
Minimum Power Broadcast Trees for Wireless
Networks: Integer Programming Formulations

Arindam K. Das, Robert J. Marks, Mohamed El-Sharkawi, Payman Arabshahi, Andrew Gray

Abstract— Wireless multicast/broadcast sessions, unlike
wired networks, inherently reaches several nodes with a sin-
gle transmission. For omnidirectional wireless broadcast to a
node, all nodes closer will also be reached. Heuristic algorithms
for constructing the minimum power tree in wireless networks
have been proposed by Wieselthier et al. and Stojmenovic et
al. Recently, an evolutionary search procedure has been pro-
posed by Marks et al. In this paper, we present three different
integer programming models which can be used for an optimal
solution of the minimum power broadcast/multicast problem
in wireless networks. The models assume complete knowledge
of the distance matrix and is therefore most suited for networks
where the locations of the nodes are fixed.

I. INTRODUCTION

For a given node constellation with an identified source
node, the minimum power broadcast (MPB) problem is
to communicate to all remaining nodes, either directly or
hopping, such that the overall transmission power is min-
imized. We assume that no power expenditure is involved
in signal reception/processing activities. Unlike wired net-
works, where a transmission i → j reaches only node j, it
is possible to reach several nodes by a single transmission
in wireless networks. If all nodes have omnidirectional an-
tennas, nodes which are closer to i than j will also receive
the transmission directed to j. This is the wireless advan-
tage property [1].

To the best of our knowledge, a couple of heuristic pro-
cedures have been suggested so far for solving the MPB
problem in wireless networks. Wieselthier, Nguyen and
Ephremides [1] proposed the broadcast incremental power
(BIP) algorithm for constructing the minimum-power tree
for wireless networks. In this algorithm, new nodes are
added to the tree on a minimum incremental cost basis,
until all intended destination nodes are included. An in-
ternal nodes based broadcasting procedure was suggested
by Stojmenovic, Seddigh and Zunic [5]. Recently, an evo-
lutionary approach using genetic algorithms has been pro-
posed by Marks, Das, El-Sharkawi, Arabshahi and Gray
[3]. Methods for generating initial solutions and checking
the viability of evolved solutions are described in [3].

While the performances of the above procedures can cer-
tainly be compared among themselves, in the absence of
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any optimal solution procedure, it has not been possible to
judge the quality of the solutions with respect to the op-
timal. This paper attempts to fill that void by proposing
three different integer programming (IP) models that can
be solved by any standard IP technique, e.g., linear pro-
gramming (LP) based branch-and-bound. All the models
discussed in this paper assume complete knowledge of pair-
wise distances between the nodes.

II. NETWORK MODEL

We assume a fixed N -node network with a specified
source node which has to broadcast a message to all other
nodes in the network. Any node can be used as a relay
node to reach other nodes in the network. Nodes that
receive a transmission but do not retransmit it are clas-
sified as leaf nodes. Nodes that transmit, including the
source node, are called hop nodes. The remaining nodes
are unconnected. Clearly, in a broadcast application, there
cannot be any unconnected nodes in a connection tree. In
a multicast (source-to-many) application, we assume that
it is possible to use non-destination nodes as a hop node
to relay information to a destination node(s).

For a transmission from node i to j, separated by a
distance rij , the transmitter power at node i is modeled
to be proportional to rα

ij where α is the channel loss expo-
nent (typically between 2 and 4, depending on the channel
medium). Without any loss of generality, we can set the
proportionality constant to one, so that the transmitter
power, pT , at node i is given by:

pT = rα
ij (1)

III. MPB vs. TSP

In this section, we explain the similarities and the dif-
ferences between the MPB problem in wireless networks
and the traveling salesman problem (TSP). Given a set
of N cities and a cost cij of moving from city i to city
j (1 ≤ i �= j ≤ N), the TSP attempts to find a mini-
mum cost tour of the cities, subject to the following con-
straints:

• Constraint (1): Departing from his home base, the
salesman must visit each city exactly once.

• Constraint (2): After visiting a city, the salesman
must leave for another city.

• Constraint (3): The salesman must return to his home
base.
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• Constraint (4): No subtours (i.e., cycles not including
the home base) are allowed.

A variation of this problem is the open tour (OT) case,
where the salesman need not return to his home base (con-
straint (3) relaxed) after visiting all cities. Also, constraint
(4) is modified so that “there are no cycles in the optimal
solution”. We will refer to this variation of the TSP as the
OT-TSP.

The OT-TSP is closely related to the minimum spanning
tree (MST) problem. Given an undirected graph G = (V ,
E), where V is the set of vertices and E is the set of edges,
the MST problem seeks to find the tree spanning G such
that the total edge weight is minimum. Explained in the
context of the traveling salesman, solving the TSP without
constraints (2) and (3) and with a modified constraint (4)
as explained above yields the MST. Note that relaxing
constraint (2) implies:

• It is not necessary for the salesman to make a trip out
of every city.

