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Abstract— The Medium Access Control (MAC) scheme pro-
posed by DAVIC/DVB, IEEE 802.14 and DOCSIS for the up-
stream channel of Hybrid Fiber Coaxial (HFC) access networks
is based on a mixable contention-based/contention-less time slot
assignment. Contention-less slots are assigned by the head end
to end stations according to a reservation scheme. Contention-
based slots are randomly accessed by active terminals without
any preliminary allocation, so that collisions may occur. To
resolve contention, the contention tree algorithm has been widely
accepted by the DVB/DAVIC, IEEE 802.14 and DOCSIS stan-
dards for MAC because of higher throughput and lower access
delay. In this paper we propose a novel contention resolution
mechanism and compare its performance with that of existing
procedures. The proposed procedure is termed as static arrival
slot mechanism. In this mechanism, one slot in each frame is
exclusively reserved for new arrivals that wish to access the
channel using contention resolution, and at least one slot is
reserved for resolving their contention if there was one in the
arrival slot. The performance of the proposed mechanism is
evaluated through analysis and simulation. The results show
that the proposed mechanism outperforms existing contention
resolution procedures under heavy traffic.

Index Terms— Contention resolution, contention trees, HFC
networks, reservation mechanisms, sojourn time, waiting time.

I. INTRODUCTION

Cable TV networks, nowadays also known as Hybrid Fiber
Coaxial (HFC) networks, were originally designed for broad-
casting analogue TV signals downstream from a central Head
End (HE) to the homes. Currently, they are being upgraded to
enable the provision of bi-directional, digital communication
services between the home and the rest of the world. Besides
the installation of the return amplifiers in the upstream path,
from the homes to the HE, and active network terminations or
network terminals (NT), which separate this public network
from the in-house private network, are required to provide
the necessary functionality for the support of these services.
In the meantime, several standards are becoming available to
ensure the interoperability between a HE and a, possibly multi-
vendor, set of NTs. The three major ones are DAVIC/DVB [5],
IEEE 802.14 [8] and DOCSIS 1.1 [11].
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The allocation of a single broadcast communication channel
among a large number of independent users requires more ad-
vanced Medium Access Control (MAC) protocols than Time-
Division Multiple Access (TDMA). The reason is that TDMA
provides low performance with respect to channel utilization,
unless all the users are transmitting continuously. It provides
low access delay if and only if there are few users accessing
the channel. In 1970 the ALOHA protocol [1] was introduced,
which provided random access to the channel. The concept of
random access implies that two or more users may want to use
the channel at the same time, prohibiting error-free reception.
If a collision occurs, the users may try again later, each one
after a randomly chosen time. However, the performance of
the ALOHA scheme becomes very poor when the channel
occupancy increases beyond a certain level. Basically, there
are two approaches to improve the performance of MAC
protocols: carrier sense multiple access [9], and collision
resolution algorithms [4], [14].

A given access network contains a finite number of users
or customers, where this number typically ranges from ten to
a few thousand. All users share the same up- and downstream
channel. From the users’ point of view, the HE can be seen as
their common connection with the outer world. Furthermore,
the HE controls the traffic within the access network. The
structure of an access network is schematically depicted in
Figure 1. An individual user or customer is also indicated as
NT.

HE . . .

DS

NT NTNT NTNT NT NT

US

Fig. 1. Schematic overview of an HFC access network.

When a user wants to transmit data over the upstream chan-
nel, in general the following sequential three-step procedure
is followed:

1) At a certain moment the user transmits a request to the
HE for using a particular amount of upstream channel
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time.
2) The user waits for feedback from the HE. The HE will

eventually indicate when the user’s data is allowed to be
transmitted over the upstream channel.

3) The user transmits the data at the time indicated by the
HE. In the meantime, it ‘virtually’ waits in the so-called
data queue.

In most access networks, the requests mentioned in the
first step can only be transmitted at specific times. The
HE indicates to a group of users when a request can be
transmitted. When more than one user sends a request at the
same time, collisions occur. To resolve these collisions, a so-
called collision resolution procedure is used.

To describe how these procedures work, it is necessary
to discuss the structure of the upstream channel first. The
upstream communication channel is divided into time slots of
fixed length. The length of a time slot corresponds to the time
required to send a 64-byte data packet. There are typically two
types of slots: data slots and contention slots.

• A contention slot consists of three mini-slots. Such a
slot is used by users to transmit requests only. So when
the user wants to transmit data, it first transmits requests
that are smaller than the actual data. This is the reason
mini-slots were devised. When a collision occurs, this
collision will be resolved by retransmitting the requests
using a tree resolution algorithm that will be explained
below. The retransmission of the requests will again
take place during contention slots. There are typically
two types of contention slots: ALOHA slots and tree
slots, corresponding to two different contention resolution
procedures. Only the tree slots will be discussed further
now. For more information on the ALOHA protocol, we
refer to [1], the first publication on this subject.

• A data slot, also known as a reservation slot, is 64-byte
in length. Such a slot is exclusively used for transmitting
data of a particular user.

The slots are organized in frames, which typically comprise
18 slots. The HE determines at the beginning of each frame
the type of each slot in the upcoming frame. In Figure 2, this
frame structure is illustrated.

A A A A R T R R T T R R R R T R R R A A A A A A R R T T R R T R T R R R

frame (3 ms) frame (3 ms)

t t t

time

64 bytes

ALOHA slot
reservation slot
TREE slot
TREE minislot

A

T
t

R

0 18 36

Fig. 2. Schematic representation of the frame structure.

In summary, the transmission of data by an individual user
consists of two stages. First a contention stage takes place in
which the individual user has to compete with other stations
for exclusive data slots. Once a request has been successfully
received by the HE, a customer enters the second stage. In this
stage, a customer joins the data queue and finally occupies a
certain number of data slots.

As Figure 2 shows, these two stages are run in parallel
from an overall viewpoint (and not from the viewpoint of an

individual customer). A certain number of slots are used for
contention resolution, while the other slots are reserved for the
individual transmission of data.

