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Abstract— A stochastic model of TCP is developed. Unlike
many other models, this model accounts for variations in latency
and loss probability. A major strength of this model is that it
easily produces the probability distribution of the congestion
window. Thus, the mean as well as the median and percentiles can
be found. It is shown that the mean congestion window can be
far larger than the median. Other new insights include the effect
of the rate of change of the latency on the performance of TCP.
Specifically, this model predicts the well-known TCP-friendly
formula only if the round-trip time rapidly varies. However,
if the round-trip time does not vary quickly, then the TCP-
friendly formula may not hold. Both rapidly and slowly varying
round-trip times have been observed in real networks. As an
application of the model, the question as to when a video can be
fairly transmitted is addressed. If it is possible to transmit the
video, the model yields the distribution of the size of the receiving
buffer required to avoid underflow. Since the distribution can be
found, it is possible to select a buffer size so that a specified
percentage of users will view the video without interruption.

I. INTRODUCTION

There has been extensive work focused on determining
sending rates for non-TCP flows that are compatible with TCP
flows. The basic approach is to send the non-TCP traffic at
a rate similar to the rate that TCP would send data if the
TCP flow was sending data in the same environment. By
environment, we mean round-trip time and loss probability.
Implementations determine the environment through estima-
tion and determine sending rate through modeling. The focus
of this paper is on modeling and has three objectives.

The first objective of this paper is to develop a new model
of TCP. The difference between the work presented here and
previous work is that models developed here provide a more
detailed understanding of TCP’s performance and incorporates
often ignored aspects. In particular, the model includes a
dynamic model of the round-trip time and loss probability.
In most other modeling efforts, the round-trip time and loss
probability are taken to be constant. It will be shown that the
rate at which the round-trip time varies plays an important
role in the performance of TCP.

A second objective of this paper is to demonstrate the
utility of stochastic differential equation (SDE) modeling and
probability distributions. While others have utilized SDEs,
most modeling approaches have focused on average behavior
(an exception is [1]). While the mean does provide insight,
one should be careful when making implementation decisions

based on mean alone. For example, it has been suggested
that under a fixed environment, a flow that sends data at the
ensemble average rate of TCP flows is compatible to TCP
flows. However, a more reasonable alternative is that the fair
sending rate is the median TCP sending rate. As can be noticed
by examining Figure 9, the distribution of the TCP congestion
window may have a large tail. Hence, the mean may be far
larger than the median (e.g., Figure 11). In this case, the mean
TCP sending rate will be overly aggressive, whereas if the
median sending rate is utilized, then it is assured that 50% of
the flows would send faster and 50% of the flows would send
slower.

The final objective of this paper is the application of
this modeling approach to TCP-friendly unicast video trans-
mission. Much of the work in this direction [2], [3], [4],
[5] assumes that video requires constant bit-rate and hence,
the objective has been to determine a constant rate that is
compatible with TCP. However, modern video compression
techniques (e.g., MPEG) use variable bit-rate (VBR) compres-
sion. Hence, these streams do not require a constant bit-rate.
Indeed, squeezing the VBR video stream into a constant bit
rate stream is technically challenging and typically leads to
a decrease in quality. As an alternative, this paper directly
focuses on the compatibility question; is it possible to send the
video while remaining fair to TCP flows? In order to maintain
compatibility with TCP flows, the video is transmitted at the
median TCP sending rate given the round-trip time; a quantity
that varies with round-trip time. Then, the question as to
whether the video can be fairly transmitted is formulated as a
queueing problem where the input to the queue in governed
by the VBR video stream and the output is governed by the
median TCP sending rate. If the queue fills without bound,
then the video stream is not compatible with the network
conditions.

While an outgoing queue forces the VBR video stream
to be fair, a receiving buffer is necessary to accept data at
the fair TCP rate and output it to the monitor at the VBR
video rate. If this buffer empties, then frames are skipped
leading to a greatly degraded video. In order to avoid this
underflow condition, the receiving buffer is filled before the
video playback begins. In section IV, the model of TCP
and a model of VBR video are combined to determine the
distribution of the receiving buffer size required to avoid
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underflow

It must be emphasized that the mean required buffer size
is not appropriate. Typically, the objective is for a large
percentage of the viewers to view the video without underflow.
Thus, the receiver buffer is prefilled to a size so that Q percent
of the viewers will not experience underflow. If the mean
required buffer size is used instead of the Qth percentile, it
is not possible to guarantee even half of the viewers could
receive the transmission without underflow. Figure 12 shows
that case where the 99% percentile required buffer size is two
orders of magnitude larger than the mean required buffer size.