• Multiple trips may be made out of a city.
The MPB problem in wireless networks can be viewed

from the perspective of the OT-TSP as well as the MST.
We first examine the MPB problem from the context of
the OT-TSP. Section IV details the similarities and the
differences between the MPB and the MST problems.

If the rules of the OT-TSP are modified such that:
• if the salesman actually visits city j from city i, he can

claim to have also implicitly visited all cities within
the circle centered at i and radius rij . Note that while
actual visitations incur a cost, implicit visitations are
free. Figure 1 illustrates the actually and implicitly
visited nodes associated with the transmission i → j.
The solid line indicates an actual transmission while
the dashed lines indicate implicit transmissions.

• the salesman must have actually or implicitly visited
city i before he can make a trip out of city i.

• the salesman can make at most one trip out of city i.
• departing from his home base, the salesman has to

visit all cities, actually or implicitly.
we have the wireless MPB problem in wireless networks.
This interpretation of the MPB problem will be used to
develop an IP model of the MPB problem in Section VI. In
a network context, the salesmans implicit visitation priv-
ileges are a consequence of the wireless nature of the net-
work.

An important difference between OT-TSP and the
above interpretation of MPB is that, while each city in
OT-TSP has to be visited exactly once, the optimal so-
lution in MPB can involve multiple implicit visitations to
a node since no cost is incurred due to such visitations.
Referring to the 5-node network in Figure 2, suppose the
optimal MPB tree is {4 → 2, 3 → 5}. Note that nodes 1
and 3 are closer to node 4 than node 2 and nodes 1, 2 and
4 are closer to node 3 than node 5. If the source (node
4) uses this tree to communicate with other nodes in the
network, nodes 1 and 2 will receive the transmission twice;
implicitly in both cases for node 1 but once actually and
once implicitly for node 2.

Fig. 1. Illustration of actually visited nodes and implicitly visited
nodes in wireless networks.

Fig. 2. An example 5-node network.

IV. ALTERNATE VIEW OF IMPLICIT VISITATION
From the traveling salesman aspect, implicit visitations

can be alternately interpreted as the salesman being al-
lowed to make any number of actual trips (note the simi-
larity here with the MST problem) out of a city, with the
condition that the cost he incurs is the maximum of the
individual costs of the trips he makes out of the city. We
will illustrate with an example.
In Figure 3, the solid lines indicate the costliest paths out
of any city. Suppose the optimal MPB solution for the
above network is: {3 → 4, 4 → 6, 6 → 8, 5 → 7}. This
solution is interpreted as follows:

1) the salesman makes three actual trips out of city 3,
to cities 1, 2 and 4. Charged only for the trip to 4.

2) makes two actual trips out of city 4, to cities 5 and
6. Charged only for the trip to 6.

3) makes one actual trip out of city 5, to city 7. Charged
for the trip.

4) makes one actual trip out of city 6, to city 8. Charged
for the trip.

5) makes no trips out of cities 1, 2, 7 and 8.
The difference between the MST problem and the MPB
problem in wireless networks is now evident. Let Cij be
the cost of the arc (i, j) and Xij be a binary variable such
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Fig. 3. An example 8-node network to illustrate alternate view of
implicit visitation

that it is equal to 1 if the edge (i, j) is used in the final
solution and 0 otherwise. The objective functions for the
MST and the MPB can then be written as follows:

MST : minimize
∑

i

∑
j

CijXij ; i �= j (2)

MPB : minimize
∑

i

maxj (CijXij) ; i �= j (3)

It follows from (2) and (3) that the MST of a wired network
is not necessarily the MPB solution if the same network is
assumed to be wireless. Equations (2) and (3) also imply
that the cost of the MPB solution for wireless networks
can be no worse than the cost of the MST solution. The
ideas discussed in this section will be used to develop an
alternate IP model of the MPB problem in Section VII.

V. TERMINOLOGY

Before discussing the IP models for the MPB problem,
we offer the following definitions.

A. Power Matrix

For an N -node network, the power matrix, P, is an N ×
N matrix. The (i, j)th element of the power matrix defines
the power required for node i to transmit to node j and is
given by:

Pij =
[
(xi − xj)2 + (yi − yj)2

]α/2
= rα

ij (4)

where {(xi, yi) : 1 ≤ i ≤ N} are the coordinates of the
nodes in the network, α is the channel loss exponent and
rij is the Euclidean distance between nodes i and j. For
example, the power matrix of the network in Figure 4,
assuming α = 2, is:

P =




0 8.4645 12.5538 13.6351
8.4645 0 0.5470 3.8732

12.5538 0.5470 0 5.7910
13.6351 3.8732 5.7910 0


 (5)

Fig. 4. Example 4-node network: node 4 is the source.

B. Reward Matrix

Each transmission in a wireless network will result in
one or more nodes being reached. The reward matrix, R,
of a network is an N -element binary encoding of all the
nodes covered (or not covered) by all possible transmis-
sions in the network. In MATLAB c© notation, R is a cell
array, each cell being an N -element vector. We will use
the notation Rmn(p) to index the pth element of the (m, n)
cell in R.

