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Abstract— Recent investigations into the pricing of multiclass
loss networks have shown that static prices are optimal in
the asymptotic regime of many small sources. These results
suggest that nearly optimal prices for highly aggregated systems
can be computed from the solution to a limiting deterministic
optimization model. When the assumption of many small sources
does not hold, static prices are still preferable (for practical
reasons), but we are left with the difficult issue of computing
an optimal solution when the stochastic nature of the process
cannot be ignored. In this paper, we develop a computational
procedure for optimizing static prices that operates by adjusting
prices in response to actual customer arrivals and departures and
is robust to parametric uncertainty about the underlying system.
We provide initial arguments for the convergence properties of
our optimization algorithm, and we illustrate its application in
several numerical examples.

I. INTRODUCTION

The explosive growth of Internet-based industries in the
last decade and the recent proliferation of corporate networks
raises the question of how to accommodate the ever growing
demand for network services. Often, especially in the core of
the Internet, the answer is to “over engineer” the system by
installing more capacity when the need arises. [1] However,
in many contexts, such as in broadband access networks,
the option to add extra capacity is not so clear, potentially
making it necessary to introduce arbitration mechanisms that
efficiently allocate resources and regulate network traffic.

Pricing has been studied as one such mechanism. In [2],
prices are defined on a per-unit-flow basis and are interchanged
between a set of distributed regulating entities to achieve
fairness. In [3], prices per unit flow are calculated to optimize
a network objective for differentiated services. Similar ap-
proaches can be found in [4]–[8], where usage-based charging
is achieved by communicating resource prices (which can
be interpreted as Lagrangian multipliers for network capacity
constraints) between the network regulating entities. In [9],
[10], a traditional economic pricing mechanism is used by the
(central) owner of the network resources to establish the fees
to be charged per unit of each resource involved in a service
request. A similar approach is used in [11] where the length
of the queue at a given network link is used to set prices for
network resources, and to achieve congestion control. Game
theoretic approaches, that use market mechanisms, such as
bidding, to implement pricing mechanisms that work in a
distributed manner to achieve a fair use of the resources have
been studied in [3], [12]–[14]. A client-based approach is

developed in [15]–[17], where prices for a given priority of
service are fixed beforehand, but the user (flow) has to decide
how much of its flow to send using each priority class. The
effect of best-effort traffic has been studied in [18]–[23], and
more recently in [24].

Per-session pricing models in multiclass loss networks have
been considered in [25]–[28], where the resource requirements
for accepted calls in each class are reserved by some mecha-
nism, such as RSVP, and the issue is to characterize pricing
policies that maximize overall revenue or social welfare.
In [27] (for the single link case) and [28] (for the network
case), the near-optimality of static pricing policies has been
established. Similar results appear in [23] under more general
service time distributions.

In this paper, we focus on the single link case and address
computational issues associated with the per-session pricing
model in [27]. Our goal is to develop “on-line” computational
algorithms that apply while the network is in operation. So far,
the literature on optimal per-session pricing has focused on
off-line computation, where the parameters for the multiclass
loss network are given in advance and the main issue is to
determine an optimal set of prices assuming that the given
parameter values are correct. Specifically, in [27], Paschalidis
and Tsitsiklis compute dynamic pricing policies for a single
link model by means of both exact and approximate dynamic
programming, and they compare these results to the optimal
static prices obtained from the solution to a deterministic
optimization model that applies in the many small sources
asymptotic regime. Later, in [28], Paschalidis and Liu adapt the
simulation-based algorithm of [29] to compute optimal static
prices for the network case (where dynamic programming can
be ruled out due to the so-called “curse of dimensionality”).

The main drawback to the computational procedures
from [27], [28] is that they do not naturally extend to an on-
line setting, where (1) the only model available for the process
is the process itself and (2) robustness to unknown or slowly
time-varying parameters (e.g. arrival rates and holding times)
is critical. This paper explores the possibility of adapting the
simulation-based procedure of [30] (based on [29]) to allow for
efficient and robust on-line pricing of network services. Our
first contribution is to spell out a version of the simulation-
based procedure from [30] that applies to the continuous-time
operation of the system and, in the case where arrival rate
functions and expected holding times are known, is guaranteed
to converge with probability one to an extremum of the average
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reward process. Next, to address the case where the parameters
of the model are unknown (and possibly slowly time varying),
we develop an adaptive price-setting algorithm by allowing
for the simultaneous estimation of model parameters. Our
numerical results show that the adaptive algorithm has the
ability to identify nearly-optimal prices, even with significant
uncertainty about arrival rates and holding times.

The remainder of this paper is organized as follows. In
Section II, we review the optimization model from [27] for
pricing services in multiclass loss systems with a single
resource. We focus on the problem of revenue maximization
with respect to static prices. In Section III, toward the goal
of developing an on-line pricing mechanism, we discuss a
model-based optimization procedure (Algorithm 1) adapted
from the simulation-based algorithm of [29]. Even though this
algorithm operates by adjusting prices in response to arrivals
and departures in real-time, we refer to it as “model-based”
because it requires explicit knowledge of the parameters of the
underlying system. (The main difference between Algorithm
1 and the earlier approach from [29] is that Algorithm 1
incorporates a device known as i∗-adaptation [30] which re-
solves an important technical issue associated with the original
simulation-based procedure.) In Section IV, we propose an on-
line algorithm (Algorithm 2) which is adapted from the model-
based procedure of Section III and allows for the simultaneous
estimation of model parameters. In Section V, we present
a numerical investigation of Algorithms 1 and 2, focusing
particularly on the ability of Algorithm 2 to track changes
in the parameters of the underlying model. In Section VI, we
summarize the paper and outline directions for future research.