The model presented is far from the first model of TCP. The
most popular models are the so called TCP-friendly models
[6], [7], [8] which yield a simple formula that relates average
loss probability, average round-trip time and average through-
put. A principle advantage of these models is their simplicity.
However, these models provide only average behavior of TCP.
The models presented here yield the entire distribution of
TCP’s window size. In [1], the distribution of TCP’s window
size is also investigated. However, in [1], it is assumed that
the loss probability varies with the congestion window. While
this is true for a single flow over a single bottleneck, our
experience is that in general the round-trip time is a far
stronger indicator of loss probability than congestion window.
Furthermore, the model developed here directly addresses the
stochastic nature of large networks. In [9], SDEs are also
employed. However, the object in [9] is the average behavior
and variation of round-trip time and loss probability are again
neglected. Other modeling approaches to TCP include [10],
[11], and [12]. The last is particularly relevant since it also
takes a stochastic approach. However, the approach in [12]
is substantially different from the one taken here. The model
developed in this paper is applicable to both short-term flows
as well as long-term flows. However, the three-way hand shake
is not modeled. A model of short-lived connections along with
the three-way hand shake can be found in [13].

The paper consist of three principle sections. In the first
section, the model of TCP is developed. To this end, two
submodels are presented; a model of round-trip time and a
model for drops. While the model of round-trip time has
been developed elsewhere, the model for loss probability is
unique. These models are combined into the TCP model in
Section II-C. Section III discuses the TCP model. Specifically,
Section III-A validates the model with ns-2 simulations while
Section III-B utilize the model to develop some new insights
into TCP’s performance. Section IV applies the TCP model
to determine when a video can be fairly and successfully
transmitted.

Due to space limitations, no proofs are included and as little
mathematics is presented as possible. Details of the mathemat-
ical technicalities are left to a technical report. Furthermore,
because of space limitations, the details of some techniques are
not discussed and a discussion of the measurement methods
utilized is skipped. A longer version of this paper will include
these critical details.

II. A DIFFUSION MODEL OF TCP

No attempt is made to exactly model a particular variant
of TCP, e.g. TCP-SACK or RENO. Instead, the approach
is to model the basic principles of TCP congestion control
and develop an idealized model of TCP congestion control.
The principles of TCP are that the window size increases
by one every round-trip time, divides by two when a drop
event is detected, goes to one when a time-out occurs and
exponentially increases after a time-out until it reaches its size
before the time-out divided by two. Features of TCP that are
ignored include delayed ACKs, the details of fast recovery,
the subtleties of time-out and interaction with the application
layer. From this idealized point of view, the only inputs to
TCP are packet loss and the round-trip delay experienced by
data packets and their ACKs. Thus, in order to model TCP,
round-trip time and packet loss must be modeled.

A. A Diffusion Model of round-trip Time

There has been extensive work focused on understanding
the distribution of latency, e.g. [14], [15], [16]. However,
there has been less work on developing a dynamical model of
latency. Work that has investigated the dynamics of the round-
trip time includes [17] and [18]. In [18], diffusion models of
round-trip delay are developed. These models are validated
with extensive real network measurements. These models and
their merits will be briefly reviewed.

Let Rt be the variable part of the round-trip time experi-
enced by a packet send at time t. Thus, the actual round-trip
time is RTTt = Rt+T where T accounts for fixed delays such
as propagation delay, transmission delay, etc. Rt is dominated
by queuing delay but may also include effects such as address
lookup. However, the effect of delays between network layers
and transport or application layers is not modeled. The first
model presented in [18] is a simple three parameter mean-
reverting diffusion model

dRt =
σ2

2
(λ− φRt) dt+ σ

√
RtdBt, (1)

where φ, λ and σ are scalar parameters and Bt is Brownian
motion. This system is known as CIR model of interest rates
and has been widely studied and utilized in finance [19]. The
stationary density of the system is given by the gamma density

p (r) =
(φ)λ

Γ (λ)
rλ−1e−φr, (2)

where Γ is the Gamma function. In the case where there are
λ M/M/1 queues between source and destination, and each
queue has an arrival rate a and a departure rate b, with a < b,
a ≈ b (i.e., heavy traffic) and b − a = φ, then the probability
density of the latency is given by (2) [20]. Thus, there is a
bit of rational behind the model. A very useful feature of this
model is that the transition probabilities are known,

p (Rt|R0, φ, λ, σ) = c exp (−u− v)
(v
u

)q/2
Iq
(
2
√
uv
)
,

(3)
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Fig. 1. Observed and Fitted Density of the Round-trip Time.
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Fig. 2. The above plots show the probability density of the increments of
the round-trip time, R10 − R0, for various initial conditions R0. The solid
curve shows the observed density, the dashed curve shows the density with
the estimated σ. The dotted curve shows the invariant density for reference
purposes. Along the invariant density curve are circles that indicate the initial
condition R0.

where

c := φ

1−exp
(
−σ2

2 φt
) , u := cy exp

(
−σ2

2 φt
)

v := cx, q := λ− 1

and Ig is the modified Bessel function of the first kind of
order q. A typical stationary distribution is shown in Figure
1. The transition probabilities are shown in Figure 2. These
figures show both the fitted and observed round-trip times.
This data was collected from a connection with source in San
Jose and destination in Los Angeles. This data was collected
at 2pm on March 26, 2001. At this time, this connection
experienced its heaviest congestion of the day. Note that while
the quality of the fit is good, Figure 1 show a problem with
fitting the tail. Thus, while large round-trip times are rare, this
model under predicts their rate of occurrence. At times of less
congestion (most of the day), the tail is far smaller and this
model performs quite well.