In the present paper we describe and evaluate a novel
mechanism for contention resolution, which was first proposed
and analyzed in [3], [13]. This algorithm reserves in each
frame exactly one slot for new arrivals that wish to access
the channel using contention resolution, and at least one slot
for resolving their contention if there was one in the arrival
slot. It is shown through analysis and simulation that the novel
algorithm outperforms existing procedures.

The remainder of the paper is organized as follows. In
Section 2 we describe the basics of some commonly used
contention resolution procedures. We discuss some relevant
performance measures in Section 3. In Section 4 we establish
a relationship between the static arrival slot mechanism and
a periodic Geo/G/1 queue. In Section 5, we derive a func-
tional equation for the generating function of the service time
distribution of a super customer, which we use in Sections 6
and 7 to determine the first two moments of the service time.
We provide a capacity analysis in Section 8. In Section 9,
we analyze the waiting-time distribution of a super customer,
and give an expression for the mean waiting time in terms
of the first two moments of the service time. We determine
the mean service time of individual customers in Section 10.
In Section 11 we present some numerical results comparing
the static arrival slot mechanism with two other contention
resolution procedures. Section 12 concludes the paper.

II. CONTENTION RESOLUTION PROCEDURES

To describe the basics behind the most frequently used
contention resolution procedures, it is useful to ignore all data
slots and think of all slots as being contention slots. The basic
principle of contention resolution is called ternary tree and will
be explained now in more detail. Assume that the HE allows
a certain group of customers to send a request for data slots
during a given contention slot. Each customer individually flips
a three-sided coin with equal probabilities for each side in
order to determine in which of the three mini-slots it will
send its request (if it wants to send a request). After this coin-
flipping, every customer sends its request accordingly. There
are three possible outcomes:

1) A mini-slot is empty.
2) A mini-slot contains exactly one customer.
3) A mini-slot contains more than one customer.

For each of the mini-slots, the HE can determine after
the current slot time, which of these three possible outcomes
occurred. In case the mini-slot contains exactly one customer,
the corresponding request can be processed and the cus-
tomer will receive a message from the HE, which prescribes
when to use the upstream channel for the transmission of
data. In case the mini-slot contains more than one customer,
the HE can only conclude that there was a collision. The
communication between the HE and NT usually involves a
round-trip propagation delay which is not explicitly considered
in this paper. Collisions in different mini-slots are treated
separately. For all customers involved in a certain collision,
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a new contention slot will be generated in the near future.
This means that each of these customers has to retransmit its
request in that certain (mini-)slot in the future, again using
the coin-flipping procedure. The HE indicates which slot this
will be by means of broadcasting a grant just before the
generation of the contention slot. Due to the fact that there
will be some processing time in between the transmission
and the retransmission of requests, it is allowed for each
customer to update his request for more data slots than in
the previous request. This procedure of processing successful
and retransmitting unsuccessful requests continues until all
requests are processed. Such a tree will be called a contention
tree. This is shown in Figure 3. For details the readers are
referred to [2], [3], [4], [6], [7], [10], [12], [13], [14].

Fig. 3. Example of a ternary contention tree.

The basic idea of a ternary contention tree can be used in
several ways to obtain slightly different contention resolution
procedures. We now describe three different such contention
resolution mechanisms. Two of the mechanisms are in fact
well-known and are used in practice already. In the explanation
of the contention resolution mechanisms, the transmission of
individual data using data slots will be ignored. In a real access
network, the majority of the slots is used for data transmission,
but this is of no interest for the description of the contention
resolution mechanism.

A. Gated mechanism

This contention resolution algorithm works as follows. Once
a contention tree has been started, it is uninterruptedly being
processed until termination. In the meantime, new customers
may want to transmit a request, but there is no contention slot
in which they are allowed to send their request because all
the contention slots are dedicated to the tree completion. As
soon as the tree terminates, all these waiting customers will
enter in the first open slot. One can imagine this as if they did
already arrive and have to wait (in front of a gate) for a new
slot to enter the next tree, hence the term ‘gated’.

B. Non-blocked mechanism

This contention resolution algorithm is in some sense oppo-
site to the gated mechanism. In the non-blocked mechanism,
new individual users do not have to wait for the current tree to
be terminated. In fact, they can enter the current tree directly
when they arrive. This means that as soon as an individual user
wants to send a request, it can send it in the next contention
slot that occurs. So, in every slot that a tree is being processed,
it may happen that there are new customers who also compete
in that slot.

C. Static periodic arrival slot mechanism

Let s be a fixed integer, with s ≥ 1. Suppose a tree is
being processed at the moment. After every s contention slots,
the current tree is interrupted and one slot is dedicated to
new arrivals. Thus, requests that were generated during the
previous period of s contention slots can be transmitted now
for the first time. So every customer that ‘arrived’ during the
previous s contention slots (and the data slots in between),
now enters in this so-called arrival slot. After this slot, some
of the new customers may be ‘lucky’. They leave the system
immediately. The other customers can be considered as a tree
that has been processed for just one slot. This tree (if there is
one) is placed in a so-called tree queue (which is an example
of a so-called distributed queue). In the next contention slot the
interrupted tree is further being processed, exactly where it was
interrupted. A tree consisting of several individual customers
that is placed in the tree queue will be called a super customer.
(Examples of super customers are [2, 0, 4], [4, 5, 3] and [2, 0, 7];
see Figure 4.) The super customers in the tree queue are served
according to a First-Come First-Served discipline.

                                                           New

Arrivals 7

Successful
Arrivals

Unsuccessful

Arrivals

  Super Customer

Tree Slot for
New Arrivals CR Slot

CR-Contention Resolution

2

0

4

4

5

3

2

0

Fig. 4. Schematic representation of the queueing system.