II. PROBLEM FORMULATION

We consider a multiclass loss system with a single resource
of capacity C shared by users from K classes of calls
or services.1 Each service class k ∈ {1, 2, . . . ,K} can be
described by an arrival rate function αk(uk), which we assume
to be a non-increasing twice differentiable function of a price
uk ∈ [0, ūk], with bounded first and second derivatives. We
assume that requests for calls constitute a Poisson arrival
process with rate αk(uk) whenever price uk is used. To
disallow the possibility that we “turn off” the arrival process
associated with any class, we assume that αk(ūk) > 0 for all
k = {1, 2, . . . ,K}. Let U =

∏K
k=1[0, ūk] denote the set of

all feasible price combinations. The duration of a call of class
k is assumed to be exponentially distributed with mean 1/βk,
during which the network reserves mk out of the total capacity
C. At a time t, the state of the system can be described as
i(t) = (i1(t), i2(t), . . . , iK(t)), a vector whose k-th element
represents the number of ongoing calls of class k present in
the system. We use I to denote the set of all feasible usage
profiles (i1, i2, . . . , iK). (The assumption of Poisson arrivals
and exponential service is common in the literature on network
pricing. For us, the fact that the system is memoryless is

1As an example, consider a broadband access network with a single uplink
to Internet.

critical, in motivating the computational techniques that we
develop.)

Finally, we assume that the system implements a strict
admission control rule. Suppose that at time t a request for
a call of type k is received. The call will be admitted if
m · i(t) + mk ≤ C, where the vector m is defined by
m = (m1,m2, . . . ,mK). To simplify notation, define A(i) =
{k|m · i+mk ≤ C} to be the set of calls that satisfy the
admission control rule when the system is in state i ∈ I .

In this paper, we focus on the problem of setting prices to
shape the arrival process so that we maximize the expected
rate at which revenue accrues to the service provider. Define
Π to be the set of mappings π : I → U that assign a set of
prices to each state i ∈ I . The revenue maximization problem
is then defined as

max
π∈Π

lim
T→∞

1
T
E




∫ T

t=0

∑

k∈A(i(t))

αk(πk(i(t)))πk(i(t))dt



 .

As discussed in [27], there is no dependence of the average
reward on the initial state i(0), and we use λ∗ to denote the
optimal value of the problem. We point out that the same
modeling framework can be used to capture the problem of
maximizing social welfare, and both the revenue maximization
and social welfare objectives are of the average reward form,
and can be solved using traditional dynamic programming
techniques (see, for example, [31]).

A. Static Pricing Policies

For simplicity, we restrict our attention to a subset of
Π, namely the so-called static pricing policies, where, for
a given solution, the same class-dependent price uk always
applies regardless of the state of the process. The revenue
maximization problem then can be expressed as maxu∈U λ(u),
where

λ(u) = lim
t→∞

1
T
E




∫ T

0

∑

k∈A(i(t))

αk(uk)ukdt



 . (1)

B. Discussion of Previous Results

A theoretical justification for restricting attention to static
pricing policies is given in [27], where static prices are
shown to be optimal in the asymptotic regime of “many small
sources.” Specifically, consider a scaled version of the system
which is obtained by scaling the original capacity of the link
as C(c) = cC, where c > 1, and by scaling the original
arrival rate functions as α(c)

k (uk) = cαk(uk). Let λ∗
c be the

average reward obtained by an optimal dynamic policy, and
let λ(u∗

c) be the average reward associated with an optimal
static policy. A key result from [27] is that limc→∞ λ∗

c =
limc→∞ λ(u∗

c), i.e. that static pricing policies are optimal in
the asymptotic regime. Consequently, nearly optimal static
prices exist for cases where the bandwidth requirements m
are small compared to the capacity C. This result has been
extended in [23] to general service distributions.

While the near-optimality of static pricing policies is re-
assuring, if the assumption of many small users does not
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apply (or is questionable), the solution to the deterministic
optimization model that gives rise to the upper bound in [23],
[27], [28] may be far from optimal, and we must deal with the
practical question of how to compute optimal static prices.

C. On-line Pricing Algorithms

Our goal in this paper is to make progress toward “on-line”
pricing algorithms, where static prices for services are adjusted
in response to observations of the system in operation. We seek
to achieve the following characteristics in our computational
approach.

• Real-Time Operation: Our price optimization mechanism
should operate with respect to observations of the actual
system in operation. That is, rather than assuming access
to a simulation of the process (which could be used for
off-line calculations) we only require access to the real-
time stream of arrivals and departures of calls of various
classes.

• Efficient Operation: Our computational algorithm should
have no need to store per-call information and should
maintain only O(K) state variables, where K is the
number of classes of calls.

• Robust Operation: Our optimization procedure should
have the ability to discover and respond to uncertain
and possibly time-varying parameters of the underlying
system.