During periods of high congestion, a better fitting model
can be had at the expense of adding more parameters. A six
parameter model of round-trip time is

dRt =
√
σ2Rρ

t dBt (4)

+
σ2

2
Rρ−1

((
δRδ

t + γβγRγ
t

)(
Rδ

t + βγRγ
t

) + ρ− φ2 ln (Rt)

)
dt.
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Fig. 3. Observed and fitted stationary distributions of the round-trip time. The
top left hand plot shows the round-trip time for an intra-California connection
at 3:30pm on March 26, 2001. The right hand plot show the round-trip time
for the same connection at 1am on March 27 2001. The lower two plots
show the round-trip times at the same times as the upper plots but for a
transcontinental connection.
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Fig. 4. Observed and fitted transition probabilities for a intra-California
round-trip time on March 26 at 3:30pm. The upper left shows the stationary
density. The remaining plots show the observed transition probability (solid
line), the fitted transitions probability (dotted line) and, for reference, the
stationary density. The vertical solid line indicates the initial condition.

In this case the invariant density is given by

h (r) = C
(
rδ + βγrγ

)
exp

(
−φ (ln (r))2

)
. (5)

Figure 3 shows some observed and fitted stationary distribu-
tions while Figure 4 shows the observed and fitted transition
probabilities.

While it may be argued whether the above models are
accurate over all connections, the above and other measure-
ments strongly suggests that these models perform well over a
number of connections. Clearly, there is a need to understand
the validity of these models over large portions of the network.
While a large scale study is underway, its results will be left
for the future.

Remark 1: As discussed in [18], the parameters of these
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model vary. Our data indicates that the parameters vary slowly
and can be taken to be constant over time intervals less than 1
or 2 minutes. Furthermore, the parameters may remain valid
for a very long time, sometimes for a few hours. This behavior
is to be expected since the models are dynamic and hence
allow for variation of the round-trip time.

Remark 2: One aspect that is missing from these round-
trip time models is the long-term correlation that have been
observed by [17]. There are three reasons to not include such
long-term correlations. 1. Our measurements have not shown
long-term correlations. One explanation of [17] findings is
that [17] was chiefly concerned with delay observed at the
application layer. This delay is principally the sum of the
network delay and delay induced by the operating system.
Since operating systems experience periodic stalls (periodic
signals have infinitely long-term correlations), it is not clear
if [17] was actually measuring the operating system. 2. Short-
term correlations are modeled. Making use of model parameter
variation, this correlation can be extended in such a way that
long-term correlation can be approximated. 3. The model is
an approximation and is greatly simplified by using neglecting
long-term correlations. The simplicity increases the utility of
the model while not substantially degrading its accuracy.

B. A Probabilistic Model of Packet Loss

There has been extensive work on modeling packet loss.
In [21], a small network is considered and a deterministic
model for packet drops is developed. In [8] and [13], drops
are assumed to be highly correlated over short time scales
and independent over longer time scales. In [22], drops are
assumed to be bursty. Furthermore, [22] makes no distinction
between drop events and packet drops. Similarly, in this paper
a drop event is when the congestion window divided by two,
which can be made up of many lost packets, is referred to as
a packet loss. In [12], drops events are modeled as a renewal
process with various distributions; deterministic, Poisson, i.i.d
and Markovian. A specific example of the model in [12]
is developed in [9], where drop events are modeled by a
Poisson process and, hence, the time between drop events are
exponentially distributed and independent of the sending rate.
In [23] and [1], this approach is generalized and drops events
are modeled as a Poisson process where the intensity depends
on TCP’s congestion window size. In [24], a dynamic model of
loss is developed. The model presented here is also dynamic.
The difference between the two is that our model recognizes
a strong dependence on the round-trip time.

Our loss model is along the lines of [23] and [1] in that
packet loss is modeled as a Poisson process. However, we
allow the loss rate to be a function of round-trip time and the
sending rate. As a result of the loss rate depending on round-
trip time, the model is able to remain accurate for a large set
of operating conditions; light congestion with small round-trip
times and heavy congestion with longer round-trip times.

Define the sending rate at time t of be Vt. The loss events
are modeled as a Cox process1 Nt, with rate n (Rt, Vt). We

1A Poisson process is a Cox process when the rate is constant.

decompose this rate into

n (Rt, Vt) = Vt · g (Rt) .

Thus, the drop rate is a function of the sending rate and g (Rt) ,
the conditional loss probability. It is commonly assumed that
the loss rate can be decomposed in this way. However, it
appears that the assumption that the loss rate depends on the
round-trip time is novel. Indeed, many have assumed the loss
probability to be constant (exceptions include [24], [23] and
[1]). The dependence on round-trip time is reasonable since,
as queues fill, the round-trip time increases and the probability
of a packet loss increases.

