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Abstract— A generic mechanism for end-user transmission rate
control into a differentiated services Internet is formulated and
basic results of corresponding Nash equilibria are proved. We
consider specific examples of the mechanism including additive
increase and multiplicative decrease inspired by present day TCP
congestion control. For the example of users sharing access to
a bandwidth resource via resizable provisioned label-switched
paths (MPLS), we study the equilibria and the performance of
the generic mechanism and give analytical results on convergence
to equilibria. The fairness of the resulting equilibria when user
demands exceed available network resources is also studied.

I. INTRODUCTION

Research into Internet flow control involving pricing is re-
ceiving more attention as mechanisms for differential qualities-
of-service (QoSs) are being deployed. Imposing usage-based
charges encourages users to behave in more reasonable ways,
e.g., by discouraging the use of higher-priority (cheaper)
service classes for “best-effort” applications with flexible
QoS requirements. Premium services include assured service
(AS) and expedited forwarding (EF) under the differentiated
services (diffserv) paradigm [2], [19] and provisioned label-
switched paths (LSPs) under the multiprotocol label switching
(MPLS) paradigm [5], [4]. Preliminary studies of issues of
pricing and user access mechanisms for differentiated services
are given in [21], [17]. In [18], a pricing scheme is considered
wherein network traffic is classified into different priorities,
and users choose the priorities and are charged by the network
according to the chosen priority. The dynamics are modeled as
a non-cooperative game and the existence of an equilibrium
for the game model and the resource allocation among the
users are studied. Recently, in [13], we devised a two-level
user access mechanism in which users select a class-of-service
(CoS) based on their ability to pay and on the QoS need of
the application under consideration by the user; the network
links determine the “clearing” price and clearing CoS based
on the mean backlog of a queue with a differential enqueue
mechanism (as currently in practice); and the end-to-end
clearing prices and CoSs are communicated to the user via
a minimum-cost routing algorithm.

In [10], [11], a distributed constrained optimization problem
to find flow-rates (bandwidth) which maximize the sum of
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each user’s utility is studied. They showed that the optimiza-
tion problem can be decomposed into two sub-problems for
users and the network in which each user pursues his/her
own net benefit (utility - cost) and the network finds optimum
flow-rates given only each user’s willingness to pay. Based on
the decomposition, [11] proposes a decentralized algorithm
based on duality wherein greedy users rapidly adjust their
willingnesses to pay according to their previous set of network
link prices and the network slowly adjusts user flow-rate grants
and link prices according to a kind of proportional fairness
rule. With the same “social welfare” objective, i.e., to find
flow rates which maximize the sum of user utilities, a related
decentralized dual approach is proposed in [16] in which
users rapidly select transmission rates that maximize their own
benefits and the network slowly adjusts link bandwidth prices
in response.

This paper considers user dynamics in a circuit-switched
Internet offering bandwidth-provisioned LSPs billed according
to usage. We first suggest a generic mechanism for end-user
transmission rate control (or, more generally, access control)
to an Internet offering differentiated CoSs, which leads to a
Nash equilibrium. Under this mechanism, users modify their
access control parameter based on the quality-of-service they
currently receive. Convergence to Nash equilibria [1] is studied
under the assumption of synchronous user updates of their
access control parameters. The results obtained herein can
be extended to asynchronous (“decentralized”) updates using
techniques and assumptions described in [15].

A special case of our generic user access mechanism
is TCP’s slow-start congestion control policy (additive rate
increase and multiplicative decrease) extended in a natural
way to include differential and targeted user demands [13].
Our previous work on ALOHA [9] is another application of
this generic mechanism.

This paper does not consider the dynamics between the
users and network as the network adjusts prices in response
to perceived user demand. We only study the user behavior
for fixed network prices, specifically convergence to the Nash
equilibrium (i.e., the “fast” dynamics in the dual algorithms
of [10], [16]). Specifically, we specify potential functions that
govern these dynamics.