In Section III below, we develop a model-based on-line price-
setting algorithm which achieves the first two characteristics
above. We refer to this algorithm as “model-based” because it
cannot be implemented without knowledge of the parameters
of the model, particularly the arrival rate functions αk(uk) and
the expected holding times 1/βk. In Section IV, we extend the
model-based algorithm so that it can adapt to unknown and
slowly time-varying parameters, thereby addressing the third
characteristic above.

III. MODEL-BASED PRICING

The pricing model of Section II can be viewed as a
continuous-time Markov reward process, where (in the case
of revenue maximization) the objective is to maximize the
expected average rate at which reward accrues to the service
provider. As is done in [27], [28], it is possible to uniformize
the process (see, for example, Chapter 5 of [31]) to obtain
an equivalent discrete-time description of the process. Con-
ceptually, the uniformization involves Poisson sampling of
the process at a rate ν∗ equal to (or higher than) the fastest
possible transition rate of the continuous-time system. For the
pricing model of Section II, the rate of transitions out of state
i ∈ I is

νi(u) =
∑

k∈A(i)

αk(uk) +
K∑

k=1

ikβk, (2)

from which we obtain the following upper bound on the rate
of transitions

ν∗ =
K∑

k=1

	C/mk
βk +
K∑

k=1

αk(0). (3)

With ν∗ in hand, we may infer discrete-time state transition
probabilities, as well as expected rewards associated with
accepted call arrivals, and, in principle, we may apply any
algorithmic technique available to us to optimize the average-
reward of discrete-time Markov processes. In this section, we
adapt the discrete-time simulation-based methodology of [29]
(as extended in [30], [32]) for on-line use in a continuous-time
setting.

A. An Algorithm to Compute Optimal Prices

The rationale behind the discrete-time algorithm of [29]
is (1) to exploit the regenerative structure of the underlying
Markov process to compute asymptotically unbiased estimates
of the gradient of the objective function and (2) to use the es-
timates of the gradient in adjusting the control parameters (i.e.
prices) toward an extremum of the average reward function. An
important feature of the methodology in [29] is that updates
to the controllable parameters occur only when the system
transitions into a specially marked recurrent state i∗ ∈ I .
Unfortunately, for a given set of control parameters, transitions
to i∗ can be infrequent, resulting in high-variance gradient
estimates and ultimately in unacceptably slow convergence.
This issue has been addressed in [30] through the introduction
of an i∗-adaptation procedure, where the marked state i∗ can
be reset as needed to account for changes in the steady-
state distribution of the process as the control parameters are
adjusted.

In Algorithm 1 below, we present a price-setting algorithm,
which can be interpreted as a continuous-time implementation
of the discrete-time algorithm in [30]. Since the algorithm
proceeds in response to arrival and departure events of the
actual process, it applies in an on-line setting.

Algorithm 1 - Model-Based Price Optimization
Given scale parameter η > 0, stepsize rule

{γm : m = 1, 2, . . .} such that
∑

m γm = ∞, and∑
m γ2

m < ∞, initial observation period threshold τ > 0,
initial set of prices (u0,1, u0,2, . . . , u0,K) for service
classes 1, . . . ,K, and an estimate λ̃ of the average reward
associated with the initial set of prices, compute recursively
{(um, λ̃m, τm, i

∗
m, sm) : m = 0, 1, . . .} as follows.

(Initialization)
Set m = 0, u0 = (u0,1, u0,2, . . . , u0,K), λ̃0 = λ̃, and τ0 = τ .
Set t0 to be the time at which the algorithm is initialized, and
set i∗0 to be the state of the system at time t0. Set the initial
timeout threshold s0 = t0 + τ0. Finally, set local variables
F = 0 ∈ �K , L = 0 ∈ �K , and G = 0.

(n-th State Transition)
Let tn denote the time of the n-th state transition, and let
in = i(t+n ) be the new state of the system at that time. Proceed
as follows.

1) (Update Local Variables) First, generate a Poisson ran-
dom variable T as

T ∼ Poisson
(
(tn − tn−1)(ν∗ − νi(tn−1)(um))

)
, (4)
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where the argument in the right hand side is the mean
of T . Next, update F,L, and G as follows.

F = F + T · L
(
gin−1(um) − λ̃m

)
(5)

−T 2 + T

2
(gin−1(um) − λ̃m)lin−1(um) (6)

+T∇gin−1(um), (7)

L = L+ T lin−1(um), and (8)

G = G+ T (gin−1(um) − λ̃m), (9)

where gi(u) =
∑

k∈A(i) αk(uk)uk/ν
∗, and li(u) =

∑
k∈A(i)

−α′
k(uk)
ν∗ ek, define ek as the k-th unit vector in

�K . In addition, if the n-th state transition corresponded
to a class-k arrival, then update L again as

L = L+
∑

k∈A(in−1)

α′
k(um,k)

αk(um,k)
ek,

and use L to revise F and G as

F = F + T · L
(
gin

(um) − λ̃m

)
+ ∇gin

(um),

G = G+ T (gin
(um) − λ̃m).