The reward matrix is computed as follows:

Rmn(p) =
{

1, if Pmp ≤ Pmn

0, otherwise

For example, referring to Figure 4, the transmission 2 → 4
will result in nodes 3 and 4 being covered. This informa-
tion is encoded in the (2,4) cell of the reward matrix as:
R24 = [0 0 1 1]. The reward matrix of the wireless network
in Figure 4 is:

R =




[0 0 0 0] [0 1 0 0] [0 1 1 0] [0 1 1 1]
[1 0 1 1] [0 0 0 0] [0 0 1 0] [0 0 1 1]
[1 1 0 1] [0 1 0 0] [0 0 0 0] [0 1 0 1]
[1 1 1 0] [0 1 0 0] [0 1 1 0] [0 0 0 0]




(6)

Note that the reward matrix is not necessarily “symmet-
ric”; i.e., the vector Rmn is not necessarily equal to Rnm.
For example, referring to (6), while the transmission 1 → 3
reaches nodes 2 and 3 (R13), the transmission 3 → 1
reaches nodes 1, 2 and 4 (R31).

VI. IP FORMULATION ‘A’
Referring to the 4-node network in Figure 4, let {Yi :

1 ≤ i ≤ 4} be the transmitter power levels at the 4 nodes
(continuous variables) and {Xij : 1 ≤ i �= j ≤ 4} be binary
variables such that Xij = 1 if the transmission i → j is
used in the final solution and 0 otherwise.

The objective function is therefore:

minimize

4∑
i=1

Yi (7)
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The first set of constraints defines the relations between
the continuous variables Yi and the binary variables Xij .
These are:

Yi −
4∑

j=1

PijXij = 0; i �= j, 1 ≤ i ≤ 4 (8)

where Pij is the (i, j)th element of the power matrix P.
In the wireless MPB problem, only the source node is

required to transmit exactly once. Other nodes may or
may not transmit. However, if a node does transmit, it
can do so once. These conditions are expressed using the
following constraints.

X12 + X13 + X14 ≤ 1
X21 + X23 + X24 ≤ 1
X31 + X32 + X34 ≤ 1 (9)
X41 + X42 + X43 = 1

Next, we introduce integer auxiliary variables Xijk
1 which

are equal to 1 if the kth transmission in the final solution
is i → j and 0 otherwise. Note that, for an N -node net-
work, there can be at most N − 1 steps (transmissions) in
the solution (1 ≤ k ≤ N − 1). These auxiliary variables
are necessary to ensure proper sequentiality2 of the final
solution. The set of constraints in (10) defines the relation
between the variables Xijk and Xij .

Xij =
3∑

k=1

Xijk, 1 ≤ i �= j ≤ 4 (10)

Since the first transmission must be from the source (node
4 in our example), we can write:

X41(1) + X42(1) + X43(1) = 1; (11)
X12(1) + X13(1) + X14(1)

+ X21(1) + X23(1) + X24(1)

+ X31(1) + X32(1) + X34(1) = 0; (12)

where the k indices have been put in parentheses for clar-
ity.

The set of nodes that can transmit in step 2 is restricted
by the choice of transmission in step 1. For example, if
node 3 is to transmit in step 2, it has to be reached by the
transmission in step 1; i.e., we must have either X41(1) = 1
or X43(1) = 1. Note that the possible transmissions in step
1 are 4 → 1, 4 → 2 and 4 → 3. Of these possible trans-
missions, node 3 can be reached only if the transmission
chosen is either 4 → 1 or 4 → 3. This information is con-
tained in cell R43 of the reward matrix. Similarly, node 1
can transmit in step 2 if the transmission chosen in step 1 is
4 → 1 and node 2 can transmit in step 2 if the transmission

1A similar auxiliary variable formulation for the TSP was suggested
by Flood [6].

2Sequentiality here means that if node i is the transmitting node
in the kth step of the solution, it must have been reached by any of
the transmissions upto step k − 1

chosen in step 1 is either 4 → 1 or 4 → 2 or 4 → 3. We can
thus set up the node transmission blocking constraints
for step 2 as follows:

X12(2) + X13(2) + X14(2) − X41(1) ≤ 0;
X21(2) + X23(2) + X24(2) − X41(1) − X42(1) − X43(1) ≤ 0;

(13)

X31(2) + X32(2) + X34(2) − X41(1) − X43(1) ≤ 0;

Note that, for example, if X41(1) + X43(1) = 1 (⇒ node
3 has been reached in step 1), the expression X31(2) +
X32(2) + X34(2) can be either 0 or 1. This implies that
node 3 is free to transmit in step 2; whether it does so or
not is to be decided by the optimization process. However,
if X41(1) + X43(1) = 0 (⇒ node 3 has not been reached in
step 1), the expression X31(2) + X32(2) + X34(2) is forced
to be 0.