This paper is organized as follows. In Section II, we give
an overview of the generic game theoretic framework under
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consideration. In Sections III and IV, we study convergence
to Nash equilibrium points of users for a fixed charge per
circuit per unit time imposed by the network; in addition,
we numerically explore the fairness of specific mechanisms
when total user demand exceeds available network capacity.
We conclude with a summary in Section V.

II. A GENERIC FIXED POINT ITERATION

LEADING TO NASH EQUILIBRIA

In this section, we study the existence of equilibrium
behavior of a population of N users competing for resource
units (bandwidth) which are offered for sale by a network.
We formulate a generic noncooperative game that can be
applied to several networking situations. Each user n has
an access control (or “input”) parameter λn and receives
a certain amount θn(λ) of the network’s resources where
λ ≡ (λ1, λ2, ..., λN ), i.e., what the nth user receives may
depend on the action taken by other users. We assume that for
each n:

• λn ∈ [0, λmax
n ] for some fixed λmax

n > 0.
• θn(λ) is a nondecreasing function of λn.
• θn(·) is continuous in

∏N
n=1[0, λ

max
n ] and differentiable

with respect to λn.
• θn(λ) = 0 for all λ such that λn = 0.

Alternatively, θn(λ) may be interpreted as the quality-of-
service (QoS) received by the nth user. The network charges
a fixed amount M per unit resource consumed.

Each user n seeks to maximize his/her net utility, Un(θ) −
Mθ, where, for all n:

• Un is nondecreasing and Un(0) = 0.
• U ′

n is nonincreasing, i.e., Un is concave.

Thus, the maximum of the nth user’s net benefit under usage-
based costs is

arg max
θ
Un(θ) −Mθ = (U ′

n)−1(M).

We will assume that (U ′
n)−1(M) > 0. Note that if

(U ′
n)−1 ≤ 0 then the nth user will simply not use the network.

The users sequentially adjust their control parameters λ in
an attempt to make their received QoS θn(λ) equal to their
desired QoS yn ≡ (U ′

n)−1(M). After the jth iteration/step,
the user input parameter is, for each n:

λj+1
n = min

{
G(yn, θn(λj), λj

n), λmax
n

}
. (1)

where the jointly continuous function G satisfies the following
properties:

G(y, θ, λ)






≡ λ if y = θ
> λ if y > θ
< λ if y < θ

(2)

A. Nash equilibria

A fixed or equilibrium point of this iteration is any λ∗ ∈∏N
n=1[0, λ

max
n ] such that

λ∗
n = min {G(yn, θn(λ∗), λ∗

n), λmax
n } . (3)

By Brouwer’s fixed point theorem [20], [3], there exists
at least one such fixed point. Note that we are implicitly
assuming that every user does not divulge his/her utility
function and, in particular, does not divulge their “demand”
yn for a given price M . Note that this fixed point iteration
requires only that the users ascertain (estimate) their own
received QoS, θn, at each step j.

Lemma 1: (a) If λ∗
n < λ

max
n , θn(λ∗) = yn.

(b) θn(λ∗) ≤ yn.

Proof: From (3), λ∗
n should be either λmax

n or
G(yn, θn(λ∗), λ∗

n) which is smaller than λmax
n . If λ∗

n =
G(yn, θn(λ∗), λ∗

n) < λmax
n , (a) comes from the definition of

G. If λ∗
n = λmax

n , then G(yn, θn(λ∗), λ∗
n) ≥ λmax

n . Hence,
θn(λ∗) ≤ yn holds.

Theorem 1: Each such fixed point is a Nash equilibrium
point (NEP).