2) (Regenerative Cycle Complete) If the n-th state transi-
tion resulted in a return to the state i∗m, then update the
price vector and the average reward estimate as

um+1 = um + γmF, (10)

λ̃m+1 = λ̃m + ηγmG. (11)

Leave the observation period threshold and marked
state unchanged as τm+1 = τm and i∗m+1 = i∗m. Set
a new timeout threshold sm+1 = tn + τm+1. Finally,
reset the local variables F = 0, L = 0, and G = 0,
and set m = m+ 1.

(Timeout)
If real time t ever reaches the current timeout threshold sm,
then proceed as follows.

Increase the observation period threshold as τm+1 =
τm + 1/ν∗. Leave the price vector and average reward
estimate unchanged as

um+1 = um,

λ̃m+1 = λ̃m.

Set i∗m+1 = i(t) and sm+1 = t+ τm+1. Finally, reset the
local variables as F = 0, L = 0, and G = 0, and set
m = m+ 1.

B. Discussion

Algorithm 1 works by collecting reward and likelihood
information during regenerative cycles of the process to obtain
asymptotically unbiased estimates of the gradient of the ob-
jective function. The “local” variables, F,L, and G, all have
interpretations similar to those in [29], [30]. Specifically, at the
end of a regenerative cycle, the vector F contains an estimate

of the gradient of the objective function, and this estimate is
used in Eqn. (10) to update the set of prices for services. The
vector L contains likelihood information about the observed
system trajectory, and the scalar G contains information about
the objective function and is used in Eqn. (11) to improve
the estimate λ̃m. Note the small memory footprint of this
algorithm: we need only store and manipulate (3K + 5) real
variables as the optimization procedure evolves.

As mentioned earlier, Algorithm 1 can be interpreted as a
continuous-time version of the optimization procedure of [29],
[30], which was originally developed for discrete-time Markov
chains. The conversion from discrete-time to continuous time
here is mostly straightforward, although there is one peculiar
feature of the algorithm that arises from the required uni-
formization of the Markov chain. From uniformization, the
equivalent discrete-time Markov system introduces artificial
“self-transition” events that figure significantly in the evolution
of the optimization algorithm. The continuous-time implemen-
tation of this algorithm observes only actual system changes,
and hence must provide a mechanism to correct the absence
of self-transition events. Recall that the constants ν∗ and νi(u)
are, respectively, an upper bound on the transition rate of the
Markov chain and the transition rate out of state i when the
price vector u is used. Recall also that the equivalent discrete-
time model of the continuous-time process is constructed from
Poisson sampling at rate ν∗. Thus, T in Eqn. (4) corresponds
to the random number of self transitions which occur at a
rate of [ν∗ − νi(tn−1)(um)] while the system remains at state
i(tn−1). The information related to self-transition events can
be considered by generating a random number of these events
at the rate described in Eqn. (4), and accounting for the lost
information in Eqns. (5)-(9).

The subroutine “(Timeout)” provides a continuous-time im-
plementation of the i∗-adaptation procedure from [30], which
serves to prevent the optimization algorithm from getting stuck
in lengthy regenerative cycles. To recognize the need for such
a feature recall that updates to the price vector occur only at
renewal points (i.e. upon transitions to the specially marked
recurrent state i∗ ∈ I). As the optimization algorithm pro-
gresses and an optimal set of prices emerges, the set of states
that are likely to be visited frequently can vary significantly,
and it can be difficult to choose a priori a fixed state to
serve as i∗ throughout the entire evolution of the process.
The i∗-adaptation procedure avoids this difficulty by setting an
observation period threshold τ that is enforced in the sense that
only regenerative cycles shorter than τ are allowed to impact
the evolution of prices (i.e. regenerative cycles longer than τ
are ignored). As discussed in [30], to avoid biasing the results,
it is critical for the threshold τ to be incremented over time
so that, asymptotically, no regenerative cycles get dropped. In
present context, the i∗-adaptation procedure is implemented
as a timeout process, where the current observation period
threshold τm is used to set a timeout epoch sm at which time
the marked state will be reset to a better value (specifically, the
current state in), and the data collected up until the timeout
period is ignored.
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Theorem 1 (Convergence of Algorithm 1): Given the step-
size rule γm = a/(b + m), with a, b > 0, and assuming that
the model parameters αk(·) and βk are known for all service
classes k = 1, . . .K, Algorithm 1 converges with probability
one to critical point u∗ where ∇λ(u∗) = 0.

This theorem follows primarily from the main result of
[30] since, under the modeling assumptions of Section II, all
states of the process are recurrent. One small technical issue,
resolved in the companion technical report [33], deals with
the fact that Algorithm 1 replaces the discrete-time timeout
threshold of the i∗-adaptation algorithm with a fixed timeout
interval in the continuous-time implementation. We illustrate
Algorithm 1 in action in Section V after first discussing an
adaptive version of the algorithm, which is designed to be
robust to parametric uncertainty about the process.

IV. ADAPTIVE PRICING

One of the shortcomings of the algorithm of the preceding
section is the assumption of knowledge of all the parameters
involved in the model. In this section, we extend the model-
based algorithm to allow for the simultaneous estimation
of model parameters and provide initial arguments for the
convergence properties of the resulting adaptive price-setting
algorithm.