In general, the condition that node i (i �= source) can
transmit in step k (k ≥ 2) only if it has been reached by
any of the transmissions upto step k − 1 can be expressed
as:

N∑
j=1

Xijk −
k−1∑
p=1

N∑
m,n=1
m �=n

Rmn(i)Xmnp ≤ 0; i �= j
(14)

If node i has not been reached by step k − 1,

k−1∑
p=1

N∑
m,n=1
m �=n

Rmn(i)Xmnp = 0; i �= source (15)

and hence the term
∑N

j=1 Xijk in (14) is forced to be zero,
implying no transmission from node i in step k. The ex-
pression on the left hand side of (15) is therefore an indi-
cator of whether node i has been reached or not by step
k − 1. Also, for k = N , the term

N−1∑
p=1

N∑
m,n=1
m �=n

Rmn(i)Xmnp ≡
N∑

m,n=1
m �=n

Rmn(i)Xmn

equals the number of times node i is reached in the final
solution. Consequently, if we assume that there is a fixed
cost associated with signal reception (say α), which we
have ignored so far, adding the term

α




N∑
i=1

N∑
m,n=1
m �=n

Rmn(i)Xmn




to the objective function will ensure that the final solution
is optimal with respect to the sum of total transmission
and reception powers.

The next set of constraints are step transmission
forcing constraints and ensures that there is a transmis-
sion for step 2 if there is at least one node which has not
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been reached upto step 1.

4∑
m,n=1
m �=n

Xmn(2) ≤ 1; (16)

1∑
p=1

4∑
m,n=1
m �=n

Rmn(i)Xmnp +
4∑

m,n=1
m �=n

Xmn(2) ≥ 1; ∀i �= source
(17)

Constraint (16) ensures that there is at most one trans-
mission in step 2. Constraint (17) forces the term on the
left hand side of (16) to be equal to 1 (thereby forcing a
transmission) if at least one of the terms in

1∑
p=1

4∑
m,n=1
m �=n

Rmn(i)Xmnp, ∀i �= source

is 0 (i.e., there is at least one node which has not been
reached after step 1).

The node transmission blocking constraints and step
transmission forcing constraints need to be repeated for
all steps 2 ≤ k ≤ N − 1. For our 4-node example, we
therefore have:

4∑
j=1
j �=i

Xij(3) −
2∑

p=1

4∑
m,n=1
m �=n

Rmn(i)Xmnp ≤ 0; ∀i �= source
(18)

4∑
m,n=1
m �=n

Xmn(3) ≤ 1; (19)

2∑
p=1

4∑
m,n=1
m �=n

Rmn(i)Xmnp +
4∑

m,n=1
m �=n

Xmn(3) ≥ 1; ∀i �= source
(20)

Finally, in a broadcast application, all nodes must be
reached after the last step. As noted before in Section
(III), in a wireless network, it is possible for one or more
nodes to be reached more than once. The set of constraints
(node reachability constraints) which ensures that all
nodes (other than the source) are reached at least once
in the solution is:

4∑
m,n=1
m �=n

Rmn(i)Xmn ≥ 1; ∀i �= source (21)

A. IP Formulation ‘A’: Generalized Model

Let V be the set of all nodes in the network and D the
set of intended destination nodes. For broadcast applica-
tions, the set D is the set of all nodes in V except the
source and for multicast applications, the set D is the set
of some nodes in V except the source. The IP formulation
explained above for the example 4-node network can be
easily generalized for broadcast/multicast applications in
an N -node wireless network, as shown in Figure 5. Note
that no upper bound is required to be declared for the inte-
ger variables Xijk as it is set implicitly by equations (23),

(24) and (25). The number of variables and constraints in
this formulation are both of the order O(N3) (assuming
kMAX = N − 1), similar to Flood’s IP formulation of the
TSP [6].

B. Obtaining sub − optimal solutions by limiting k

We mentioned in Section VI that the node transmission
blocking constraints and step transmission forcing con-
straints need to be repeated for all steps 2 ≤ k ≤ N − 1
in a broadcast application. This is necessary to obtain
the optimal solution. A sub-optimal solution can how-
ever be obtained using the same model by limiting k such
that k ≤ kMAX ≤ N − 1. Doing so would not ren-
der the problem infeasible3 because the 1-step solution
{source → node farthest from source} covers all the
nodes and hence is always feasible. In fact, it can be ar-
gued that a feasible solution exists for all choices of k.
To see why, let πN = {i1, i2 · · · iN−1, iN} be an or-
dering of the nodes in an N -node network such that i1
is the source, i2 is the node closest to the source, · · ·
and iN is the node farthest from the source. For any k,
it can be easily verified that the transmission sequence
{i1 → ik → ik+1 → ik+2 · · · iN−2 → iN−1 → iN} is al-
ways a feasible broadcast tree. For example, in a 5-node
network with node 1 being the source, suppose π5 = {1,
5, 2, 4, 3}. For k = 3, the transmission sequence {1 → 2,
2 → 4, 4 → 3} constitutes a valid broadcast tree.

