we know a path
q for which C∗

m(d0) = C(q), d0 = D(q). Then the
possible successors of (d0, C∗

m(d0),m) are the triplets
(d0 + dmn, C

∗
m(d0 + dmn), n) for n ∈ N−(m). If we

find a way of deciding which of these possible successors
are actual ones, then we will immediately know the
corresponding path by adjoining node n to p.

In the following we also make use of the lexicographic order
between pairs of real numbers. We say that the pair (d1, c1) of
real numbers is lexicographically smaller (or simply smaller
if there is no possibility for confusion) than (d2, c2) and write

(d1, c1) < (d2, c2),

if either d1 < d2, or d1 = d2 and c1 < c2.

A. ALGORITHM I

Let D = ∪n∈NDn be the set of all discontinuities of the
functions C∗

n(d), n ∈ N . The proposed algorithm determines
the discontinuities in D in nondecreasing lexicographic order.
Clearly, a smallest discontinuity occurs at (0, 0) for the func-
tion Cs(d). We assume the implementation of queues and heap
structures with the following operations [1].

• Queue structure Q
– head(e,Q): returns (i.e., shows or points to, without

removing) the first element e of the Q.
– tail(e,Q): returns the last element e of the Q.
– enqueue(e,Q): inserts element e at the end of Q.
– dequeue(e,Q): removes and returns the head element
e of Q.

– size_of(Q): returns the size of Q.
All previous operations on Q take O(1) time

• A heap H , using key K.
– create_heap(H): creates an empty heap H .
– insert(e,H): inserts element e to H .
– find_min(e,H): returns an element e in H with the

smallest key.
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– get_min(e,H): removes and returns an element e in
H with the smallest key.

– decrease_key(enew, e,H): replaces in H element e
with enew. Element enew has smaller key than e.

– increase_key((enew, e,H): replaces in H element e
with enew. Element enew has larger key than e.

We assume a Fibonacchi heap implementation [4]of H,
so that all previous operations with the exception
of get_min(e,H) and increase_key(enew, e,H)
take O(1) time. Operations get_min(e,H) and
increase_key(enew, e,H) take O(logN) time, where N
is the size of the heap.

The following structures are maintained during the execu-
tion of the algorithm.

• An array Ab[n] of queues. Queue Ab[n] holds the cur-
rently known discontinuities of C∗

n(d) in nondecreasing
order. Its elements are of the form eb =(delay, cost,
predecessor, discontinuity_node), where (delay, cost) is a
discontinuity pair of C∗

n(d), n =discontinuity_node and
predecessor is the predecessor node of (delay,cost, n).
Parameter discontinuity_node is of course redundant, but
we keep it in order to simplify the presentation of the
code.

• A heap Ha. This heap contains possible discontinuities
that may be successors of some of the already known
discontinuities. Each element ea of this heap is of the
same form as the elements of Ab[n]. The key for the
heap elements is the pair (delay,cost) of ea.

The proposed algorithm is shown in Figure 1. The algorithm
starts by initializing the queues Ab[n], n ∈ N and the heap Ha

(steps 1-4). At this stage only the queue corresponding to the
source node s is nonempty, containing the single discontinuity
at (0, 0) and with null predecessor. The rest of the queues
are initialized to (−∞,∞, null, n). The latter initialization is
done in order to facilitate the description of the code. The heap
Ha contains the possible successor discontinuities of (0, 0, s)
(steps 5-7). The latter (possible discontinuities) consist of one
possible discontinuity of the form (dsn, csn, s, n) for each of
the outgoing neighbors of s.

In the while loop, line 8, the algorithm removes the mini-
mum key discontinuity ea among the possible discontinuities
in Ha. Next, it compares the cost parameter of the key of
ea with the cost parameter of the key of the tail element
eb in the queue that corresponds to the discontinuity_node
of ea . If ea.cost is larger than or equal to eb.cost, then
ea is discarded. Else the discontinuity represented by ea is
enqueued to the discontinuities of the queue corresponding to
m = ea.discontinuity_node. Next, in the for all loop, line
14, a possible discontinuity is added to Ha for each outgoing
neighbors of m. A further optimization step is taken here
by avoiding to create possible discontinuities for the node
n ∈ N−(m) for which n = ea.predecessor, since such a
discontinuity is impossible.

The algorithm stops when Ha = ∅, that is, when there are
no possible discontinuities left to be examined.