To set the stage for this discussion, we assume that arrival
rate functions αk(·) and service rates βk are parameterized
by a set of fixed but unknown parameters θ∗ ∈ �q , which is
assumed to belong to a compact set Θ ⊂ �q. As before, we
assume that requests for service arrive according to indepen-
dent Poisson processes with rates α1(u1, θ), . . . , αK(uK , θ)
and that service times are exponentially distributed with rates
β1(θ), . . . , βK(θ). We assume that all of the parameters αk

and βk are twice differentiable in (u, θ), with bounded first
and second derivatives. Analogously to the preceding section,
we define

νi(u, θ̃) =
∑

k∈A(i)

αk(uk, θ̃) + ikβ(θ̃),

and we assume knowledge of a uniform bound ν∗ on the
transition rate of the underlying process, i.e.

ν∗ ≥ νi(u, θ), ∀ u ∈ U , θ ∈ Θ, i ∈ I.

Our objective from here is to create an efficient and robust
on-line procedure for optimizing static prices u ∈ U while at
the same time estimating the parameters θ∗ ∈ Θ.

Algorithm 2 - Adaptive Price Optimization
Given scale parameters η > 0 and µ > 0, stepsize

rule {γm : m = 1, 2, . . .} such that
∑

m γm = ∞, and∑
m γ2

m < ∞, initial observation period threshold τ > 0,
initial set of prices (u0,1, u0,2, . . . , u0,K) for service classes
1, . . . ,K, an estimate λ̃ of the average reward associated
with the initial set of prices, , and an initial estimate
θ̃0 of the unknown parameters θ∗, compute recursively
{(um, λ̃m, θ̃m, τm, i

∗
m, sm) : m = 0, 1, . . .} as follows.

(Initialization)
Set m = 0, u0 = (u0,1, u0,2, . . . , u0,K), λ̃0 = λ̃, θ̃0 = λ̃,

and τ0 = τ . Set t0 to be the time at which the algorithm is
initialized, and set i∗0 to be the state of the system at time
t0. Set the initial timeout threshold s0 = t0 + τ0. Finally, set
local variables F = 0 ∈ �K , L = 0 ∈ �K , L = 0 ∈ �K ,
and G = 0.

(n-th State Transition)
Let tn denote the time of the n-th state transition, and let

in = i(t+n ) be the new state of the system at that time. Proceed
as follows.

1) (Update Local Variables) First, generate a Poisson ran-
dom variable T according to

T ∼ Poisson((tn − tn−1)(ν∗ − νin
(um, θ̃m)).

Next, update F,L,L and G as follows.

F = F + T · L
(
gin−1(um, θ̃m) − λ̃m

)

−
[
T (T + 1)

2
(gin−1(um, θ̃m) − λ̃m)

· lin−1(um, θ̃m)
]

+T∇gin−1(um, θ̃m),

L = L+ T · lin−1(um, θ̃m),

L = L − T
∇θ̃m

νin−1(um, θ̃m)

ν∗ − νin−1(um, θ̃m)
,

G = G+ T (gin−1(um, θ̃m) − λ̃m).

where gi(u, θ̃) =
∑

k∈A(i) αk(uk, , θ̃)uk/ν
∗, and

li(u, θ̃) =
∑

k∈A(i)
−α′

k(uk,θ̃)
ν∗ ek. In addition, if the n-th

state transition corresponded to a class-k arrival, then
update L and L again as

L = L+
∑

k∈A(in−1)

ek
α′

k(um,k, θ̃m)
αk(um,k, θ̃m)

,

L = L +
∇θ̃m

αk(um, θ̃m)

αk(um, θ̃m)
.

Otherwise, if the n-th state transition corresponded to a
class-k departure, then update L again as

L = L +
∇θ̃m

βk(θ̃m)

βk(θ̃m)

(Here, the derivative is taken with respect to the estimate
of the parameters θ̃). Finally, use the result of the event-
specific calculations above to make final adjustments to
F and G as follows.

F = F + T · L
(
gin

(um, θ̃m) − λ̃m

)

+∇gin
(um, θ̃m),

G = G+ T (gin
(um, θ̃m) − λ̃m).
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2) (Regenerative Cycle Complete) If the n-th state transi-
tion resulted in a return to the state i∗m, then update
the price vector, the average reward estimate, and the
parameter vector estimate as

um+1 = um + γmF,

λ̃m+1 = λ̃m + ηγmG,

θ̃m+1 = θ̃m + µγmL. (12)

Leave the observation period threshold and marked
state unchanged as τm+1 = τm and i∗m+1 = i∗m. Set
a new timeout threshold sm+1 = tn + τm+1. Finally,
reset the local variables F = 0, L = 0, L = 0, and
G = 0, and set m = m+ 1.

(Timeout)
If real time t ever reaches the current timeout threshold sm,

then proceed as follows.

Increase the observation period threshold as τm+1 =
τm + 1/ν∗. Leave the price vector, the average reward
estimate, and the parameter vector estimate unchanged
as

um+1 = um,

λ̃m+1 = λ̃m,

θ̃m+1 = θ̃m. (13)

Set i∗m+1 = i(t) and sm+1 = t+ τm+1. Finally, reset the
local variables as F = 0, L = 0, L = 0, and G = 0,
and set m = m+ 1.