VII. IP FORMULATION ‘B’
This formulation utilizes the alternate view of implicit

visitation discussed in Section IV. Let {Yi : 1 ≤ i ≤ N}
be the transmitter power levels at the nodes (continuous
variables) and {Xij : 1 ≤ i �= j ≤ N} be binary variables
such that Xij = 1 if the transmission i → j is used in the
final solution and 0 otherwise. V is the set of all nodes
in the network and D is the set of intended destination
nodes.

As in Section VI, the objective function is:

minimize

N∑
i=1

Yi (33)

The first set of constraints are used for proper cost ac-
counting and reflects the condition that the cost incurred
at node i is the maximum of the individual costs of the
transmissions out of node i (Section IV).

Yi − PijXij ≥ 0; ∀(i, j) ∈ V, i �= j (34)

where Pij is the (i, j)th element of the power matrix P.
The next set of constraints expresses the condition that

the source node must transmit at least once. No con-
straints are required for the other nodes since they are free
to transmit to any number of nodes, or not to transmit at
all.

N∑
j=1

Xij ≥ 1; i = source, i �= j (35)

3Feasibility implies that all destination nodes are reached
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minimize

N∑
i=1

Yi

subject to:

Yi −
N∑

j=1

PijXij = 0; ∀i ∈ V, i �= j (22)

N∑
j=1

Xij = 1; i = source, i �= j (23)

N∑
j=1

Xij ≤ 1; ∀i ∈ {V \ source}, i �= j (24)

Xij −
N−1∑
k=1

Xijk = 0; ∀(i, j) ∈ V, i �= j (25)

N∑
j=1

Xijk = 1; i = source, i �= j, k = 1 (26)

N∑
i=1

N∑
j=1

Xijk = 0; i �= source, i �= j, k = 1 (27)

N∑
j=1

Xijk −
k−1∑
p=1

N∑
m=1

N∑
n=1

Rmn(i)Xmnp ≤ 0; ∀i ∈ {V \ source}, i �= j, m �= n, 2 ≤ k ≤ kMAX (28)

N∑
m=1

N∑
n=1

Xmnk ≤ 1; m �= n, 2 ≤ k ≤ kMAX (29)

k−1∑
p=1

N∑
m=1

N∑
n=1

Rmn(i)Xmnp +
N∑

m=1

N∑
n=1

Xmnk ≥ 1; ∀i ∈ {V \ source}, i �= j, m �= n, 2 ≤ k ≤ kMAX (30)

N∑
m=1

N∑
n=1

Rmn(i)Xmn ≥ 1; ∀i ∈ D, m �= n (31)

Xijk ≥ 0, integers; ∀(i, j) ∈ V, i �= j, 1 ≤ k ≤ kMAX (32)

Fig. 5. IP formulation ‘A’ for the minimum power broadcast problem

Since any number of transmissions can be made out of a
node i (only one of which adds to the overall cost), the
node reachability constraints in this formulation can be
simply written as4:

N∑
i=1

Xij = 1; ∀j ∈ D, i �= j (36)

Note the equality relationship in (36), as opposed to the
‘≥’ relationship in the node reachability constraints in For-
mulation ‘A’ (31). An equality relationship works for this
formulation because, if a node j is reached from node i

4The column sums corresponding to non-destination nodes should
not be set to zero. In a multicast application, such nodes can be
used as relay nodes to reach intended destination nodes. Forcing
the column sums of non-destination nodes to zero will preclude this
possibility.

in the optimal solution, either by a free transmission or a
cost-incurring one, it is not necessary for any other node in
the network to reach node j, using a free transmission or
otherwise (from a modeling aspect)5. Also, (36) effectively
constrains the number of {Xij ; i �= j} variables which can
have a value of 1 in the optimal solution to CD, where CD

is the cardinality of set D.
The constraints we have thus far can however lead to

loops and disjoint sets in the final solution, as illustrated
in Figure 6. The solid lines in the figure indicate cost-
incurring (actual) transmissions and the dashed lines indi-
cate free (implicit) transmissions. Nodes 4, 5 and 6 form a
loop in Figure 6. The sets of nodes {1,2,3} and {4,5,6} are
disjoint. Disjoint sets and loops will generally be present

5In a physical system, a node may have no control on the number
of implicit transmissions it receives from other nodes.
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in the solution if there is a cluster of nodes (nodes 4, 5 and
6 in our example) in the network which are far removed
from the rest of the nodes. In such a situation, (36) will
force a loop if the cost of the solution with the loop is less
than the cost of the true solution requiring no loops and
disjoint sets. It should be noted, however, that loops may
not necessarily be formed by cost-incurring transmissions,
as is the case in Figure 6. Figure 7 illustrates a case where
a loop is formed by a combination of cost-incurring and
free transmissions.

Fig. 6. Example to illustrate loops and disjoint sets. The sets {1,2,3}
and {4,5,6} are disjoint. Nodes {4,5,6} form a loop.