Algorithm I finds all the discontinuities of the functions
C∗

n(d), n ∈ N, that is, all optimal paths from s to any node

ALGORITHM I Inputs: Graph G with link costs cij and
delays dij . Outputs: The array Ab[n] of queues, which con-
tains the discontinuities of each node. /* begin initialization
*/

1) create_heap(Ha)
2) for all n ∈ N − {s}{
3) Ab[n] = (−∞,∞, null, n);}
4) Ab[s] = (0, 0, null, s);
5) for all n ∈ N−(s){
6) ea = (dsn, csn, s, n);
7) insert(ea,Ha);} /* end initialization */
8) while Ha = ∅ do {
9) get_min(ea,Ha);

10) m = ea.discontinuity_node;
11) tail(eb, Ab[m]);
12) if (eb.cost> ea.cost) then{
13) enqueue(ea, Ab[m]); }
14) for all n ∈ N−(m), n �= ea.predecessor{
15) e′a = (ea.delay+dmn, ea.cost+cmn, m, n);
16) insert( e′a,Ha);}}

Fig. 1. Algorithm I

n ∈ N and for any possible delay. If we are interested only
in finding a path from node s to a given node n, with delay
at most d, then the algorithm can be made to stop as soon
as for function C∗

n(d) a discontinuity is found whose delay is
larger than or equal to d. Below we prove the correctness of
Algorithm I and analyze its computational complexity.
Correctness of Algorithm I

At the Lth iteration of the loop that begins on line 8, let
DL = ∪n∈NAb[n]. We will establish by induction that.

1) The Lth smallest discontinuity ea in D is added to the
appropriate queue Ab[n].

2) The keys of the elements in heap Ha are larger than or
equal to the keys of the elements in DL.

3) The heap Ha contains all the discontinuities that may
be successors of the discontinuities in DL.

The statement is correct at the initialization step L = 0.
Assume next that the statement is correct at step L. Let ea be
the element with smallest key in Ha and eb the last element in
Ab[m], where m = ea.discontinuity_node. If eb.cost≤ ea.cost,
then ea cannot be a discontinuity of C∗

m(d). To see this, note
that by assumptions 1 and 2, we know that ea.delay≥ eb.delay.
Therefore, for ea to represent a discontinuity of C∗

m(d), by
Lemma 2 we must have eb.cost> ea.cost. Assume now that
eb.cost> ea.cost. Then, eb.delay< ea.delay since otherwise
the key of ea will be (strictly) smaller than the key of eb,
which contradicts assumption 2. By assumption 3, there is
a predecessor of ea in DL. There can be no discontinuity
e′a for C∗

m(d) with delay smaller than ea.delay. To see this,
assume that such an e′a exists. According to Lemma 2.b,
there must be a path p′

a = (m1,m2, ...mk), m1 = s
mk = e′a.discontinuity_node, such that 1) C(p) = e′a.cost,
D(p) = e′a.delay and 2) path pl

a = (m1, ...,ml) , 1 ≤ l ≤ k−1
corresponds to a discontinuity smaller than or equal to e′a.
Let ml be the smallest index node such that the discontinuity
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ela corresponding to pl
a = (m1, ...,ml) does not belong to

DL. The predecessor of ela must belong to DL and therefore,
according to assumption 3, ela must belong to Ha. Since
e′a.delay≥ ela.delay, and ea.delay> e′a.delay, we conclude
that ea.delay> ela.delay, which contradicts the fact that ea
has the minimum key in Ha. Since by construction there is a
path with delay and cost respectively ea.delay and ea.cost,
from the discussion above we conclude that ea represents
a discontinuity of C∗

m(d), m = ea.discontinuity_node and
assumption 1 is satisfied for L+ 1. Assumptions 2 and 3 are
also satisfied since the insert operations in the for all loop,
line 14,creates keys that are larger than or equal to ea, as well
as all the discontinuities that may be ancestors of ea.
Computational Complexity of Algorithm I.

In the following we analyze the worst case running time
of the algorithm provided that we intend to find all the
discontinuities in D. A similar analysis holds for the worst
case analysis when a bound d is specified on the delays. We
express these bounds in terms of parameters that are revealing
of the performance of the algorithms in the average case. If
desired, these bounds can also be expressed in terms of node,
link numbers and the delay bound.