While many models of g are appropriate, a spline repre-
sentation has proven useful. There has been extensive work
smoothing observed data with splines [25]. To this end, define

g (Rt) = α0T0 (Rt) + α1T1 (Rt) + · · · + αnTn (Rt) ,

where Ti is are a set of function. For example, these could be
Taylor series function, 1, x, x2,..., Chebshev polynomials, or,
as we have chosen them, splines.

Since the round-trip times of dropped packets is not ob-
served, the conditional loss probability is not directly ob-
servable. Define dk to be one if the kth packet is lost and
zero otherwise. Then, through empirical averaging, the directly
computable quantities are

p
(
Rtk

|Rtk−1

) − the transition probability of the
round-trip time.

P
(
dk|Rtk−1

)
–

the probability of packet being
dropped given the last round-trip time.

The transition probability p
(
Rtk

|Rtk−1

)
depends on the time

interval tk − tk−1. For ease of presentation, we will assume
that the packets are transmitted at a constant sending rate.
The case of time varying sending rate is a straight forward
extension.

A simple manipulation yields

p
(
dk, Rtk

|Rtk−1

)
= P

(
dk|Rtk

, Rtk−1

)
p
(
Rtk

|Rtk−1

)
(6)

= P (dk|Rtk
) p
(
Rtk

|Rtk−1

)
= g (Rtk

) p
(
Rtk

|Rtk−1

)
,

where it is assumed that given the present round-trip time,
packet loss is independent of the past round-trip time. Inte-
grating (6) yields

P
(
dk|Rtk−1

)
=
∫
p
(
dk, Rtk

|Rtk−1

)
dRtk

(7)

=
∫
g (Rtk

) p
(
Rtk

|Rtk−1

)
dRtk

=
∫ n∑

i=0

aiTi (Rtk
) p
(
Rtk

|Rtk−1

)
dRtk

=
n∑

i=0

αi

(∫
Ti (Rtk

) p
(
Rtk

|Rtk−1

)
dRtk

)
,
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Fig. 5. Los Angeles to San Jose loss probability during the day (upper left)
and night (upper right) and density of round-trip times for these connections
(lower).

which is a linear system of equations. Therefore, given
p
(
dk|Rtk−1

)
and

(∫
Ti (Rtk

) p
(
Rtk

|Rtk−1

)
dRtk

)
, it is

straight forward to solve (7) for the coefficients ai.
There is a minor difficulty with defining the loss probability

as above. If the packet is dropped, then it is not initially clear
how to define the round-trip time. The simplest solution to this
is that models in the previous section determine p (Rt|R0)
and these models, along with g, accurately model the loss
probability. In this sense, loss probability is not dependent on
round-trip time, but rather on the state of a model of round-
trip time. Other rationalizations are possible. In the case that
the packet is dropped, we could define the round-trip time as
the latency that the packet would have experienced if had it
not been drop. For example, if RED is used, then it is not
difficult to conceive of the situation where a packet was not
drop and the round-trip time it would have experience. With
ECN, the packet is not actually dropped, so round-trip time
can be measured.

Figure 5 shows observed round-trip times and the computed
function g. Comparing the left to the right frames, it is seen
that loss probability increases with congestion which increases
with average round-trip time. However, these functions are
peculiar in that the loss probability appears to decrease with
round-trip time when the round-trip time is large. While this
feature is interesting, its relevance is not clear as this decrease
only occurs for large round-trip times and these round-trip
times are rare.

More work is necessary to find a ubiquitous expression
for the loss probability. For example, the dependence on the
sending rate and the history of round-trip times has yet to be
fully explored. Some may argue that the above methodology
suffers from the fact that the actual round-trip time that would
have been experienced by a dropped packet is poorly modeled
by p (Rt|R0) since this round-trip time is never observed.
However, by sending closely spaced packets (1 ms and less),
we have been able to determine that this is a reasonable model.
This result supports the assumption that over milliseconds time
scales, the round-trip time varies at the same rate regardless if
a packet is lost or not. Further discussion of loss models is not
possible here. Indeed, this is a deep issue which requires study
in its own right. The main point of this section is to present a

reasonable model for packet loss. The following work is not
directly dependent on this model and can easily be adapted to
other models.

C. A Diffusion Model of TCP

In this section, the above models are utilized to develop a
model of TCP’s congestion window. We start with a simply
model where, when packets are not dropped, the congestion
window increases by one in one round-trip and divides by two
when a loss event is detected. Define the congestion window
at time t to be Xt and recall that Rt is variable part of the
round-trip time at time t and T is the fixed component of the
round-trip time. In this case, a stochastic differential equation
model of the congestion window is

dXt =
1

T +Rt
dt− 1

2
XtdNt (8)

dRt = µ (Rt) dt+ σ (Rt) dBt,

where µ and σ are functions such as the ones given in Section
II-A and N is a Cox process that counts the number of drops.
This model is similar to and inspired by the one presented in
[9]. However, here the fact that round-trip time is not constant
is embraced. As will be seen, this variation plays an important
role. Another difference is that the model of loss events is
different; [9] assumes that loss the loss rate is independent of
the sending rate as well as the round-trip time.