A. Discussion

As an extension of the model-based algorithm of the
preceding section, Algorithm 2 works by collecting reward
and likelihood information during regenerative cycles of the
process to obtain estimates of the gradient of the objective
function. All of the local variables from the model-based
algorithm show up here, with the addition of L which collects
likelihood information used in Eqn. (12) to improve estimates
of the unknown parameters θ∗. Note that, while Algorithm
2 uses the estimates θ̃m to perform the same optimization
procedure described in Algorithm 1, it simultaneously uses
observed system behavior to further improve the estimates
θ̃m. In this sense, Algorithm 2 is similar in spirit to earlier
algorithms developed for the adaptive control of Markov
chains (see, for example, [34]). Again, note the small memory
footprint of the algorithm: we need only store and manipulate
(3K + 2q + 5) real variables as the optimization procedure
evolves, where q is the dimension of the parameter vector θ̃
and K is the number of the service classes (as usual).

The process by which Algorithm 2 estimates the parameter
vector θ∗ [cf. Eqns. (12-13)] has the following rationale.
Suppose a Markov chain evolves according to Pij(θ∗) =
P (in+1 = j | in = i, θ∗), with θ∗ unknown. Upon ob-
serving the state trajectory {i0, i1, . . .}, we could estimate θ∗

by identifying the parameter vector θ̃∗ that maximizes the

likelihood of observing {i0, i1, . . .}. We instantiate this idea
by updating θ̃ in the direction of the gradient of the likelihood
associated with each observed regenerative cycle. Specifically,
given an observed regenerative cycle {i0, i1, . . . , iT } in the
uniformized discrete-time process, the likelihood of observing
this particular trajectory under θ̃m and the prevailing set of
prices um is given by

L(um, θ̃m) =
T∏

n=1

Pin−1in
(um, θ̃m),

where Pij(um, θ̃m) denotes the state transition probability
associated with um and θ̃m. To improve the estimate θ̃m,
we make a small stochastic approximation-type adjustment in
the direction of update ∇θ̃L(um, θ̃m). Although expressed in
terms of the continuous-time implementation (cf. Eqns. (12-
13), Algorithm 2 accomplishes this in principle by adjusting
θm in the direction

T∑

n=1

∇θ̃Pin−1in
(um, θ̃m)

Pin−1in
(um, θ̃m)

. (14)

The rationale for this is that

∇θ̃L(um, θ̃m) = L(um, θ̃m)
T∑

n=1

∇θ̃Pin−1in
(um, θ̃m)

Pin−1in
(um, θ̃m)

,

where the right hand side of Eqn. (14) differs only by a scaling
factor L(um, θ̃m). Our numerical results in Section V illustrate
the effectiveness of this procedure.

B. Analytical Issues with Algorithm 2

The fact that Algorithm 1 converges with probability one
to a critical point stems from the observation in [29] that
the local variable F (at the end of a regenerative cycle) is
asymptotically consistent with the direction of the gradient of
the objective function. The analyses of [29] and [30] (relating
to the i∗-adaptation procedure) involve a careful accounting
of the errors associated with imperfect estimates of average
reward of the process λ(um). The analysis of Algorithm 2
is complicated by the fact that new errors are introduced
from imperfect estimates of the parameter vector θ∗. In order
to prove that Algorithm 2 offers any beneficial convergence
properties, we must resolve at least two issues:

1) Does the optimization procedure allow enough observa-
tion of the process in order to guarantee convergence?
- From the theory of adaptive control of Markov chains
(see, for example, [35], pages 121-122), conditions
are known under which the optimization procedure will
converge when the maximum likelihood estimator is
used. In Algorithm 2, however, we use a gradient pro-
cedure to estimate θ∗, and convergence of the estimate
remains to be shown. Moreover, if {θ̃m}∞

m=0 converges
in Algorithm 2, it may converge to a locally optimal
estimate.

2) Does the error (θ∗ − θ̃m) introduce enough noise to
prevent recovery of the true direction of the gradient?
- If the functions αk(uk, θ̃), and βk(θ̃) are such that
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the assumptions in [35] are met, then it is possible
to show that the direction of the price vector update
deviates from the gradient by a term that can be a
bounded by M‖θ∗ − θ̃m‖, for some constant M . This
may be enough to guarantee that the direction of the
gradient will be eventually recovered (of course as long
as ‖θ∗ − θ̃m‖ → 0.)

V. NUMERICAL EVALUATION

Here, we present numerical examples that illustrate the
application of Algorithms 1 and 2. Examples 1 and 2 illustrate
(1) the convergence of the model-based algorithm (Algorithm
1) assuming perfect knowledge of the arrival rate functions
and holding times and (2) the ability of the adaptive algorithm
(Algorithm 2) to identify the same set of prices in the presence
of uncertainty about some of the model parameters. Examples
3 and 4 illustrate the ability of the adaptive algorithm to
track time-varying parameters of the underlying system. All
scenarios tested here correspond to situations where the “many
small sources” assumption does not apply.