Let R(n) be the number of discontinuities of C∗
n(d). De-

note,

Rmax = max
n∈N

{R(n)} ,

RS =
∑

n∈N

R(n),

E =
∑

m∈N

|N−(m)|R(m).

N−
max = max

n∈N
{N−(n)} .

Each discontinuity that is added to Ab[m] inserts |N−(m)|
elements to Ha. Therefore, E elements are inserted in Ha

and its size is at most E. The get_min operation is executed
once for each element of Ha. Since the get_min operation
takes O(logE) time in the worst case, the worst case running
time due to the get_min operation is O(E logE). The insert
operation takes constant time and is executed E times. Hence
the worst case running time of the algorithm is O(E logE).

We can express the worst case bound of the algorithm in
terms of other relevant parameters as follows. Observe that

E ≤ Rmax

∑

n∈N

|N−(n)| = Rmax |L| ,

where |L| is the cardinality of the set L. Hence the worst case
performance of the proposed algorithm is,

O(Rmax |L| (log |L| + logRmax))

Note that no integrality assumptions are made regarding
the link delays. For comparison, assuming that the delays
are positive integers and using the dynamic programming
recursive equation in Lemma 1, the function C∗

n(d) can be
determined in the worst case running time, [6],

O(Dmax |L|),

where Dmax is the maximum delay at which a discontinuity
in D may occur. If delays can take zero values, then the worst

case running time of the dynamic programming recursive
equations becomes

O(Dmax(|L| + |N | log |N |).

As we will see in Section III, numerical results show that for
a wide range of networks, Dmax is much larger than Rmax.
As a result, the running time of the proposed algorithm is in
general significantly better than the algorithm obtained by a
direct application of the dynamic programming equation.

B. ALGORITHM II

The performance of Algorithm I presented in the previous
section can be improved by a more efficient organization of
the heap Ha containing all possible successors of the already
known discontinuities. We present this approach in the current
section.

Instead of the heap Ha we consider the following structures.

• An array B[l] of queues,l ∈ L. An element e of B[l] is
of the form,

e = (delay, cost, predecessor, discontinuity_node),

where m=predecessor is the origin of link l ,
n=discontinuity_node is the destination of link l and (de-
lay,cost) signifies a possible discontinuity of C∗

n(d) with
predecessor node m. As in the previous section, n and m
are redundant here, but we keep them for simplicity in
the description. Hence queue B[l] contains all possible
discontinuities of C∗

n(d) that may be successors of the
already known discontinuities of C∗

m(d). The elements
in B[l] are stored in increasing order of keys, where key
is the pair (delay,cost).

• An array of heaps Ha[n]. Heap Ha[n] contains the head
elements of the queues B[(m,n)] , m ∈ N+(n). An
element ea of Ha[n] is of the same form as the elements
in arrayB[l].

• A heap Hg containing the minimum key elements of
Ha[n], n ∈ N . An element eg of Hg is of the same
form as the elements in array B[l]. Operations performed
during the update of Hg ensure that each element e in
Hg has smaller delay than any of the discontinuities in
Ha[n], n = e.discontinuity_node. This, combined with
the correctness proof of Algorithm I, ensures that the
minimum key element eg in Hg is a real discontinuity
for C∗

n(d), n = eg.discontinuity_node.

We also need the following subroutines

• obtain_minimum(eg,Hg): this subroutine returns the
minimum-key element eg in Hg . At the same time, it
updates Ha[n], n = eg.discontinuity_node and B[l],
l = (m,n), m ∈ N+(n), and either removes or updates
element eg .

• update_new(ea): This subroutine inserts a possible
discontinuity ea in queue B[(m,n)], where m =
ea.predecessor and n = ea.discontinuity_node. At the
same time, Ha[n] and Hg are updated.

The modified algorithm is presented in Figure 2. It is
assumed without loss of generality that N+(s) = ∅.
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ALGORITHM II Inputs: Graph G with link costs cij and
delays dij . Outputs: The array Ab[n] of queues, which con-
tains the discontinuities of each node. /* begin initialization
*/

1) create_heap(Hg);
2) Ab[s] = (0, 0, null, s);
3) for all l ∈ L {
4) B[l] = ∅;}
5) for all n ∈ N − {s}{
6) create_heap(Ha[n]);
7) Ab[n] = (−∅,∅, null, n);}
8) for all n ∈ N−(s) {
9) ea = (dsn,csn, s, n);

10) update_new(ea);} /* end initialization */
11) while Hg �= ∅ do {
12) obtain_minimum(eg,Hg);
13) m = eg .discontinuity_node;
14) enqueue(eg, Ab[m]);
15) for all n ∈ N−(m){
16) e′a = (eg.delay+dnm, eg.cost+cnm, m,n);
17) update_new(e′a) ;}}

Fig. 2. Algorithm II

The initialization of Ab[n] with a single element (−∅,
∅, null, n) is made in order to simplify the description of
the code.