III. IMPORTANT PERFORMANCE MEASURES

Relevant performance measures are the expectation and
variance of the waiting time, the service time and the sojourn
time of an individual customer and the capacity of the system.
Observe that the service time depends on the actual tree
mechanism: the order in which a contention tree is processed.
Two commonly used methods are breadth-first and depth-
first. The results we present are for depth-first only. Because
we finally want to compare the various contention resolution
mechanisms, we will now discuss the waiting time in more
detail for all mechanisms. The waiting time consists of two
parts. First a customer has to wait for an arrival slot to enter
the system. This is called the ‘waiting-room time’.

• In the gated mechanism this can take a very long time.
• In the non-blocked mechanism this takes zero slots.
• In the static arrival-slot mechanism this takes at most

s slots.

Second, a customer has to wait for his tree to be processed.
This is called the ‘distributed-queue time’.

• In the gated mechanism this waiting time is zero.
• In the non-blocked mechanism this time is also zero.
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• In the arrival-slot mechanism this waiting time can be
zero if the customer is lucky, but in general this time
is positive and corresponds to the waiting time in the
distributed queue. It is a matter of definition whether the
arrival slot in which the tree is formed is included in the
waiting time or not. In the former case, the arrival slot is
seen as a part of the service time and not of the waiting
time.

The service time of an individual customer is defined as the
total time that a customer ‘stays’ in the tree that it is involved
in, only counting the slots that are dedicated to the tree. So
interrupting arrival slots are not counted as service time. The
sojourn time of a customer is defined as the sum of the waiting
time and the service time.

A basic assumption in analyzing each of the mechanisms
is that requests of users (customers) are generated according
to a Poisson process with rate µ requests per slot. Thus, we
ignore the fact that the population of users is finite, which is
reasonable if their number is large.

IV. RELATIONSHIP BETWEEN STATIC ARRIVAL SLOT

MECHANISM AND PERIODIC Geo/G/1 QUEUE

Our main goal is to analyze the waiting time and service
time, together forming the sojourn time, of an individual
customer in the static arrival slot mechanism. The waiting-
room time of a customer is easily analyzed, since this random
variable follows a uniform distribution over the s slots. A
customer can be lucky and experience no distributed-queue
time. The probability that a customer is lucky can easily be
calculated. Analyzing the distributed-queue time for non-lucky
customers is non-trivial, and requires the distribution of the
service time of a super customer as will turn out. Therefore,
we will start the analysis in the next section with the derivation
of a functional equation that enables us to determine the
generating function of the service time distribution of a super
customer. This functional equation will be used in analyzing
the individual service time as well.

Consider the static arrival slot mechanism and let us ignore
the arrival slots. This has the consequence that arrival slots
do not occupy time anymore. Lucky individual customers
immediately leaving the system after their arrival slot are not
seen anymore. Only super customers, that are put in the tree
queue, remain. The resulting model can be seen as a special
case of a periodic Geo|G|1-queue, where every s slots, with a
constant probability, a (super) customer is placed in the queue.

Problem description
Consider a discrete-time (slotted) queue with discrete ser-

vice times and a single server which serves the queue accord-
ing to a First-Come First-Served discipline. Define a frame to
be exactly s consecutive slots.

An arrival of a (super) customer can only occur just before
the first slot of every frame: with (constant) probability α,
there is an arrival just before the first slot of a frame, and
with probability 1−α, there is no arrival. In case of an arrival,
the (super) customer enters the queue and service continues
normally during this first slot of every frame. The service time

distribution of a super customer is allowed to be general. Both
α and the service time distribution will be chosen such that
the model correctly describes the arrival slot mechanism.

In the system with arrival slots, individual customers can
only arrive in the first slot of every frame which has a length
of s + 1 slots. Since individual customers arrive according
to a Poisson process with rate µ per slot, the number of
customers contending in an arrival slot is Poisson distributed
with mean λ(s), where λ(s) = (s + 1)µ. This implies that α
is given by

αλ(s) = 1 − e−λ(s)

(
1 +

λ(s)
3

)3

;

the subscript is added to indicate that α depends on λ(s).
Each super customer corresponds to the root of a so-called

ternary contention tree. The service time of a super customer is
the time needed (measured in slots) to complete this contention
tree; it wil be determined in the next section.

V. DERIVATION OF A FUNCTIONAL EQUATION

Let the random variable B̃(n) represent the length of a
tree which starts with n customers, n ≥ 2. One can derive
a recursive formula for the distribution of B̃(n). The actual
number of slots to complete a tree can be seen as 1 plus the
number of slots to complete the three trees that have been
formed in that initial slot. So, for all n ≥ 2, the following
recursion holds:

P (B̃(n) = k) =
∑

n1,n2,n3≥0
n1+n2+n3=n

ξ(n1, n2, n3) ·

P (B̃(n1) + B̃(n2) + B̃(n3) = k − 1),
k = 1, 2, . . . ,

with:

B̃(0) = B̃(1) = 0,
P (B̃(n) = 0) = 0, n = 2, 3, . . . ,

ξ(n1, n2, n3) =
n!

n1!n2!n3!

(
1
3

)n

.

Let us introduce the following generating function:

B̃n(z) :=
∞∑

k=0

P (B̃(n) = k)zk, |z| ≤ 1.

Multiplying both sides of the above equation with zk and
summing over k = 1, 2, . . . yields:

B̃n(z) = z
∞∑

k=1

∑
n1,n2,n3≥0

n1+n2+n3=n

n!
n1!n2!n3!

(
1
3

)n

P (B̃(n1) + B̃(n2) + B̃(n3) = k − 1)zk−1,

and thus

3n B̃n(z)
n!

= z
∑

n1,n2,n3≥0
n1+n2+n3=n

B̃n1(z)
n1!

B̃n2(z)
n2!

B̃n3(z)
n3!

.
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Introducing fn(z) :=
B̃n(z)

n!
for n ≥ 0 the last equation

becomes:

3nfn(z) = z
∑

n1,n2,n3≥0
n1+n2+n3=n

fn1(z)fn2(z)fn3(z), n ≥ 2.