Proof: An immediate consequence of the previous lemma, the
continuity assumption of each θn and the definition of yn is
that all fixed points in the interior of

∏N
n=1[0, λ

max
n ] are NEPs,

i.e.,

λ∗
n = arg max

0≤λ≤λmax
n

Un(θ(λ;λ∗
−n)) −Mθ(λ;λ∗

−n)

where (λ;λ∗
−n) is the N -vector whose kth component is λ∗

k

for all k 	= n and whose nth component is λ.
By the previous lemma, to show that a fixed point λ∗ on

the boundary of
∏N

n=1[0, λ
max
n ], some of whose components

are λmax
n for some n’s, is a NEP, we need to show that if

λ∗
n = λmax

n (4)

then

λmax
n = arg max

0≤λ≤λmax
n

f(λ) where

f(λ) = Un(θn(λ;λ∗
−n)) −Mθn(λ;λ∗

−n)

and λ∗
−n = (λ∗

1, . . . , λ
∗
n−1, λ

∗
n+1, . . . , λ

∗
N ). This statement

clearly follows if f ′ ≥ 0 (f is nondecreasing) over the whole
interval [0, λmax

n ]. By direct differentiation,

f ′(λ) =
(
U ′

n(θn(λ;λ∗
−n)) −M)

) ∂θn(λ;λ∗
−n)

∂λn

First note that ∂θn(λ;λ∗
−n)/∂λn ≥ 0 by assumption. By state-

ment (b) of the previous lemma, θn(λ∗) ≤ yn ≡ (U ′
n)−1(M);

therefore, because U ′
n is nonincreasing by assumption,

U ′
n(θn(λ∗)) = U ′

n(θn(λmax
n ;λ∗

−n)) ≥ M.

Again, because U ′
n is nonincreasing and because θn is nonde-

creasing in λn (also by assumption), the previous inequality
implies

U ′
n(θn(λ;λ∗

−n)) ≥ M
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for all λ ≤ λmax
n as desired.

Definition 1: A NEP λ∗ is Pareto optimal if, for any other
NEP α∗,

Un(θn(λ∗)) −Mθn(λ∗) ≥ Un(θn(α∗)) −Mθn(α∗)

for all n.

An immediate consequence of the previous theorem and
lemma is:

Theorem 2: Fixed points (NEPs) in the interior of∏N
n=1[0, λ

max
n ] are Pareto optimal.

As we shall see, boundary NEPs are reached typically when
total user demand exceeds network capacity, i.e., congestion.
Note that Theorem 2 states that, at a boundary NEP, no user
is receiving more than their demand which is a basic notion
of fairness. A more specific criterion is that, at a boundary
point λ∗, θn(λ∗)/yn is a constant function of n, i.e., demand
proportional fairness (which is different from proportional
fairness of [10], [11]). Demand proportional fairness seems to
be the natural extension of the “equal share” fairness achieved
by TCP’s slow start for a highly ideal model of the present-day
Internet [6], [14].

B. Specific user access mechanisms

In this section, we will describe two specific user access
mechanisms. The iterations (1) are additive increase and
multiplicative decrease (AIMD) if

G(y, θ, λ) = λ− αλ1{y < θ} + δ1{y > θ} (5)

where 1 − α ∈ (0, 1) is the multiplicative decrease factor
(exceeded demand) and δ > 0 is the additive increase factor
(demand not met).

To mitigate oscillations about an equilibrium point λ∗ (even
for asynchronous user updates), it is desirable to let the
quantities α → 1 and δ → 0 (i.e., reduce the “step size”)
as θ → y. We therefore consider a modification of (5):

G(y, θ, λ) = (1 − α(1 − y
θ
))λ1{y < θ}

+(λ+ δ(
y

θ
− 1))1{y > θ} + λ1{y = θ} (6)

In the following, we study the convergence of (1) to NEPs
for the multiplicative increase and multiplicative decrease
(MIMD) policy, simply:

G(y, θ, λ) =
y

θ
λ. (7)

We were unable to establish whether the fixed point iterations
considered below are contraction mappings. As a result, we
appealed to the Lyapunov theory of system stability and, to
do so, considered the Jacobi update scheme. In any case, this
technique provides more information about the nature of the
NEPs than just uniqueness.