It is instructive at this point to compare Algorithm II with
Dijkstra’s algorithm [1, page 109]. In the latter algorithm, at
each step there is a set S ⊆ N that consists of the nodes whose
minimum distance from the source node is known, and there
is a label associated with each node representing the shortest
distance path from the node to the source, provided that only
the nodes in S can be used as intermediate nodes in a path.
At each step of the algorithm, a node n in S = N − S with
smallest label is moved to S and the labels of all outgoing
neighbors of n are updated.

There is a direct correspondence between Dijkstra’s algo-
rithm and Algorithm II as follows

• S corresponds to the union of the elements in Ab[n],
n ∈ N.

• N corresponds to the set D of discontinuities of the
functions C∗

n (d)
• The label of node n corresponds to the set of possible

discontinuities of n that are located in B((m,n)), m ∈
N+(n).

In this sense, we may say that the proposed algorithm is a
generalization of Dikjstra’s algorithm.

We present the subroutine update_new in Figure 3, and we
describe the various steps of the pseudocode.

If the cost of ea is larger than or equal to the cost of the
tail element et in Ab[n] (line 4), then ea is not a possible
discontinuity and therefore it is discarded. If the cost of ea
is smaller than the cost of et, then, as with Algorithm I,
it is known that ea.delay >et.delay. If the heap Ha[n] is
empty, then the new element is inserted in B[l], Ha[n] and
Hg (lines 5 to 7) and the subroutine ends. Else, (lines 8

subroutine update_new(ea) Inputs: Element ea, the arrays
B, Ha,Ab and the heap Hg.

1) n = ea.discontinuity_node; m = ea.predecessor;
2) l = (m,n);
3) tail(et, Ab[n]);
4) if et.cost ≤ ea.costthen { return; }
5) if Ha[n] = ∅ then{
6) enqueue(ea, B[l]); insert(ea,Ha[n]);
7) insert(ea,Hg); return;}
8) find_min(emin,Ha[n]);
9) switch

10) case:emin.delay ≤ ea.delay and emin.cost ≤
ea.cost{return;}

11) case:emin.delay< ea.delayand emin.cost > ea.cost{
12) if B[l] = ∅ then {insert(ea,Ha[n]);}
13) enqueue(ea, B[l]);}
14) case:emin.delay > ea.delay and emin.cost < ea.cost{
15) enqueue(ea, B[l]); insert(ea,Ha[n]);
16) decrease_key(ea, emin,Hg);}
17) case:(emin.delay = ea.delay and emin.cost > ea.cost)

or (emin.delay> ea.delay and emin.cost≥ ea.cost){
18) decrease_key(ea, emin,Ha[n]);
19) decrease_key(ea, emin,Hg);
20) enqueue(ea, B[l]);
21) k = emin.predecessor_node;
22) l = (k, n);
23) dequeue(emin, B[l]);
24) while B[l] �= ∅ do{
25) head(e,B[l]);
26) if e.cost < ea.cost then {
27) insert(e,Ha[n]); return;}
28) else {dequeue(e,B[l]);}}
29) return;

Fig. 3. Subroutine update_new

and below) the key of ea is compared with the minimum-key
element emin in Ha[n] in order to decide whether ea can be
a possible discontinuity of C∗

n(d) and whether emin should be
updated and certain possible discontinuities can be discarded.
Specifically,

1) If emin.delay ≤ ea.delay and emin.cost ≤ ea.cost (line
10), then ea cannot be a possible discontinuity of C∗

n(d)
and therefore it is discarded.

2) If (emin.delay< ea.delay and emin.cost > ea.cost) (line
11), then ea is a possible discontinuity and in case B[l]
is empty, ea must be inserted in Ha[n]. Moreover, ea is
added to B[l].

3) If ( emin.delay > ea.delay and emin.cost < ea.cost)
(line 14), then ea is a possible discontinuity. Since the
key of ea is smaller than the key of emin, B[l] must be
empty (the key of ea is always larger than the key of
the head element in B[l] which in turn is larger than or
equal to the key of emin). Therefore ea must be added
toB[l], must be inserted in Ha[n] and must replace emin
in Hg.