Model (8) can be extended to incorporated the effect of
time-outs,

dXt = 1{Xt≥St}
1

T +Rt
dt− 1

2
XtdNt (9)

− (Xt − 1) dMt + 1{Xt<St}
ln 2
T +Rt

Xtdt

dSt =
1
2
XtdMt − StdNt

dRt = µ (Rt) dt+ σ (Rt) dBt,

where M is a Poisson process that counts the number of time-
outs and 1{X1<St} is the indicator function. Here, M and N
are distinct processes and increment at the same time with
probability zero. In this system S takes the role of slow start
threshold (ssthresh). If X is less than S, then X increases at
a rate such that it doubles every round-trip time. Note that
when a time-out occurs, S is set to 1

2X and X is set to one.
The congestion window then exponentially increases until it
reaches S, at which time it increases at a rate 1

T+Rt
. After a

time-out, exponential growth has completed and S �= 0, the
next drop sets S = 0, so X > S.

With these models, it is straight forward to determine the
probability density functions of the congestion window. Let
p (x, r, t) be the probability density function for (8), i.e., let
p (x, r, t) = ∂2

∂x∂rP (Xt < x,Rt < r) . We will assume that
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this and all necessary densities exists. Then p (x, r, t) obeys

∂

∂t
p (x, r, t) (10)

= − ∂

∂r
(µ (r) p (x, r, t)) +

1
2
∂2

∂r2
(
σ2 (r) p (x, r, t)

)
− n (x, r) p (x, r, t)

− 1
T + r

∂

∂x
p (x, r, t) + 2n (2x, r) p (2x, r, t) ,

where n (x, r) is the drop event rate discussed in subsection
II-B. This partial differential equation representation of the
density is known as Kolgomorov’s forward equation and is a
straight forward application of standard methods in stochastic
differential equation [26]. It is not hard to show that the
system is ergodic. Hence, with p (x, r, t) found, the stationary
density can be found by letting t → ∞, i.e., p (x, r) =
limt→∞ p (x, r, t).

In the case of model (9), the density obeys

∂

∂t
p (x, r, s, t) (11)

= − ∂

∂r
(µ (r) p (x, r, s, t)) +

1
2
∂2

∂r2
(
σ2 (r) p (x, r, s, t)

)
− (n (x, r) +m (x, r)) p (x, r, s, t)

− (1{s≤x} + 1{s>x} ln 2
) 1
T + r

∂

∂x
p (x, r, s, t)

+ 1{s=0}2n (r, 2x)
∫
p (2x, r, u, t)du

+ 1{x=1}2m (r, 2s)
∫
p (2s, r, u, t)du.

III. VALIDATION AND INSIGHTS

A. Validation

We briefly examine some ns-2 simulations. Thus, the topol-
ogy utilized here is shown in Figure 6. The cross-traffic
consisted of persistent TCP flows. Not all possible TCP flows
were considered. Instead, only the following set of source
destination pairs were considered

(1, 5) , (1, 6) , (1, 7) , (1, 8) , (2, 6) ,

(2, 7) , (2, 8) , (3, 7) , (3, 8) , (4, 8) .

The flow under test had source S and destination D. Each link
had a propagation delay of 10ms and bandwidth of 10MB.
The queues employed RED. Figure 7 shows the results of this
simulation as well as the fitted densities and the theoretical
density of the congestion window and observed density. Here,
the simpler model of round-trip time model (1) was used and
yields a marginal fit. Nonetheless, the theoretical and observed
densities of the congestion window appear to be similar (lower
left in Figure 7). Figure 7 also shows the joint density of
round-trip time and congestion window. Other simulations
show similar results.

S D

1 2 3 4

5 6 7 8

Fig. 6. The topology for the ns simulations. The flow of interest was a flow
from S to D.
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B. The Effect of the Model Parameters

With this model it is trivial to vary the parameters and
observe changes in the congestion window distribution. We
restrict attention to the model of round-trip time (1). Two
aspects of the model are investigated, the dependence on the
loss probability and the dependence on the diffusion parameter
σ. Measurements of a connection with source in San Jose
and destination in Los Angeles were made during midday.
From this data, the round-trip time model parameters and the
conditional loss probability ĝ (r) were determined. This loss
probability was then scaled, i.e. g (r) = scale× ĝ (r). Figure
8 shows stationary density of the congestion window as the
scale parameter varies. This figure also shows the relationship
between the average loss probability, i.e.,

∫
g (r) p (r) dr vs.

the average size of the congestion window. Note the apparent
reciprocal relationship between the congestion window and the
square-root of the average loss probability. This relationship
has been extensively studied and is the basis for TCP friendly
congestion control [6], [7].