Fig. 7. The loop {4 ↔ 5} is formed by a combination of cost-incurring
and free transmissions. As in Figure 6, The sets {1,2,3} and {4,5,6}
are disjoint.

What we need therefore are constraints to prevent any
loops in the final solution. Referring to Figure 6, if we can
prevent the loop 4 → 5, 5 → 6, 6 → 4, one of the nodes in
the cluster {4,5,6} will be forced to receive a transmission
from any of the nodes in the cluster {1,2,3} (thereby also
solving the problem of disjoint sets), as otherwise it will
violate constraint (36). This will also ensure that there are
no disjoint sets in the final solution. For example, if the
loop is broken at the edge 6 → 4, node 4 will violate (36)
if it does not receive a transmission from any of the nodes
in the cluster {1,2,3}. Similarly, if we can prevent the loop
between nodes 4 and 5 in Figure 7 and ensure that there
is no loop between nodes 4 and 6, node 4 will be forced to
receive a transmission from any of the nodes in the cluster
{1,2,3}.

The argument that preventing loops will prevent disjoint
sets is valid only if a broadcast application is assumed and
may not hold for a multicast application. For example, as-
sume that nodes 2, 3, 5 and 6 in Figure 8 are the intended
destination nodes. Since node 4 is not a destination node,
there is no requirement that it be reached. However, it is
free to transmit, as mentioned in footnote 4. Consequently,
we have a situation where node 4 transmits to node 6 (cov-
ering node 5 in the process), but does not have to receive

a transmission before it transmits. This can be avoided
by adding constraints stipulating that a node (except the
source) can transmit only if it receives a transmission from
some other node.

N∑
j=1

Xij ≤ (N − 1)
N∑

j=1

Xji; ∀(i, j) ∈ {V \ source}, i �= j
(37)

With (37) in place, node 4 will be forced to receive a trans-
mission from any of the nodes in the cluster {1,2,3} since
receiving a transmission from either node 5 or 6 will result
in a loop.

Fig. 8. Disjoint sets can be present in a multicast solution even when
there are no loops.

Miller ([7]) suggested using the following constraint to
prevent subtours in TSP solutions.

Ui − Uj + NXij ≤ (N − 1); ∀(i, j) ∈ V, i �= j
(38)

where the Ui’s are sequencing variables and denote the
order in which the nodes are covered in the final solution.
Suppose nodes i, j and k form a loop. Using (38), we have
the three inequalities

Ui − Uj + NXij ≤ (N − 1)
Uj − Uk + NXjk ≤ (N − 1)
Uk − Ui + NXki ≤ (N − 1)

where Xij = Xjk = Xki = 1. Adding up the three in-
equalities will give N ≤ (N − 1), a contradiction. Equa-
tion (38) can therefore be used in the IP formulation for
MPB to prevent any loops (and thereby also ensuring that
there are no disjoint sets) in the solution. Since the first
transmission must be from the source, we will use (38) in
conjunction with:

Ui = 1; i = source (39)
Ui ≥ 2; ∀i ∈ {V \ source} (40)
Ui ≤ N ; ∀i ∈ {V \ source} (41)

The objective function (33) subject to (34) to (41) and the
integrality constraints

Xij ∈ {0, 1}; ∀(i, j) ∈ V, i �= j (42)

solves the minimum power broadcast/multicast problems
in wireless networks. While (37) is a required constraint
for multicast, it is optional for a broadcast application.
The number of variables and constraints in this formula-
tion are both of the order O(N2).
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Finally, it may be noted that while the {Yi} variables are
required in this formulation for proper power accounting,
it is possible to write IP formulation ‘A’ directly in terms
of the {Xij} variables since the {Yi} variables are related
to the {Xij} variables by equality relationships (22).

VIII. NOTE ON THE SOLUTIONS OBTAINED
USING FORMULATIONS ‘A’ and ‘B’

It is interesting to note that while the value of the ob-
jective function will be the same in the optimal solutions
obtained using either of the two formulations, the {Xij}
variables can be different in the two solutions. This is
because of the manner in which power expenditures are
accounted for at the nodes in the two formulations. In
formulation ‘A’, a node is constrained to a maximum of
one transmission, the power expenditure being simply the
corresponding element from the power matrix. In formu-
lation ‘B’, however, a node can send as many as N − 1
transmissions, the power expenditure being defined as the
maximum of the cost of the individual transmissions. We
use Figure 9 to illustrate the above.

0 1 2 3 4 5 6

0

1

2

3

4

5

6

1

2

3

4

5

6

Fig. 9. Example 6-node network: node 5 is the source.