4) If (emin.delay = ea.delay and emin.cost > ea.cost) or
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subroutine obtain_minimum(eg,Hg) Inputs: The arrays B,
Haand the heap Hg . Outputs: The minimum key element
eg in Hg .

1) find_min(eg,Hg);
2) êg = eg;
3) n = eg.discontinuity_node; m = eg .predecessor;
4) l = (m,n);
5) dequeue(eg, B[l]);
6) get_min(eg,Ha[n]);
7) if (B[l] �= ∅) then {
8) head(eh, B[l]);
9) insert(eh,Ha[n]);}

10) while (Ha[n] �= ∅) do{
11) find_min(emin,Ha[n]);
12) if eg.delay< emin.delay and eg.cost > emin.cost

then {
13) increase_key(emin, eg, Hg);
14) return êg;}
15) else{k = emin.predecessor;
16) l = (k, n);
17) dequeue(emin, B[l]);
18) get_min(emin,Ha[n]) ;
19) while (B[l] �= ∅) do{
20) head(e,B[l]);
21) if e.cost < eg.cost then {
22) insert(e,Ha[n]);
23) increase_key(e, eg, Hg);
24) return êg;}
25) else {dequeue(e,B[l]);}}}}
26) get_min(eg,Hg);
27) return êg;

Fig. 4. Subroutine obtain minimum

(emin.delay > ea.delay and emin.cost ≥ ea.cost (line
17) then ea is a possible discontinuity while emin is
not. Therefore, ea replaces emin both in Ha[n] and in
Hg (lines 18, 19) and emin is removed from B((k, n)),
k = emin.discontinuity_node (line 23). Next, (line 24)
the queue B[(n, k)], is scanned and all impossible dis-
continuities in this queue are removed.

Finally, we present the obtain_minimum(eg,Hg) subroutine
in Figure 4.

Initially, the minimum-key element eg in Hg is obtained.
Next, eg is dequeued from queue B[l] and Ha[n], where
l = (m,n), n = eg.discontinuity_node, m = eg.predecessor,
and if B[l] is not empty, the head element in B[l] is inserted
in Ha[n]. The rest of the pseudocode (starting from line 10)
determines the element in Ha[n] that is going to replace eg
and removes from queues B[(k, n)], k ∈ N+(n) impossible
discontinuities. The minimum-key element emin in Ha[n] is
determined. In order to be inserted to Hg, emin must have
strictly larger delay and strictly smaller cost than eg . If this is
true (line 12), then emin is inserted inHg in place of eg and the
subroutine ends. Otherwise, since it is always true that the keys
of the elements in Ha[n] are larger than of equal to the key
of eg , the only possibilities are that eg.delay≤ emin.delay and

eg.cost ≤ emin.cost. In such a case, emin cannot be a possible
discontinuity of C∗

n(d) and must be removed. The rest of the
code in the while loop performs this removal and at the same
time removes impossible discontinuities from B[(k, n)], where
k = emin.predecessor. On exit from the while loop (line 26),
Ha(n) must be empty and therefore eg is removed from Hg

instead of being replaced with another element in Ha(n) as
was done in lines 13, 23.

Computational Complexity of Algorithm II
We use the same notation as in Section II-A. Subroutine

enqueue(eg, Ab[m]) takes O(1) time and is executed once
for each discontinuity in D. Subroutine obtain_minimum() is
invoked once for each discontinuity in D, that is RS times.
Each such invocation involves a get_min or increase_key op-
eration on Hg , which takes O(log |N |) time in the worst case.
Hence, the worst case running time for all these operations is
O(RS log |N |). There are also other computations involving
Ha[n] and B[l], which are taken into account below.

Subroutine update_new() is invoked once per discontinuity
in D. Each invocation causes |N−(m)| updates, to Ha[m]
and B[(m,n)] corresponding to the outgoing neighbor m of
the node n = ea.discontinuity_node. These latter updates
involve in the worst case an enqueue and dequeue opera-
tion to one of the queues in B[l] , a get_min, insert, or
decrease_key operation on Ha[m] and decrease_key operation
onHg . The get_min operations onHa[m] take worst-case time
O(log |N+(m)|) since the size of Ha[m] is at most |N+(m)| ,
while the rest of the operations take worst-case time O(1).
Hence, the total worst case running time of the algorithm is

O



RS log |N | +
∑

n∈N

R(n)
∑

m∈N+(n)

log
∣∣N+(m)

∣∣



 .