Next, the scale parameter was set to one and the σ
parameter was varied. σ controls how fast the transition
probability converge to the stationary density. In other words,
σ controls how fast round-trip time varies; a large σ yields
faster variation. By examining (5), it is easy to see that the
distribution of the round-trip time is independent of σ, that is
p (r) is independent of σ. Thus, the average loss probability
does not depend on σ. Figure 9 shows a series of densities of
the congestion window for different values of σ. Figure 9 also
shows the relation between the average congestion window
and the average loss probability. Note that these points must
be on a vertical line since the average loss probability is not
effected by σ. Figure 10 helps explain the effect of σ. This
figure show the joint density of the congestion window and
round-trip time for a small value of σ. This figure can be
compared to the similar plot in Figure 7. Note that in Figure
10, the congestion window may take very large values when
r is small. This is due to the fact that when round-trip time is
small, the drop probability is small, so the congestion window
is able to grow. If σ is small, then the condition of low drop
probability is maintained for a longer time than if σ had been
large. This effect is observed in real networks; during periods
of light congestion the round-trip time and loss probability
decreases allowing the congestion window to achieve a higher
value.

Note that in Figure 9 that as σ increases, the density of
the congestion window appears to converge. This convergence
can be explained by recalling that for large σ, there is little
correlation between different samples of round-trip time. Thus,
in a very short amount of time, a flow would experience the
full range of round-trip times and experience the average drop
probability. Thus each flow, independent of its initial round-
trip time, experience the same round-trip times and the same
loss probability. In this case, there is little loss of generality
when the round-trip time is replaced with its average value.
This is essentially what was done in [9]. Thus, the work here
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Fig. 9. Upper, Density of the Size of the Congestion Window for Different
Values of σ; lower, The Relationship Between the Average Loss Probability
and the Average Size of the Congestion Window for Different σ. The average
congestion window decreases monotonically as σ increases.

can be thought of an investigation into the case where σ is
not necessarily large. The assumption that the average value of
the round-trip time can replace the round-trip time is made
by many researchers. Our network observation indicate that
very small values of σ are observed. For example, σ < 0.1 is
not uncommon.

Note that Figure 9 does not necessarily imply that the TCP-
friendly formula is incorrect. In particular, for small σ, the
round-trip time slowly varies. Hence, a short-term average of
the round-trip time is perhaps very different from the actual,
long-term average. Such a short-term average would yield a
different relationship than the one shown in 9. This difference
between the TCP friendly formula and model results presented
here highlight the difficulty choosing of averaging windows
or filters used to compute the averages required by the TCP
friendly formula. In [27], experience has guided the choice of
these parameter. However, the problem of window size and
filtering methods appears to remain a difficult problem, e.g.
see [28].

As mentioned in the introduction, the mean and median
of the congestion window are not always the same. Figure
11 shows the mean and median as a function of σ. Note
that for small σ, there is a substantial difference between
mean and median. Figure 11 also shows the probability that
the congestion window is less than the mean congestion
window. Note that as σ decreases, flows that utilizes the
mean congestion window would become more aggressive. It
is interesting that in the results presented here the mean and
median are nearly the same for large σ. Furthermore, the
median remains fairly constant as σ varies. Hence, the mean
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for large σ might be a reasonable estimate of the median for
all σ. While more work is required, it is conceivable that the
TCP-friendly formula is actually an estimate of the mean for
large σ and, hence, a good estimate of the median for all σ.

IV. AN APPLICATION TO VIDEO SENDING RATE

Next the TCP model is employed to determine when if a
unicast video transmission can be both fair and successful. We
focus on previously recorded video (e.g., video on demand).
However, with some modification, this work is applicable to
live video as well.

The main difficultly with sending video data over networks
without quality of service guarantees is that the compression
scheme may require a sending rate that is too fast and not
responsive to competing TCP flows. In this case, the video
transmission may take an unfair proportion of the bandwidth.
Thus, there is a need to match the video data rate to the sending
rate that a TCP flow would send if it was in the same situation
as the video flow, that is, the video sending rate must be
TCP friendly [29]. However, TCP dictates a sending rate that

is rapidly oscillating according to congestion, whereas VBR
compressed video bit-rate oscillates according to compression
efficiency. One common approach has been to send data at
TCP’s average sending rate [2], [3]. Since the averaging leads
to slow variations, the video is transmitted at this smoother
rate. In parallel with this TCP smoothing, video smoothing
techniques have been developed that lead to slowly varying
video bit-rate [4], [5].

Here a different approach is taken in that smoothing is not
the focus, rather determining compatibility is the objective.
For a given network environment (round-trip time and loss
probability), the distribution of the congestion window can
be found and a fair sending rate can be determined. On the
other hand, the dynamics of the video stream are also known,
so the distribution of the video bit-rate can be determined.
Hence, before the video is sent, it can be decided if the
video transmission is compatible with the current network
conditions. If the they are not compatible, then either the
video is not sent, the compression scheme is changed to a
higher compression ratio (and therefore lower quality image),
or, potentially, bandwidth could be purchased.