This equation can be used to obtain a closed-form expression
for fn(z). To find EB(n) we can use the relation EB(n) =
n!f ′

n(1). A slightly more direct approach is to obtain a
recursion for EB(n) by differentiating the above recursive
equation for B̃n(z) with respect to z and substituting z = 1.
Using B̃′

n(1) = EB(n), one obtains a recursion for EB(n).
Multiplying both sides of the equation for fn(z) by xn, we
obtain:

(3x)nfn(z) = z
∑

n1,n2,n3≥0
n1+n2+n3=n

fn1(z)fn2(z)fn3(z)xn, n ≥ 2.

Summing these equations over n ≥ 2 and introducing the
following generating function:

F (x, z) :=
∞∑

n=0

fn(z)xn,

which is defined for all z ≤ 1 and all x, we find:

F (3x, z) − 3xf1(z) − f0(z) = z
(
F 3(x, z) − f3

0 (z)−
3xf2

0 (z)f1(z)
)
.

Furthermore, we know:

f0(z) =
B̃0(z)

0!
= 1,

f1(z) =
B̃1(z)

1!
= 1.

Substituting this in the previous equation, we finally obtain
the following functional equation:

F (3x, z) − 3x − 1 = z(F 3(x, z) − 1 − 3x),

or equivalently

F (3x, z) = zF 3(x, z) + (1 + 3x)(1 − z).

Let the random variable Bλ(s) denote the service time of
an arbitrary super customer. Now we return to the arrival slot
mechanism. Define πλ(s)(n) as the probability that an arriving
batch of customers has size n, i.e., consists of n customers,
given that a super customer is formed, n ≥ 2. Then Bλ(s) is
distributed as follows:

Bλ(s) =




B̃(2) w.p. πλ(s)(2) + 6
7πλ(s)(3),

B̃(3) w.p. 1
7πλ(s)(3),

B̃(n) − 1 w.p. πλ(s)(n), n ≥ 4.

Here πλ(s)(3) is the probability that an arriving batch of
customers has size 3. A batch of customers of size 3 has 27
equi-probable possibilities to distribute itself over three mini-
slots:

• 6 of these arrangements result in no super customer,
because all 3 customers are lucky.

• 3 of these arrangements result in a super customer of
size 3.

• The remaining 18 arrangements lead to a super customer
of size 2.

This implies that given that a super customer is formed and
the original batch has size 3, this results in a super customer
of size 3 with probability 3

27−6 = 1
7 , and in one of size 2 with

probability 6
7 . This explains the distribution of Bλ(s) as given

above. So:

P (Bλ(s) = 0) = 0,

P (Bλ(s) = k) =
∞∑

n=4

πλ(s)(n)P (B̃(n) = k + 1) +

(πλ(s)(2) +
6
7
πλ(s)(3))P (B̃(2) = k)

+
1
7
πλ(s)(3)P (B̃(3) = k), k = 1, 2, . . .

Expressions for the πλ(s)(n)’s are as follows:

πλ(s)(2) = α−1
λ(s)e

−λ(s)(
(λ(s))2

2!
− 3(

λ(s)
3

)2)

=
1
6
α−1

λ(s)e
−λ(s)(λ(s))2,

πλ(s)(3) = α−1
λ(s)e

−λ(s)(
λ(s)3

3!
− (

λ(s)
3

)3)

=
7
54

α−1
λ(s)e

−λ(s)(λ(s))3,

πλ(s)(n) = α−1
λ(s)e

−λ(s) (λ(s))n

n!
, n ≥ 4.

Now Bλ(s)(z) will be expressed in terms of F (x, z). Observ-
ing that P (B̃(n) = 0) = P (B̃(n) = 1) = 0 for n ≥ 4, we
find:

Bλ(s)(z) =
∞∑

k=1

P (Bλ(s) = k)zk

=
∞∑

k=1

∞∑
n=4

πλ(s)(n)P (B̃(n) = k + 1)zk

+
∞∑

k=1

(πλ(s)(2) +
6
7
πλ(s)(3))P (B̃(2) = k)zk

+
∞∑

k=1

1
7
πλ(s)(3)P (B̃(3) = k)zk

=
∞∑

n=4

1
z
πλ(s)(n)B̃n(z)

+πλ(s)(2) +
6
7
πλ(s)(3))B̃2(z)

+
1
7
πλ(s)(3)B̃3(z).

Henceforth, we will use λ as shorthand for λ(s). Plugging in
the expressions for the πλ(s)(n)’s, we obtain:

Bλ(z) = α−1
λ e−λ

(
1
z

( ∞∑
n=4

λnfn(z)
)

+

(1
3
λ2 +

2
9
λ3
)
f2(z) +

1
9
λ3f3(z)

)

= α−1
λ e−λ(

1
z
(F (λ, z) − f0(z) − λf1(z)
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−λ2f2(z) − λ3f3(z)) +

+(
1
3
λ2 +

2
9
λ3)f2(z) +

1
9
λ3f3(z)).

So, when it is possible to determine F (λ(s), z), we have found
a way of determining Bλ(s)(z) for arbitrary z with |z| ≤ 1.

VI. DETERMINATION OF EBλ(s)

In the previous section we found a relation between F (x, z)
and Bλ(s)(z). In this section EBλ(s) will be expressed in
terms of an infinite sum. As will turn out later, EBλ(s) is
needed for the evaluation of the mean waiting time of a super
customer. This will be done by using the 2-dimensional func-
tional equation, presented in Section V. After some algebraic
manipulations we have:

EBλ = B′
λ(1)

= α−1
λ e−λ

(
∂

∂z
F (λ, 1) − 3

4
λ2 − 3

8
λ3

)

−α−1
λ e−λ

(
eλ − 1 − λ − 1

2
λ2 − 1

6
λ3

)

+α−1
λ e−λ

(
1
4
λ2 +

1
6
λ3 +

1
24

λ3

)

= α−1
λ e−λ

(
∂

∂z
F (λ, 1) − (eλ − 1 − λ)

)
.

As it turns out, ∂
∂z F (λ, 1) can be represented as an infinite

sum, which is easily computed numerically. This makes that
EBλ can be evaluated numerically. We now indicate how this
can be done.