Since

RS ≤ |N |Rmax,

and, denoting N+
max = maxm∈N {N+(m)} ,

∑

n∈N

R(n)
∑

m∈N+(n)

log |N+(n)| ≤

≤ Rmax log
(
N+

max
) ∑

n∈N

∑

m∈N+(n)

1 =

= Rmax log
(
N+

max
)
|L| ,

we can express the previous bound as

O
(
Rmax

(
|N | log |N | + |L| logN+

max
))
. (5)

Note that if all delays are zero, then we have in effect
the unconstrained shortest path routing problem. In this case,
each C∗

n(d) has a single discontinuity at 0, and Ha[n] never
has more than a single element. That means that the factor
logN+

max can be removed from (5) and therefore the worst-
case running time in this case becomes

O (|N | log |N | + |L|) ,
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TABLE I

WORST CASE RUNNING TIMES

DP O (Dmax(|L| + |N | log |N |))
ALG I O(Rmax |L| (log |L| + log Rmax))
ALG II O

(
Rmax(|N | log |N | + |L| log N+

max)
)

that is, identical to the worst-case running time of Dijkstra’s
algorithm. This is to be expected since in this case Algorithm
II reduces in effect to Dijkstra’s algorithm.

In table I we summarize the worst-case running times
of Algorithms I, II (ALG I and ALG II respectively) and
the algorithm that results from the direct application of the
dynamic programming equation. (DP)

III. NUMERICAL RESULTS

We run three sets of experiments. Each set corresponds to
different methods of network generation, as follows.

Uniform Networks: A number |N | of nodes and a number
|L| = α |N | of edges, a > 1 is chosen. We use the graph
generator random_graph( ) from the LEDA package [12]. A
random edge is generated by selecting a random element from
a candidate set C defined as follows:

• C is initialized to the set of all |N | (|N |−1) pairs (u,w)
of distinct nodes.

• Upon a selection of a pair (u,w) from C, the pair is
removed from C.

For each edge, a delay is picked randomly with uniform
distribution among the integers [1, 100].

Power Law Networks: A number |N | of nodes and a
number |L| = α |N |, α > 1 of links are chosen. The |L|
links are used to connect nodes randomly in such a manner
that the node degrees follow a power law [16]. This is one of
the methods that attempt to generate network topologies that
are “Internet like”. The nodes are placed randomly on a grid
and the link delays are taken to be proportional to the distance
between the nodes joined by the link under consideration.

Real Internet Network Topology: This network topology
was taken from [17] and is based on the network topology
observed in 01/02/2000. For each edge, a delay is picked ran-
domly with uniform distribution among the integers [1, 100].

For all the experiments, link costs are generated by one of
the following methods.

COST 1: A cost cl for link l is picked randomly with
uniform distribution among the integers [1, 100].

COST 2: A parameter σl for link l is picked randomly
with uniform distribution among the integers [1, 5]. The cost
for the link under consideration is then cl = σl(101−dl). This
method of cost generation reflects the the situation where link
costs are decreasing as link delays are increasing.

For each of the experiments, we determine all discontinu-
ities of the functions C∗

n(d), n ∈ N , that is, in effect we find
all optimal paths from a node s to all nodes in the network,
under any possible delay constraint. We denote by Dmax the
maximum delay at which discontinuities in D occur. If one is
interested only in finding a path with delay at most d, then

for the given network, Dmax corresponds to the delay d that
causes the longest running time for all three algorithms tested.

We generated random uniform and power law networks with
400, 800, and 1200 nodes, and with ratios α = |L| / |N | equal
to 4, 8 16, which are close to or larger than the ratios between
3 and 4 commonly found in today’s networks. For each |N |
and α, we generated 10 random networks. For each of the
generated networks we created link costs according to COST
1 and COST 2. In tables II -V we present the parameters of
the generated networks. The parameter values are the averages
of the values obtained for each of the 10 random networks.
We observe that in general Rmax is much smaller than Dmax.
For the same method of link cost generation, the variations of
parameter values for random and power law networks, (with
the exception of N+

max) are not significant. However, networks
where the COST 2 method is used for link cost generation
generally have larger Rmax and Dmax than corresponding
networks where the COST 1 method is used. As we will see,
these observations have an effect on the performance of all
three algorithms considered.