A. Example 1: Two Classes of Traffic

This example involves two classes of traffic (K = 2) in a
system with small capacity. The parameters for the example
are compiled in Table I. Note that the capacity of the system
is C = 10.0 (Mbps) and, since m1 = 1.0 (Mbps) and
m2 = 5.0 (Mbps), there can be at most 10 active users in
the system. Both service classes have a maximum (price-free)
request arrival rate of ᾱ1 = ᾱ2 = 10.0 (requests/s). On
the other hand, class-1 demand for services drops (linearly)
to zero at a price of ŭ1 = 1.0 priceunits(p.u.), whereas
class-2 demand for service cuts off at the much higher value
ŭ2 = 10.0 (p.u.). Even though class-2 users consume five
times the bandwidth of class-1 users and stay in the system
for the same length of time (1/β1 = 1/β2 = 1.0 (s) on
average), the demand for class-2 service is so much higher
than class-1 service for a given price that class 2 traffic offers
better earning potential to the service provider. In applying
Algorithms 1 and 2, we restrict the range of prices for class-1
service to the interval u1 ∈ [0, .9] (p.u.), and, similarly, we
restrict the range of prices for class-2 service to the interval
u2 ∈ [0, 9.0] (p.u.). Thus, it is impossible for the optimization
algorithm to accidentally “turn off” the process of request
arrivals in either class. For the adaptive case, we assume that
service rate distribution parameters β1 and β2 are unknown.

TABLE I

PARAMETERS FOR EXAMPLE 1. (C = 10)

Parameter Class 1 Class 2
αk(uk) ᾱ1(1 − u1/ŭ1)+ ᾱ2(1 − u2/ŭ2)+
ᾱk 10.0 10.0
ŭk 1.0 10.0
ūk .9 9.0
mk 1.0 5.0
βk 1.0 1.0

The results of this example appear in Figs. 1 and 2. Fig. 1
shows the evolution of prices and estimated average reward
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Fig. 1. Evolution of prices and estimated average reward in Example 1.
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Fig. 2. Evolution of the estimates of β in Example 1.

over 10 hours for both algorithms. Note that both the model-
based and the adaptive algorithms converge to nearly the
same set of prices, u1 ≈ .9 and u2 ≈ 7.0. (This price
vector has the effect of shutting off class-1 traffic as much as
possible, leaving as much room as possible for the other, more
profitable, service class.) Fig. 2 shows the evolution of the
estimates of β1 and β2 in Algorithm 2. Note that the estimates
eventually converge to the true value β1 = β2 = 1.0 (s−1).
We point out the relatively slow rate of convergence of both
algorithms, especially with regard to price. On the other hand,
even though it takes a long time for prices to settle, the
average reward of the process seems to lock onto its final
value relatively quickly.

B. Example 2: Three Classes of Traffic

This example involves three classes of traffic, with guaran-
teed rates m1 = 1, m2 = 10, m3 = 5.0 (Mbps), in a system
with capacity C = 20 (Mbps). The full set of parameters for
the example are compiled in Table II. As in Example 1, prices
are optimized both for the case where all the parameters are
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Fig. 3. Evolution of prices and estimated average reward in Example 2.

known (Algorithm 1) and where the service rate parameters
β1, β2, and β3 are unknown (Algorithm 2).

TABLE II

PARAMETERS FOR EXAMPLE 2. (C = 20)

Parameter Class 1 Class 2 Class 3
αk(uk) ᾱ1(1 − u1/ŭ1)+ ᾱ2(1 − u2/ŭ2)+ ᾱ3(1 − u3/ŭ3)+
ᾱk 10.0 10.0 10.0
ŭk 1.0 10.0 5.0
ūk .9 9.0 4.8
mk 1.0 10.0 5.0
βk 10.0 1.0 5.0

The results of this example appear in Figs. 3 and 4. Fig. 3
shows the evolution of prices and estimated average reward
over 10 hours of operation. Note that, as before, both the
model-based and the adaptive algorithms converge to nearly
the same set of prices. Fig. 2 shows the evolution of the
estimates of β1, β2, and β3 in Algorithm 2, with all three
parameters eventually tracking their actual values.

C. Example 3: Tracking Abrupt Changes

This example seeks to explore the ability of Algorithm 2 to
track abrupt changes in model parameters. As in Example 1,
we consider a system with two classes of service and limited
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Fig. 4. Evolution of the estimates of β1, β2, β3 in Example 2.

service capacity C = 10 (Mbps). The parameters of the model
are expressed in Table III. Note that the service rate parameters
β1 and β2 are given as functions of time, i.e. for the first third
of the experiment β1 = .1 and β2 = 1.0, for the second third of
the experiment β1 = 1.0 and β2 = .1, and for the final third of
the experiment we return to β1 = .1 and β2 = 1.0. Note that,
throughout the experiment, both service classes have identical
demand characteristics (i.e. their arrival rate functions αk(·)
are the same). Finally, to accommodate the time-varying nature
of the problem we modify Algorithm 2 slightly by imposing
a constant stepsize rule, γk = γ0 for some γ0 small.