Define the generating function F̃ (x):

F̃ (x) :=
∞∑

n=2

EB̃(n)
n!

xn, x ∈ R.

This F̃ (x) is related to F (x, z) as follows:

F̃ (x) =
∞∑

n=2

EB̃(n)
n!

xn

=
∞∑

n=2

B̃′
n(1)
n!

xn

=
∂F

∂z
(x, 1) − B̃′

0(1)
0!

x0 − B̃′
1(1)
1!

x1

=
∂F

∂z
(x, 1).

So, if we take the (partial) derivative with respect to z on both
sides of the (2-dimensional) functional equation for F (x, z)
and substitute z = 1, this gives the following 1-dimensional
functional equation in F̃ (x):

F̃ (3x) = F 3(x, 1) + 1 · 3F 2(x, 1)F̃ (x) − 1 − 3x

= e3x − 3x − 1 + 3e2xF̃ (x)

= e3x − 3x − 1 + 3e2x

(
ex − x − 1 + 3e

2
3xF̃ (

1
3
x)
)

= . . .

This functional equation can be solved by iteration. Continuing
in this way yields the following:

F̃ (3x) =
∞∑

i=0

3ie3x(1− 1
3i )

(
e

3x

3i − 3x

3i
− 1
)

+

lim
n→∞

[
F̃ (

x

3n
)

n∏
i=0

3e
2x

3i

]
.

We will now show that this expression converges. First, F̃ ( x
3n )

is investigated. Because of the fact that F̃ (0) = F̃ ′(0) = 0,
the following holds:

F̃ (
x

3n
) =

x2

32n

F̃ ′′(0)
2

+ O
(

x3

33n

)
.

This implies that the limit, that appears in the expression for
F̃ (3x) converges. For given x,

(
e

3x
3i − 3x

3i − 1
)

is of order

O ( 1
32i

)
, as can be verified by Taylor expansion of e

3x
3i . This

implies that the summand is of order O ( 1
3i

)
, which means

that the sum converges geometrically fast as i → ∞. The
resulting formula for EBλ becomes:

EBλ = B′
λ(1) = α−1

λ e−λ
(
F̃ (λ) − (eλ − 1 − λ)

)
.

VII. DETERMINATION OF EB2
λ(s)

In the previous section we presented a method to determine
B′

λ(s)(1) = EBλ(s). In this section the focus is on deter-
mining an expression for B′′

λ(s)(1), because this quantity is
needed for the evaluation of EWλ(s). We start again from
the 2-dimensional functional equation for F (x, z) presented
in Section V. After some algebraic manipulations we have:

B′′
λ(1) = α−1

λ e−λ

(
∂2

∂z2
F (λ, 1) − 2

∂

∂z
F (λ, 1) +

2(eλ − 1 − λ) +
1
12

λ2

)
.

As we have already seen, ∂
∂z F (λ, 1) can be represented as

an infinite sum. Thus, we are now interested in finding an
expression for ∂2

∂z2 F (λ, 1) which can easily be computed. We
will show how this can be done.

Define the following function C̃(x):

C̃(x) :=
∂2

∂z2
F (x, 1).

We start by taking the second (partial) derivative with respect
to z on both sides of the (2-dimensional) functional equation
and substitute z = 1, this gives the following 1-dimensional
functional equation in C̃(x):

C̃(3x) = 0 + 2 · 1 · 3F 2(x, 1)F̃ (x) +

1 ·
(
6F (x, 1)F̃ 2(x) + 3F 2(x, 1)C̃(x)

)
= 6e2xF̃ (x) + 6exF̃ 2(x) + 3e2xC̃(x).

This functional equation for C̃(3x) can be solved by itera-
tion. (Because of page restrictions we omit the details.) The
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resulting expression is obtained as follows:

C̃(3x) = 6e2xF̃ (x) + 6exF̃ 2(x) +

3e2x
(
6e

2x
3 F̃ (

x

3
) + 6e

x
3 F̃ 2(

x

3
) + 3e

2x
3 C̃(

x

3
)
)

= . . .

=
∞∑

i=0

3ie3x(1− 1
3i )
(
6e

2x

3i F̃ (
x

3i
) + 6e

x

3i F̃ 2(
x

3i
)
)

+

lim
n→∞

[
C̃(

x

3n
)

n∏
i=0

3e
2x

3i

]
.

One can verify, analogously as demonstrated before, that the
above sum converges and that the limit vanishes. So this gives
a method to evaluate C̃(3x) because of the fact that F̃ (x) also
can be evaluated accurately. The final expression for B′′

λ(1)
becomes:

B′′
λ(1) = α−1

λ e−λ

(
C̃(λ) − 2F̃ (λ) + 2(eλ − 1 − λ) +

1
12

λ2

)
.

Now we present two graphs which compare the numerical
results with simulation results. The first graph in Figure 5
shows EBλ as a function of µ. The second graph in Figure 6
shows EB2

λ as a function of µ. In both graphs, the simulation
results are plotted as stars. As one can see, the stars are almost
on the curve, which demonstrates the agreement between
analysis and simulation.

1 2 3 4 5 6
m

1.5

2.5

3

3.5

4

˜Bm

Fig. 5. Plot of EBλ against µ.
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15
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Fig. 6. Plot of EB2
λ against µ.

VIII. CHANNEL CAPACITY ANALYSIS OF ARRIVAL SLOT

MECHANISM

In this section the capacity of the queuing system with s+1
slots per frame with the first being an arrival slot is determined
numerically. By this we mean that the minimal rate µmax per
slot of the individual arrival process is determined for which
the system is not stable. This is of course equivalent with
determining the rate λ(s)max because λ(s)max = (s+1)µmax.
To determine the capacity of the system, it is relevant to see
how the rate λ(s) and the arrival probability α are related.
So far, we have only looked at ternary contention trees. The
relation between λ(s) and α can be easily obtained for q-ary
contention trees.