The tested Real Network consisted of 6474 nodes with
12572 bidirectional links, therefore a = 3.88 (2x12572/6474).
Link delays are again picked randomly with uniform distribu-
tion among the integers [1, 100]. Both COST 1 and COST 2
methods for generating link costs were tested. In this network,
we performed 10 experiments, where in each experiment a
node is picked randomly to represent the source. The quantity
Dmax is defined in the same way as with the randomly
generated networks. Table VI shows the relevant parameters
in these experiments.

The experiments were run on a Pentium PC IV, 1.7GHz. The
average running times (in seconds) for the three algorithms and
for the various experiments are shown in tables VII - XI. Also,
in these tables we present the ratio of the average running time
of the DP algorithm to the average running time of ALG I and
ALG II. The following observation are worthwhile.

• For the same link cost generation method, the variations
of running times of a given algorithm for Random and
Power Law networks with fixed |N | and α are not
significant.

• For a given algorithm, link costs generated by method
COST 2 induce longer running times than link costs
generated by method COST 1, for fixed |N | and a.

• The performance of ALG I is comparable to ALG II for
α = 4, however for larger values the running time of
ALG II can be about two times shorter than that of ALG
I.

• For all experiments the running times of ALG I and
ALG II are significantly better than DP (18 to 100 times
shorter).

It is also worth noting that the performance of DP algorithm
depends on the desired accuracy of link delays, while this is
not true for both ALG I and ALG II. For example, we picked
link delays between 1 and 100, which implies that we require
two-digit accuracy. If the required accuracy is increased, then
both Dmax and Rmax may increase, but the increase in Rmax
is much slower, and therefore the difference in the running
times of the algorithms becomes even more significant. To
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TABLE II

PARAMETERS FOR RANDOM UNIFORM NETWORKS, COST 1.

|N | 400 800 1200
α 4 8 16 4 8 16 4 8 16

Dmax 679.7 679.1 558.9 810.1 767.3 695 823.7 743.8 750
Rmax 11.7 16.1 18.8 13.3 17.5 21.4 13.7 18.5 21.6
N+

max 10.9 16.8 28.1 12.1 19.2 29.7 12.3 18.9 30.4

TABLE III

PARAMETERS RANDOM POWER LAW NETWORKS, COST 1

|N | 400 800 1200
α 4 8 16 4 8 16 4 8 16

Dmax 516.3 485 453 591 631 579 609 623 590
Rmax 12.9 17 18 14 18 22 15 20 23
N+

max 48 68 94 68 98 141 83 129 178

TABLE IV

PARAMETERS FOR RANDOM UNIFROM NETWORKS, COST 2.

|N | 400 800 1200
α 4 8 16 4 8 16 4 8 16

Dmax 899.8 1027.2 1073 1186.1 1188.5 1229 1233 1256 1280
Rmax 19.4 35 61.9 23.3 45.5 73.8 26 45.6 74.8
N+

max 10.9 16.8 28.1 12.1 19.2 29.7 12.3 18.9 30.4

TABLE V

PARAMETERS RANDOM POWER LAW NETWORKS, COST 2

|N | 400 800 1200
α 4 8 16 4 8 16 4 8 16

Dmax 710 833 839 862.8 924 975 960 1026 1067
Rmax 21.7 37.8 86.4 27.2 42 73 32 63 78
N+

max 48 68 94 68 98 141 83 129 178

TABLE VI

PARAMETERS FOR REAL INTERNET TOPOLOGY (6474 NODES, 25144 LINKS).

COST 1 COST 2

Dmax 776 1001
Rmax 26 93
N+

max 1458 1458

TABLE VII

AVERAGE RUNNING TIMES FOR RANDOM UNIFROM NETWORKS, COST 1

|N | 400 800 1200
α 4 8 16 4 8 16 4 8 16

ALG I 0.0593 0.214 0.625 0.146 0.495 1.52 0.225 0.812 2.44
ALG II 0.0579 0.1485 0.3296 0.145 0.34 0.789 0.21 0.545 1.25

DP 5.875 11.029 17.56 14.66 26.08 47.16 22.8 38.65 76.58
DP/ALG I 99.07 51.5 28.1 99.88 52.68 31 101.4 47.6 31.3
DP/ALG II 101.4 74.27 53.29 100.84 76.7 59.7 108.5 70.8 61.2
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TABLE VIII