The power matrix for the above network is:

P =




0 10.78 9.89 13.55 2.53 8.34
10.78 0 4.06 1.73 22.56 1.45
9.89 4.06 0 1.15 16.78 8.54

13.55 1.73 1.15 0 23.83 6.10
2.53 22.56 16.78 23.83 0 20.00
8.34 1.45 8.54 6.10 20.00 0


(43)

Using both formulations, the optimal node power settings,
assuming a broadcast application, are:

�Y (opt) = [10.78 0 1.15 0 2.53 0] (44)

The optimal value of the objective function is therefore:∑8
i=1

�Y
(opt)

i = 14.46.
However, the status of the {Xij} variables in the opti-

mum solutions are different, as is evident from (45) and

(46),

X(opt)
A =




0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0




(45)

X(opt)
B =




0 1 1 0 0 1
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0




(46)

where X(opt)
A and X(opt)

B are matrices containing the opti-
mal {Xij} values for formulations ‘A’ and ‘B’. While the
actual transmissions in the optimal connection tree (which
is [5 → 1, 1 → 2, 3 → 4]) are readily evident from (45),
it is not so in (46). To be specific, the ‘1’ entries in row
1 of X(opt)

B need to be matched with the corresponding
elements of the power matrix (P12, P13, P16) to estab-
lish which entry corresponds to the cost-incurring (actual)
transmission, the rest being free (implicit) transmissions.
Using the power matrix (43), we find that the transmission
1 → 2 is an actual transmission while the others, 1 → 3
and 1 → 6, are implicit.

We can also observe that while all column sums (except
column 5, which is for the source) in (46) are 1, the row
sums vary from 0 (row 2 for example) to 3 (row 1). In
general, for a broadcast application, the column sums in
X(opt)

B will all be 1 (except for the source column), but the
row sums can be any integer between 0 and N − 1 (except
for the source row for which it will be at least 1). For
X(opt)

A , however, all row and column sums are either 0 or
1 (for the source, the row sum will be 1 and the column
sum will be 0).

IX. IP FORMULATION ‘C’
This formulation is built upon a network flow model

and its interpretation follows from Formulation ‘B’. A flow
interpretation of the optimal {Xij} values in (46) is shown
in Figure 10. Node numbers are in bold italics.

Since the solution in (46) is for a broadcast applica-
tion, we can interpret it in terms of the following flow
model:

1) Node 5 (the source) is the supply node, with 5 (sum
of all elements in X(opt)

B ) units of supply. In general,
the number of units of supply is equal to the car-
dinality of D, where D is the set of all destination
nodes.
All other nodes (in general, the set of destination
nodes, D) are demand nodes, with 1 unit of demand
each.

2) The supply node routes all 5 units to node 1 (F51 =
5, where Fij is the flow in arc ij), which keeps 1
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Fig. 10. Flow interpretation of the optimal {Xij} values in (46).

unit to satisfy its own demand, while forwarding the
balance 4 units to other nodes. Specifically, it sends
1 unit each to nodes 2 and 6 (F12 = 1 and F16 = 1)
and 2 units to node 3 (F13 = 2).

3) Nodes 2 and 6 keep the units they receive to sat-
isfy their own demands. Node 3, on the other hand,
keeps 1 unit for itself and sends the remaining 1 unit
to node 4 (F34 = 1).

4) Node 4 keeps the unit it receives to satisfy its own
demand.

Suppose we solve a network flow problem (we will show
later how to) and come up with the flows in the arcs. How
do we account for the costs involved with the flows? First,
we note that the cost of using an arc is independent of
the number of units (greater than zero) flowing through
the arc; i.e., no matter how many units are sent through
the arc ij, as long as it is not zero, the cost is simply Pij ,
where Pij is the (i, j)th element of the power matrix P.
If there is no flow in an arc, the cost is zero. For example,
the cost associated with the 5 units of flow in the arc 5 →
1 in Figure 10 is P51 = 2.53. This suggests that we should
define additional variables (say Xij) such that Xij = 1 if
Fij > 0.

Assuming that we are able to write out constraints which
satisfy the above relationship, we now have to account for
the fact that, in a wireless network, there can be multiple
flows out of a node but the net cost incurred is the max-
imum of the individual costs due to the positive flows in
the arcs out of the node. For example, the cost incurred at
node 1 in Figure 10 is simply P12 and not P16+P12+P13,
since P12 > P13,P16 (43). The tools to resolve this are
already in place, as we saw in Section VII. Defining Y1 to
be the cost incurred at node 1, the set of constraints

Y1 − P1jX1j ≥ 0; 2 ≤ j ≤ 6 (47)

will ensure that Y1 = P12, if the objective function is to
minimize

∑6
i=1 Yi.

We will now generalize the above approach for an arbi-
trary N node network. Let V be the set of all nodes and
D the set of all destination nodes. The objective function
is:

minimize
N∑

i=1

Yi (48)

As in IP formulation ‘B’, the first set of constraints ensure
proper power accounting at the nodes.

Yi − PijXij ≥ 0; ∀(i, j) ∈ V, i �= j (49)

The second set of constraints relates the Xij variables to
the flow variables Fij and ensures that Xij = 1 if Fij > 0.