1 − αλ(s) = P (no super customer arrives)
= P (no collisions in all of the q mini-slots )

=
q∑

k=0

P (no collisions|# individual arrivals = k)

P (# individual arrivals = k)

=
q∑

k=0

((
q
k

)
k!

qk

)
e−λ(s) (λ(s))k

k!

=
q∑

k=0

e−λ(s)

(
q

k

)
(
λ(s)

q
)k

= e−λ(s)

(
1 +

λ(s)
q

)q

,

so

αλ(s) = 1 − e−λ(s)

(
1 +

λ(s)
q

)q

.

Now that this relation is obtained, we return to the stability
condition:

αEB = αB′(1) < s,

or in this case

αλ(s)EBλ(s) = αλ(s)B
′
λ(s)(1)

=
(

1 − e−λ(s)

(
1 +

λ(s)
q

)q)
B′

λ(s)(1) < s.

We now present the capacity results for q-ary trees for the
three mechanisms outlined. Mathematical results for the gated
and the non-blocked system may be found in [3]; here we
only present numerical results for these two mechanisms for
comparison with the arrival slot mechanism. Because of the
fact that in case of the gated mechanism, the capacity is very
close to log q, we have used that value in Table I.

When looking at Table I, there are a few remarkable
observations. When q = 4, the non-blocked mechanism really
outperforms the other mechanisms. When q = 2 or q = 3,
the mechanism with s = 2 has the highest capacity of all
mechanisms. Furthermore, the gated mechanism reaches a
maximum capacity for q = 3. In fact, this maximum is over
all values of q. It is also true that the case q = 3 dominates
the case q = 4 for all studied mechanisms. But for binary
trees some mechanisms have a higher capacity and some have
a lower capacity than their ternary equivalent. An interesting
question is whether there is a non-integer s for which the
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Mechanism q = 2 q = 3 q = 4
λmax λmax λmax

Gated 0.3466 0.3662 0.3466
Non-blocked 0.360 0.40 0.40
s = 1 0.420 0.4012 0.368
s = 2 0.427 0.4132 0.378
s = 3 0.419 0.4080 0.374
s = 4 0.410 0.4017 0.369
s = 20 0.363 0.3753 0.352
s = 100 0.350 0.3680 0.348
s = 2000 0.347 0.3662 0.347

TABLE I

CAPACITY RESULTS IN CASE OF q-ARY CONTENTION TREES

capacity is slightly higher than for s = 2. This is studied
next.

Capacity in case of a non-integer s
We now proceed to discuss capacity results in case s is

not restricted to a positive integer value. At first sight, a
mechanism with a non-integer s seems perhaps impractical,
due to the fact that it does not represent a ‘real’ algorithm. But
it gives at least an indication of the optimality of the system
with s = 2. There is practical relevance for mechanisms with
non-integer values of s in the sense that they can indeed be
interpreted as real mechanisms in the average sense. If the
value of s = 1.8, then we can conclude that the number of
contention slots in 10 frames is 18 or in 100 frames in 180. As
far as the formulas are concerned, there is no reason to restrict
ourselves to integer values of s. Therefore, we will present a
plot, given in Figure 7, with the capacity given as a function
of s. This plot is obtained as follows. In Section VIII, the
stability condition for an arrival slot mechanism was presented.
This condition was the following:(

1 − e−λ(s)

(
1 +

λ(s)
q

)q)
B′

λ(s)(1) < s.

If we replace the inequality sign by an equality sign, then
we obtain an equation. If we fix s to some real value and
subsequently solve this equation numerically for λ(s), or
equivalently because s is fixed, for µ, then we obtain µmax

for that particular value of s.
As one can see, the function reaches an optimum for s ≈

1.8. This is a rather positive result for the moment, because
1.8 is relatively close to 2, and the optimal capacity is close
to the capacity of the system with s = 2. Furthermore, one
can see that the function is decreasing after the optimum is
reached.

IX. WAITING TIME ANALYSIS OF THE PERIODIC Geo/G/1
QUEUE

Let the random variable W denote the waiting time of a
(super) customer. In this section, an expression for the gener-
ating function of W is derived. Next, it will be indicated how
the, yet unknown, stationary probabilities in this expression
can be found. An important remark is that the waiting time of

2 3 4 5 6
s

0.395

0.405

0.41

mmax

Fig. 7. Capacity as a function of s.

an arbitrary (super) customer is the same as the total amount
of work just before the first slot of a frame by virtue of
the BASTA (Bernoulli Arrivals See Time Averages) property;
see [15]. So we can also treat W as a workload variable, as
will be done below.

Consider the discrete Markov chain defined by the total
amount of work at the queue just before the first slot of
every frame. This total amount of work is defined as the total
time it takes to complete service of all the customers that are
currently in the system. A possible new arrival is not counted
yet. The stationary distribution satisfies the following balance
equations:

w0 = α

s∑
n=0

s−n∑
k=1

bkwn + (1 − α)
s∑

n=0

wn

= α
0∑

n=0

bs+nw−n + α
s−1∑
n=1

bs−nwn + (1 − α)ws +

α
s−1∑
n=0

s−1−n∑
k=1

bkwn + (1 − α)
s−1∑
n=0

wn,

wk = α

k∑
n=0

bs+nwk−n + α

s−1∑
n=1

bs−nwk+n + (1 − α)wk+s,

where bk = P [B = k], wk = P [W = k], k = 1, 2, 3, . . ..
Here the random variable B is the service time of the arrived
customer and W is the amount of work seen by (or waiting
time of) the arrived customer. The balance equation for w0

is rewritten so that the right-hand side is of nearly the same
form as the right-hand side of the general balance equation
for wk for k = 1, 2, . . .. The general balance equation can be
explained as follows. Consider all possible transitions from
a state j to the current state k ≥ 1. When the system is
currently in state k ≥ 1, the previous frame took s slots
and so the total amount of work just before the beginning
of that previous frame was at most k + s. This implies that
0 ≤ j ≤ k + s. The total amount of work that arrived at the
beginning of the previous frame plus j, the total amount of
work that was already present, minus s must be equal to k to
ensure a transition from j to k for k ≥ 1.