Most network video playback systems have a receiver
buffer. This buffer is filled before playback begins. In this way,
if video transmission rate must be momentarily decreased or
the video stream momentarily requires more bandwidth, then
the buffer can be momentarily emptied at a faster rate than it is
filled. However, if the mismatch in rates persists for too long,
the receiver buffer will underflow and result in missed frames,
greatly degrading the quality. In order to avoid underflow, it is
critical that the receiving buffer prefilled to a level sufficient
to accommodate any future mismatch between video bit-rate
and TCP friendly sending rate.

Thus, before a video can be transmitted, there are two
questions that must be answered. First, can the video be sent
at all and second, if the video can be transmitted, how much
must the receiving buffer be filled to avoid underflow. Before
addressing these problem, a model of VBR compressed video
is reviewed.

A. A Model for MPEG 1

There are a large number of models for VBR and a large
number of compression schemes. For the approach developed
here, the model and the compression scheme are not important.
Since MPEG 1 video streams have been extensively studied,
we consider these flows. The MPEG 1 standard calls for three
classes of video frames; I, P and B frames. Of these, I frames
are the least compressed and utilize no time correlation; they
are compressed the same as a single JPEG image. B frames are
the most compressed utilizing forward and backward time cor-
relation. In terms of compression, P frames lie between B and
I frames since they only utilize backward time correlations. A
common implementation assumption is that the frames types
follow a specific pattern. A single repetition of this pattern
is called a group of pictures (GOP). A typical GOP is as
follows I B B P B B P B B P B B
. The video stream is made up to a stream of GOPs. It is not
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uncommon that there is one more P,B,B pattern, making the
GOP 15 frames long. Many models of VBR video have been
developed. See [30] for a review of some models. We review
a model presented in [31] that is specialized for typical full
length motion pictures. Again, the approach here can easily
be adapted to other video models.

[31] found that the distribution of the B and P frame sizes
can be modeled as I.I.D. log-normal with parameters µB ,
σB , µP and σP . Furthermore, it was found that the size of
the I frame is dependent on the scene. The size of the I
frame is decomposed into J + L. The J component remains
constants during a scene, while the L component is described
by a low order AR process driven by a Normally distributed
noise process. However, to slightly simplify the model, the
distribution of L is approximated with zero mean normal
distribution. The scene changes with probability q and the
distribution of the size of the J component during a new scene
log-normal and is independent of the size of all other frames.

Thus

Jk+1 =
{
Jk with probability q
Yk+1 with probability 1 − q

where Yk+1 is independent of everything else and log-
normally distributed with parameters µj and σJ . In [31], a
number of films were examined including The Wizard of
OZ. The parameters of The Wizard of OZ are µJ = 5.9,
σJ = 0.48, σL = 62, µP = 4.8, σP = 0.64, µB = 3.9,
σB = 0.27 and q = 0.93. These parameter sizes are for
ATM cells, hence, must be converted into packet sizes. In
the following, the packet size was taken to be 1500 bytes.

B. Video Transmission as a Queuing Problem

In order to ensure that the video does not send data too fast,
a buffer is used. The rate at which the buffer empties varies
and is chosen such that it’s output rate is compatible with TCP.
Specifically, the buffer output rate is set to the 50th percentile
of TCP flows. Since the sending rate of TCP depends on the
current round-trip time, the 50th percentile rate also depends
on the round-trip time. Thus, we define the sending rate as
f50 (r) where r is the round-trip time. Clearly,

f50 (r) =
1
r

{
X :

1∫
p (x, r) dx

∫
{x<X}

p (x, r) dx = 0.5

}
,

(12)

where p (x, r) is the stationary joint density function of the
congestion window and the round-trip time. A typical sending
rate is shown in the upper frame of Figure 12. Hence, the
buffer is filled by the video stream that is modeled as in
Subsection IV-A and the buffer empties at a rate f . Clearly,
this scheme ensures that data will not be sent too fast, but
it is not clear if the video flow is properly transmitted. In
particular, it is conceivable that the occupancy of the buffer
will grow without bound. On the other hand, the buffer might
maintain an occupancy below level B with a probability
near 1. In this case, the receiver must place a buffer on the
received data and this buffer must be filled to a level of B

before playback begins. Thus, the probability distribution of
the buffer occupancy must be determined.