AVERAGE RUNNING TIMES FOR RANDOM POWER LAW NETWORKS, COST 1

|N | 400 800 1200
α 4 8 16 4 8 16 4 8 16

ALG I 0.049 0.183 0.529 0.125 0.457 1.348 0.208 0.765 2.176
ALG II 0.065 0.143 0.298 0.154 0.354 0.731 0.253 0.583 1.189

DP 4.35 7.56 13.58 10.5 20.96 37.17 16.47 31.5 58.13
DP/ALG I 87.3 41.2 25.6 83.9 45.7 27.5 79.2 41.1 26.7
DP/ALG II 66.4 52.5 45.5 67.8 59 50.8 65 54 48.8

TABLE IX

AVERAGE RUNNING TIMES FOR RANDOM UNIFORM NETWORKS, COST 2

|N | 400 800 1200
α 4 8 16 4 8 16 4 8 16

ALG I 0.0845 0.3858 1.276 0.223 1.01 3.2 0.357 1.46 5.21
ALG II 0.0826 0.2577 0.6188 0.2124 0.58 1.56 0.329 0.947 2.48

DP 7.91 17.098 34.88 21.84 41.1 83.63 34.8 66.9 135
DP/ALG I 93.6 44.31 27.32 97.9 40.6 26 97.4 45.6 25.9
DP/ALG II 95.77 66.35 56.37 102.8 70.8 53. 105.7 70.6 54.4

TABLE X

AVERAGE RUNNING TIMES FOR RANDOM POWER LAW NETWORKS, COST 2

|N | 400 800 1200
α 4 8 16 4 8 16 4 8 16

ALG I 0.077 0.346 1.11 0.195 0.854 2.99 0.335 1.48 4.84
ALG II 0.101 0.262 0.583 0.346 0.617 1.53 0.393 1.057 2.5

DP 6.12 13.4 26.1 15.6 31.2 63.89 26.6 53.3 108
DP/ALG I 78.6 38.7 23.5 80 36.5 21.3 79.3 35.8 22.3
DP/ALG II 60.3 51.1 44.7 45 50.5 41.7 67.6 50.4 43.2

TABLE XI

AVERAGE RUNNING TIMES FOR REAL INTERNET NETWORK

COST 1 COST 2

ALG I 2.641 8.188
ALG II 2.765 8.531
DP 132.15 153.68
DP/ALG I 50 18.7
DP/ALG II 47.8 18

demonstrate this we run the following experiment. We generate
a Uniform network with |N | = 800 nodes and |L| = a |N | =
8 ∗ 800 = 6400 edges. In the first experiment we pick delays
between [1, 100] and in the second between [1, 1000]. In table
XII we present the relevant parameters and the running times
for the tested network. We observe that the running time of DP
algorithm increases tenfold while the increases of the running
times of ALG I and ALG II are insignificant .

IV. CONCLUSIONS

In this paper we addressed the QoS routing problem. We
provided two algorithms for finding the optimal solution. The
basic idea of the proposed algorithms consists in finding in an
iterative fashion the discontinuities of the functions C∗

n(d).

The algorithms operate under nonnegative link costs and
delays and do not require any integrality assumptions on the
delays. Numerical results show that for a wide range of tested
networks the proposed algorithm outperforms significantly the
algorithm based on the direct implementation of the Dynamic
Programming equations. The running time of the proposed
algorithms is satisfactory even for relatively large network
sizes. If worst case performance is also of concern, the
algorithms can replace the DP recursions of the approximate
polynomial-time algorithms proposed in [9] and [6], in order
to improve their average running time. The algorithms can be
extended to the case where multiple constraints on the paths
exist ( e.g., maximum delay and loss probabilities).

Acknowledgement 1: The code for generating Power Law
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TABLE XII

PARAMETERS AND RUNNING TIMES FOR A RANDOM UNIFORM NETWORK, COST 2

|N | 800
a 8
delay (1,100) (1,1000)

Dmax 1425 16611
Rmax 42 45
N+

max 18 18
ALG I 0.797 0.922
ALG II 0.531 0.594
DP 49.26 599.64
DP/ALG I 61.8 650.3
DP/ALG II 92.7 1009.5

Networks was downloaded from site [16], and the data for the
Real Network from [17]. We would like to thank the authors
of these sites.
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