Multiplying both sides of each equation with zk and sum-
ming all equations for k = 0, 1, 2, . . . leads to the following

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



equation:

W (z) = α
∞∑

k=0

k∑
n=0

bs+nwk−nzk + α
∞∑

k=0

s−1∑
n=1

bs−nwk+nzk

+(1 − α)
∞∑

k=0

wk+sz
k + α

s−1∑
n=0

s−1−n∑
k=1

bkwn

+(1 − α)
s−1∑
n=0

wn

= W (z)z−sαB(z)

−z−sα

s−2∑
k=0

wkzk
s−1∑

n=k+1

bs−nzs−n

+z−s(1 − α)

(
W (z) −

s−1∑
k=0

wkzk

)

+α

s−1∑
n=0

s−1−n∑
k=1

bkwn + (1 − α)
s−1∑
n=0

wn.

After some algebraic manipulation, the above equation yields
the following expression for W (z):

W (z) =

α

s−1∑
k=0

s−k−1∑
n=1

bnwk(zs−zk+n)+(1−α)
s−1∑
k=0

wk(zs−zk)

zs−αB(z)−(1−α)
.

In this expression one can see that for z = 1 the numerator
is zero. Therefore, the numerator can be factorized, leading to
the following expression for W (z):

(z−1)

(
α

s−1∑
k=0

s−k−1∑
n=1

bnwk

s−1∑
i=k+n

zi+(1−α)
s−1∑
k=0

wk

s−1∑
i=k

zi

)

zs − αB(z) − (1 − α)
.

In this expression there are still s unknowns:
w0, w1, . . . , ws−1. Below, it will be explained how these yet
unknown probabilities can be found, but first an analytic
expression for EW = W ′(1) will be given. It can be derived
using either Taylor expansion or using l’Hôpital’s rule to give
the following:

EW =
α(
∑s−1

k=0

∑s−k−1
n=1 bnwk

∑s−1
i=k+n i)

s − αB′(1)
+

(1 − α)(
∑s−1

k=0 wk

∑s−1
i=k i)

s − αB′(1)
−

( s(s−1)
2 − αB′′(1)

2 )
s − αB′(1)

.

As mentioned earlier, the first two moments of the service
time distribution of a super customer are needed in order
to evaluate this expression in case of the static arrival slot
mechanism.

Determination of w0, w1, . . . , ws−1

We know that W (z) is well-defined for z with |z| ≤ 1.
Using Rouché’s theorem, it may be shown that the denomina-
tor of the final expression for W (z) has s zeros z1, z2, . . . , zs

that lie on or within the (complex) unit circle. (We omit the

detailed arguments because of space limitations.) For these
zeros W (z) is well-defined and consequently the numerator
has to be zero for these z1, z2, . . . , zs as well. This gives
s equations. It can easily be shown that for z = 1 both the
numerator and denominator always equal zero, independent of
the values of the wk’s and the bk’s. So in fact there are at most
s−1 equations that give information about the wk’s. But there
is also a normalization condition: W (1) = 1. When we assume
that there are indeed s− 1 different zeros which lead to s− 1
different equations, we do have, together with the boundary
condition, enough equations to solve for w0, w1, . . . , ws−1. It
might happen that there are less than s−1 different zeros, but
in that case some zeros have a multiplicity that is larger than
one. In this case the numerator must also have that zero with
the same multiplicity, which gives us again the right number
of equations. Hence we have s equations for s unknowns
w0, . . . , ws−1. This set of equations has a unique solution,
which follows from the general theory of Markov chains that
under the condition of stability, there is a unique stationary
distribution and thus also a unique solution W (z).

X. MEAN SERVICE TIME OF INDIVIDUAL CUSTOMERS

The Geo/G/1 queue yields results for super customers, i.e.,
for batches of customers. The waiting time for an individual
customer is of course the same as the one for a super customer,
but its service time is different. As soon as a customer is
successful, it will not wait till the whole contention tree is
finished, but will leave immediately. The service time of an
individual customer also depends on the order in which the
contention tree is processed. In this section we only present
the analysis of the mean individual service time under the
depth-first order; for more details and results the readers are
referred to [3], where it is also shown that the service times
for breadth-first and depth-first are very close.

Define the random variable S̃(n) as the total delay of all
customers in a tree with n customers, when it is processed in
depth-first order, n ≥ 2. Recall that the random variable B̃(n)
is defined as the total length of a tree with n customers in it,
n ≥ 2. By conditioning on the outcome in the first contention
slot we obtain the following equation for ES̃(n):

ES̃(n) =
∑

n1,n2 �=1,n3 �=1
n1+n2+n3=n

n!
n1!n2!n3!

(
1
3

)n

·

(
ES̃(n1)+ES̃(n2)+ES̃(n3) + (n2+n3)EB̃(n1)+n3EB̃(n2)

)

+
∑

n1,n2=1,n3 �=1
n1+n2+n3=n

n!
n1!n2!n3!

(
1
3

)n (
ES̃(n1)+ES̃(n3)+n3EB̃(n1)

)

+
∑

n1,n2 �=1,n3=1
n1+n2+n3=n

n!
n1!n2!n3!

(
1
3

)n (
ES̃(n1)+ES̃(n2)+n2EB̃(n1)

)

+
∑

n1,n2=1,n3=1
n1+n2+n3=n

n!
n1!n2!n3!

(
1
3

)n (
ES̃(n1)

)
+ n, n ≥ 2.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



After some manipulations this can be rewritten as:

3n

n!
ES̃(n) =

∑
n1,n2,n3

n1+n2+n3=n

(
ES̃(n1)

n1!
1

n2!
1

n3!

+
ES̃(n2)

n2!
1

n1!
1

n3!
+

ES̃(n3)
n3!

1
n1!

1
n2!

)

+n
3n

n!
+ 3

∑
n1,n2≥2,n3

n1+n2+n3=n

1
n1!

1
n2!

1
n3!

n2EB̃(n1),

n ≥ 2.