CDXij − Fij ≥ 0; ∀(i, j) ∈ V, i �= j (50)

where CD is the cardinality of set D. The coefficient of
Xij in (50) is due to the fact that the maximum flow out
of a node is equal to the number of demand nodes (or
destination nodes) in the network. Equation (50) leaves
open the possibility of Xij being equal to 1 for Fij = 0.
However, if there is no flow out of node i, i.e., Fij = 0, ∀j,
setting Xij = 1 would unnecessarily increase the cost of
the optimal solution. On the other hand, if there are mul-
tiple flows out of node i, suppose j∗ is the node such that
Ŷi = Pij∗Xij∗ = maxj (PijXij) is part of the optimal
solution. In this case, setting Xij = 1, j �= j∗, would not
affect the cost of the optimal solution if PijXij ≤ Pij∗Xij∗

(49). If, however, PijXij > Pij∗Xij∗ , this solution can-
not be optimal since it can easily be improved by setting
Xij = 0.

Next, we write the flow control equations (see for exam-
ple [9]):

N∑
j=1

Fij = CD; i = source, i �= j
(51)

N∑
j=1

Fji = 0; i = source, i �= j (52)

N∑
j=1

Fji −
N∑

j=1

Fij = 1; ∀i ∈ D, i �= j (53)

N∑
j=1

Fji −
N∑

j=1

Fij = 0; ∀i �∈ D, i �= j (54)

Note that (53) also serves as node reachability constraints
in this formulation, allowing non-destination nodes to be
used as hop nodes in a multicast application.

The final set of constraints express the integrality of the
Xij variables and non-negativity of the Fij variables.

Xij ∈ {0, 1}; ∀(i, j) ∈ V, i �= j (55)
Fij ≥ 0; ∀(i, j) ∈ V, i �= j (56)

To summarize, the objective function (48) subject to (49)
to (56) solves the minimum power broadcast/multicast
problems in wireless networks..
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The number of variables in this formulation is approx-
imately 2N2 + N , roughly N2 more than formulation ‘B’
due to the presence of the additional flow variables {Fij}.
The number of constraints is on the order of O(N2). The
most important feature of this formulation is that, unlike
formulation ‘B’, loop-breaking constraints are not required
here.

X. A NOTE ON PREVENTION OF DISJOINT SETS
AND LOOPS IN FORMULATIONS ‘A’, ‘B’ and ‘C’

It is interesting to note that prevention of loops and
disjoint sets is handled differently by each of the three IP
models discussed for the MPB problem. Formulation ‘A’
does not have any loop prevention constraints but uses the
node transmission blocking constraints (28) to prevent
disjoint sets. It can be argued that if there are no disjoint
sets in the MPB tree, there can be no loops either in the
solution obtained using this formulation. To see why, let
i → j be the mth transmission and j → i be the nth
(n > m) transmission in the MPB tree. First, we consider
the case where no other node is reached by either of these
two transmissions. In this case, clearly, one of them can
be deleted from the solution, leading to a reduction in the
overall tree power. The same is true if the set of nodes
reached by the transmission i → j is exactly the same as
the set of nodes reached by j → i (i.e, Rij = Rji). Next,
we consider the case where there is at least one node which
is reached by any of the two transmissions but not by the
other. For example, suppose i → j also reaches nodes
p1 and p2, while j → i also reaches nodes p1, p3 and p4.
Clearly, node j does not need to reach either i or p1 since
these have already been reached by prior transmissions.
Assuming node p3 is nearer to j than p4 and p4 is nearer
to j than i, the MPB tree can be improved by choosing
the transmission j → p4, which will ensure that node p3 is
covered as well.

Formulation ‘B’, on the other hand, uses the loop pre-
vention constraints suggested by Miller [7] for solving the
TSP to prevent loops in the MPB tree. As argued in Sec-
tion VII, the loop-prevention constraints are sufficient to
prevent any disjoint sets in the broadcast tree. However,
for a multicast application, additional constraints prevent-
ing a node from transmitting unless it receives from some
other node are required to prevent disjoint sets (37).

Finally, we note that Formulation ‘C’ solves the prob-
lem of loops and disjoint sets by using an underlying flow
model, with the flow balance equations, (51) to (54), en-
suring the validity of the solution returned by the model.

XI. CONCLUSION

We have proposed three integer programming models to
solve the minimum power broadcast problem in wireless
networks. Currently, we are using an LP-based branch-
and-bound method for solving the models. Development
of sophisticated and customized methods, using cutting
planes or branch-and-cut techniques, for example, will be
taken up in future. An analytical study of the tightness of

the IP models as also the properties of their LP relaxations
are also planned for the future.

While optimal solutions can now be obtained for fixed
wireless networks (i.e., networks where the nodes are not
mobile), the IP models can also be used to assess the per-
formance of heuristic algorithms for mobile networks by
running them at discrete time instances. The possibility
of using a heuristic patch-up procedure together with opti-
mization at regular time intervals for mobile networks also
needs to be explored.
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