Let Ut be the buffer occupancy at time t. Then the buffer
dynamics are

dUt = −1{U>0}f (Rt) dt+
∑
k

(
δ{t=kG} (Jk + Lk)

+
∑
i

δ{t=kG+τB
i }Bi

k +
∑
i

δ{t=kG+τP
i }P

i
k

)

dRt = µ (Rt) dt+ σ (R) dBt

Jk+1 =
{
Jk with probability q
Yk with probability 1 − q ,

where the δ is such that if U0 = 0 and dUt = δ{t=1}, then
Ut = 0 for t < 1 and Ut = 1 for t ≥ 1. Here G is the duration
of a GOP. Thus, the kth GOP begins at time kG. Hence, at
time kG the I frame is dumped into the buffer. Then, at the
appropriate times, the P and B frames are dumped into the
buffer. For example, the ith B frame is dumped τBi after the
start of the GOP. All the while, the buffer is being emptied
at a rate f (Rt). The distribution of the buffer occupancy is
given by

∂p (u, r, j, t)
∂t

(13)

= f (r)
∂p (u, r, j, t)

∂u
− ∂

∂r
(µ (r) p (u, r, j, t))

+
1
2
∂2

∂r2
(
σ2 (r) p (u, r, j, t)

)
for t �= kG, kG+ τBi , kG+ τPi , and

p (u, r, j, kG)

=
∫
p
(
u− v, r, v, kG−) pI (Jk = j|Jk−1 = v) dv

p
(
u, r, j, kG+ τBi

)
=
∫
p
(
u− v, r, j, (kG+ τBi

)−)
dPB

(
Bi

k = v
)

p
(
u, r, j, kG+ τPi

)
=
∫
p
(
u− v, r, j, (kG+ τPi

)−)
dP
(
P i
k = v

)
,

otherwise, where pI is the transition probability density func-
tion for the size of the I frame, dPB = d

dvP
(
Bi

k < v
)
, and

dPP = d
dvP

(
P i
k < v

)
. Letting t→ ∞, the stationary density

of the buffer occupancy can be determined.
Figure 12 shows the results of The Wizard of OZ movie

parameters along with the parameters estimated from a con-
nection with source in San Jose and destination in Los Ange-
les. The upper plot in Figure 12 shows TCP’s 50th percentile
sending rate. Figure 12 also shows the expected value of the
buffer size over the course of one GOP and the 99 percentile of
the buffer size. The arrival of the frames is clearly evident. The
average data rate of the 50 percentile (

∫
p (r) f (r) dr) was

found to be 1.22Mbps while the average data rate required by
the video flow is 1.19Mbps. Clearly, the buffer occupancy will
not grow without bound. However, in order to accommodate
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Fig. 12. Upper, TCP’s 50th Percentile Sending Rate; middle, The Expected
Value of the Buffer Size Versus Time in MPEG 1 Frames; lower, 99th

Percentile of the Buffer Size Versus Time in MPEG 1 Frames.

99% of the realizations, it is necessary to permit the buffer
to hold up to 110KB bytes. Furthermore, the buffer on the
receiving end will need to initially receive 110KB bytes before
playback can begin. Note that as the sending rate gets closer
to the video rate, the 99th percentile of the maximum buffer
occupancy rapidly increases.

Remark 3: The great difference between the average buffer
occupancy and the 99th percentile occupancy shows the danger
of only considering mean behavior.

Remark 4: One approach not investigated here is the possi-
bility of work-ahead transmission. That is, the above method
dictates that no data is send if the buffer is empty. However,
for prerecorded video, it is possible to send data faster than
the video bit-rate. An investigation of this approach will be
left for future investigation.

V. CONCLUSION

The TCP model presented is able to give detailed informa-
tion about TCP’s performance and provide a basis for deciding
whether a video may be fairly transmitted. Furthermore, this
modeling approach provides a deeper insight as to how TCP
reacts to different network conditions. For example, the depen-
dence of the congestion window on the rate that the round-
trip time varies is a new insight. Furthermore, the difference
between the mean and the median TCP sending rate has never
investigated. More application of this model approach remain.
For example, through this type of modeling, it is straight
forward to determine if an alternative approach to TCP (e.g.
GAIMD) is fair to TCP.

A drawback of this modeling approach is that it appears
complex. For example, the PDE’s (10), (11) and (13) look
formidable. However, this is not the case. Since the domain of
these equations are rectangles, these linear parabolic equations
can be efficiently solved with spectral methods. Furthermore,
preliminary work indicates that, given the round-trip time, the

distribution of the congestion window is well modeled by a
lognormal distribution. Indeed, it may be possible to find a
close form approximation of distributions.

A more serious drawback is that the models contain parame-
ters that must be estimated. However there has been extensive
work in estimation that can easily be applied to this problem.
Furthermore, pervious work indicates that end hosts can be
clustered in such a way that a connection to one member
of the cluster has similar dynamics to other members of the
cluster. Thus, it appears that it is not necessary to estimate each
connection independently. Finally, while more measurements
are required, our data indicates that large parts of the network
behave similarly. Hence, prior measurements can be used as an
initial estimate of the parameters and as data is sent over the
connection, the parameters estimates can be further refined.

A more interesting effect of the parameters is that they may
vary over time. It must be emphasized that the parameters
typically change slowly and sometimes remain stable for long
periods of time. However, the effect of parameter variation
should not be neglected. The methods developed in this paper
have been extended to the case of time vary parameters. The
details of this extension will be presented elsewhere.
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