Define the function Q(x) :=
∑∞

n=2
ES̃(n)

n! xn. After multiply-
ing both sides of the last equation with xn and summing these
equations over n, we find the following result:

Q(3x) = 3e2xQ(x) +
∞∑

n=2

n
3n

n!
xn

+3
∞∑

n=2

∑
n1,n2≥2,n3

n1+n2+n3=n

xn1

n1!
xn2

n2!
xn3

n3!
n2EB̃n1 .

Substituting
∞∑

n=2

n
(3x)n

n!
= 3x

(
e3x − 1

)
and

∞∑
n=2

∑
n1,n2≥2,n3

n1+n2+n3=n

xn1

n1!
xn2

n2!
xn3

n3!
n2EB̃(n1)

=
∞∑

n1=0

EB̃(n1)
n1!

xn1

∞∑
n2=2

n2
xn2

n2!

∞∑
n3=0

xn3

n3!

= F̃ (x) · x (ex − 1) · ex,

yields

Q(3x) = 3e2xQ(x) + 3x
(
e3x − 1

)
+ 3xex (ex − 1) F̃ (x).

This equation can be solved by iteration. This leads to:

Q(3x) =
∞∑

j=0

3je3x(1− 1
3j ) 3x

3j

(
e

3x

3j − 1
)

+
∞∑

j=0

3je3x(1− 1
3j ) 3x

3j
e

x

3j

(
e

x

3j − 1
)

F̃ (
x

3j
)

=
∞∑

j=0

3xe3x(1− 1
3j )
(
e

3x

3j − 1
)

+
∞∑

j=0

∞∑
i=0

3i+1xex(3− 1
3j − 1

3i+j ) ·
(
e

x

3j − 1
)(

e
x

3i+j − x

3i+j
− 1
)

.

Hence, Q(x) can be readily computed by using this infinite
sum (which converges very fast). Now we determine the mean
individual service time. Let the random variable S̃ denote the

total delay in an arbitrary tree. By conditioning on the size
of the tree we obtain:

ES̃ = e−λ(s) ·0+λ(s)e−λ(s) ·1+
∞∑

n=2

e−λ(s) (λ(s))n

n!
ES̃(n)

= e−λ(s) (λ(s) + Q (λ(s))) .

The mean service time of an arbitrary individual customer,
denoted by ES̃ind, can be obtained by dividing the mean total
internal delay of an arbitrary tree by the mean number of
customers in a tree. So the mean service time of an arbitrary
individual customer satisfies the following relation:

ES̃ind =
ES̃

λ(s)

= e−λ(s) λ(s) + Q (λ(s))
λ(s)

.

Now we nearly have all ingredients to compute the mean
waiting time and the mean sojourn time of an individual
customer (or user). So far we ignored the presence of arrival
slots (i.e. batches of customers arrive instantaneously at the
beginning of each frame of s slots). To compute the waiting
times and sojourn times correctly, we have to insert the arrival
slots again, and as a consequence, waiting times and sojourn
times will become longer. This translation to the situation with
arrival slots can be done by using the generating functions of
the waiting time and the sojourn time; for details the readers
are referred to [3].

XI. WAITING TIME AND SOJOURN TIME RESULTS

In this section we compare the performance of the three
contention resolution mechanisms. The performance character-
istics of interest are the mean and variance of the waiting time
and the sojourn time of individual customers. The comparison
is based on simulation.
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Fig. 8. Estimated mean waiting time as a function of µ.

When we examine Figure 8, we see that the gated mech-
anism performs very well in the light-traffic zone. In this
regime, the mechanism with s = 1 shows good performance
as well. This is intuitively clear because we have small trees or
no trees generated in this regime. In the heavy-traffic regime,
the capacity of the system is eventually the important factor
that determines the performance of the system. Therefore, we
see that the mechanism with s = 2 outperforms all the other
mechanisms, except the non-blocked mechanism, in which
individual customers experience, by definition, a waiting time
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Fig. 9. Estimated mean sojourn time as a function of µ.
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Fig. 10. Estimated variance of the waiting time as a function of µ.

of zero slots. The most interesting comparison between the
different contention resolution procedures is made with respect
to the mean sojourn time (of individual customers). In Figure 9
we see again that the non-blocked and gated mechanisms are
superior to the static arrival slot mechanism in light traffic. In
heavy traffic, the mechanisms are ordered with respect to their
capacity. An interesting remark can be made on the variance
of the service time in the gated mechanism compared with
the static arrival slot mechanisms. The corresponding graph is
given in Figure 10. In this graph, we see a considerably smaller
variance for the gated mechanism as compared with the arrival
slot mechanisms in the light-traffic zone. This can be explained
as follows. In the gated mechanism, the number of customers
that are involved in a tree is small most of the time. In the
arrival slot mechanisms, the arrivals are accumulated over a
period of s + 1 slots. In light traffic, this period of s + 1 slots
will be longer than most gate periods. Consequently, there
will be more variance in the number of customers involved
in a tree, leading to larger variances of the service time.
We see in fact a similar behavior as in the corresponding
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Fig. 11. Estimated variance of the sojourn time as a function of µ.

mean sojourn time graph. In the light-traffic zone, the gated
and non-blocked mechanism outperform the static arrival slot
mechanism. When the intensity µ increases, the capacity of
the system becomes the dominant factor and determines the
performance with respect to the variance of the sojourn time
completely. This is confirmed in Figure 11.

XII. CONCLUSION

In this paper we proposed a novel mechanism for effi-
cient contention resolution, and compared this algorithm with
existing procedures available in the standards. It is demon-
strated that the channel capacity is increased, while the delay
of processing a NT’s request is considerably lowered in a
heavy-traffic regime. The main reason for the performance
improvement is that there are small trees in the proposed
system compared to the large trees that are there in the existing
mechanisms under heavy-traffic conditions. The delay in a
light-traffic regime can be reduced if we do not ‘waste’ the
arrival slot when there are no arrivals. This is the key feature
of the dynamic arrival slot mechanism which is described in
greater detail in [3].
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