TABLE III

PARAMETERS FOR EXAMPLE 3. (C = 10)

Parameter Class 1 Class 2
αk(uk) ᾱ1(1 − u1/ŭ1)+ ᾱ2(1 − u2/ŭ2)+
ᾱk 10.0 10.0
ŭk 1.0 1.0
ūk .9 .9
mk 1.0 1.0
βk

t ∈ [0, 6) hours .1 1.0
t ∈ [6, 12) hours 1.0 .1
t ∈ [12, 20) hours .1 1.0

The results of this example appear in Figs. 5 and 6. Fig. 5
shows the evolution of prices and estimated average reward
over the entire 20 hours of operation. Note that the prices
for classes 1 and 2 appear to alternate after the switch in β1
and β2 at t = 6 hours and t = 12 hours. Thus, Algorithm 2
seems to be making the correct response to the instantaneous
jump in the service rate parameters. (Note that the estimated
average reward dips during the transient after each switch.)
Fig. 6 shows the evolution of the estimates of β1 and β2. Note
that with the constant step size rule the estimates of β1 and
β2 quickly track the instantaneous jumps in these parameters,
although the estimates remain somewhat noisy throughout.

D. Example 4: Tracking Smooth Changes

In this example we explore the ability of Algorithm 2 to
track smooth changes in model parameters. As in Examples
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Fig. 5. Evolution of prices and estimated average reward in Example 3.
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Fig. 6. Evolution of the estimates of β1 and β2 in Example 3.

1 and 3, we consider a system with two service classes and
limited capacity C = 10 (Mbps). The parameters of the model
are expressed in Table IV. As in Example 3, the service rate
parameters β1 and β2 are given as functions of time. i.e. for
the first third of the experiment β1 = .1 and β2 = 1.0, for
the second third of the experiment β1 increases linearly in
time (on average) to β1 = 1.0 and β2 decreases linearly in
time (on average) to β2 = .1, and for the final third of the
experiment β1 and β2 hold at 1.0 and .1 (s−1), respectively.
The demand characteristics for both service classes in this
example are time-invariant and are the same as in Example 3.

The results of this example appear in Figs. 7 and 8. Fig. 7
shows the evolution of prices and estimated average reward
over the entire 20 hours of operation. Interestingly, from the
plot of the average reward estimate, Algorithm 2 appears
to be able to extract a higher average reward during the
transient, especially where both service classes approach the
same (relatively small) expected holding time 1/β1 = 1/β2 ≈
2 (s). Fig. 8 shows the evolution of the estimates of β1 and β2.
Again, with the constant step size rule, the estimates of β1 and

TABLE IV

PARAMETERS FOR EXAMPLE 4. (C = 10).

Parameter Class 1 Class 2
αk(uk) ᾱ1(1 − u1/ŭ1)+ ᾱ2(1 − u2/ŭ2)+
ᾱk 10.0 10.0
ŭk 1.0 1.0
ūk .9 .9
mk 1.0 1.0
βk

t ∈ [0, 6) hours .1 1.0
t ∈ [6, 12) hours (linear increase) (linear decrease)
t ∈ [12, 20) hours 1.0 .1
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Fig. 7. Evolution of prices and estimated average reward in Example 4.

β2 are able to track the smooth changes in these parameters
between t = 6 hours and t = 12 hours. As before, however, the
constant stepsize rule gives rise to somewhat noisy estimates
of the parameters.

VI. CONCLUSIONS

Seeking to develop efficient and robust pricing mechanisms
for network services, we have adapted the simulation-based
optimization procedure of [29], [30] for on-line use in con-
tinuous time. The most natural implementation of this scheme
results in a model-based procedure (Algorithm 1) which is
guaranteed to converge to a critical point assuming that all of
the arrival and service rates of the underlying Markov process
are known. Toward the goal of being robust to parametric
uncertainty, we have also developed an adaptive procedure
(Algorithm 2) which allows for the simultaneous estimation of
model parameters. Both algorithms are efficient in the sense
that they do not require that the entire history of the process
be stored in order to make adjustments toward an optimal set
of prices. In Algorithm 1 the memory requirements are O(K),
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Fig. 8. Evolution of the estimates of β1 and β2 for Example 4.

where K is the number of service classes, and in Algorithm
2 the memory requirements are O(K + q), where q is the
number of uncertain parameters in the model. Our numerical
examples illustrate that our on-line algorithms are able to
adjust prices toward optimal levels, even in the presence of
modeling uncertainty, although the convergence appears to be
quite slow.

While the results of this study are encouraging, there are
many outstanding questions and issues to resolve. We first
acknowledge that our numerical examples only provide a
very rough proof-of-concept. It remains to be seen how our
algorithms (particularly Algorithm 2) perform under more
realistic traffic conditions. We have yet to experiment with
general arrival and service time distributions, and we also have
not experimented with the social welfare objective discussed
in Section II. Another primary objective is to establish ana-
lytically the convergence properties of Algorithm 2. This has
been being done and its publication is under preparation. Our
analysis proceeds by first developing an adaptive version of the
discrete-time results in [29], [30]. We show that the estimator
is strongly consistent and convergence in probability at a rate
that prevents the error introduced by the estimation process
from altering the analysis of the algorithm [29].

Second, although we have focused on the single link case
here, the network case is interesting. Indeed, it is shown in
[28] that the asymptotic optimality of static prices still holds
in the network case, and thus the algorithms in [29], [30] can
be applied off-line to the network case. Nevertheless, some
implementation issues have to be addressed in order to deploy
the algorithm in an online fashion. For example, the notion
of state of the system, has to be communicated across the
different origin destination pairs.
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