C. Unconstrained Jacobi iteration

Consider the following modification of the game (1) without
the constraints λmax

n :

λj+1 = λj + ε(F (λj) − λj) (8)

for a fixed small ε > 0 where the nth component of the
function F : [0,∞)N → [0,∞)N is

Fn(λ) = G(yn, θn(λ), λn).

This is simply the Jacobi update scheme, see equation (15) of
[15]. For small ε, we can approximate (8) by the continuous-
time game

λ̇(t) = F (λ(t)) − λ(t). (9)

The Jacobi iteration will be used to show the convergence
of the fixed point iteration. In general, it is hard to show the
fixed point iteration converges to the fixed point due to the
nonlinearity of θn in the problems we will discuss with. To
show the convergence to the interior fixed point, we will find
a potential or Lyapunov function of (9).

III. A NONCOOPERATIVE GAME

FOR A CIRCUIT-SWITCHED SYSTEM

Consider a group of K circuits connecting an origin node
to a destination node in a network. A population of N users
competes for these K circuits. The nth user subjects the K
circuits to a “connection set-up request” process which we
assume here to be Poisson with intensity λn and arbitrary
holding (or “service”) time distribution with mean 1/µn.

Thus, the system of users and network form a stationary
multiclass M/GI/K/K queue with total traffic intensity

ρ ≡ Λ
1
µ

where the aggregate arrival rate is

Λ ≡
N∑

n=1

λn

and the mean holding time over all connections is

1
µ

=
N∑

n=1

1
µn

· λn

Λ

⇒ ρ =
N∑

n=1

λn

µn
.

Indeed, we allow the service time distribution of each user to
be different. The service time of a typical connection, even
when the arrivals are not Poisson, is then a mixture of the
different distributions using the weights λn/Λ.

The aggregate and per-user connection blocking probability
in steady state is simply Erlang’s formula [22],

EK(ρ) ≡ ρK/K!
∑K

k=0 ρ
k/k!

.
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The net arrival rate of the nth user is therefore

λn(1 − EK(ρ)).

So, by Little’s formula, the mean number of occupied circuits
for the nth user is

θn(λ) ≡ 1
µn
λn(1 − EK(ρ(λ))).

where we have explicitly shown the dependence of θn and
ρ on all of the arrival rates λ. Note that θn satisfies
the assumptions of Section II only in the space: A =
{λ ∈ (IR+)N | minn ∂nθ(λ)/∂λn ≥ 0}. Suppose that∏N

n=1[0, λ
max
n ] ⊂ A and note that yn = (U

′

n)−1(M). Consider
the following fixed-point iteration, using (1) with multiplica-
tive increase and decrease (7):

λj+1
n = min

{
yn
θn
λn, λ

max
n

}
.

= min
{

ynµn

1 − EK(ρ(λj))
, λmax

n

}
. (10)

A. Nash equilibria of the Erlang game model

Suppose that λ∗ is a fixed point for the unconstrained
problem (10), i.e., λ∗

n = ynµn

1−E(ρ(λ∗)) for all n. To simplify
notation, the superscript * for a fixed point is dropped and ρ
and E will denote ρ(λ∗) and EK(ρ(λ∗)), respectively. Thus,

λn

µn
=

yn
1 − E

. (11)

The summation (11) over n gives

ρ =
∑N

n=1 yn
1 − E

= Y

∑K
k=0 ρ

k/k!
∑K−1

k=0 ρ
k/k!

(12)

where Y =
∑N

n=1 yn. From (12), we get the following
polynomial in ρ:

f(ρ) ≡
K∑

k=1

(Y − k)
k!

ρk + Y = 0. (13)

Hence, an interior fixed point of the constrained problem
will be a root of (13). Note that (13) does not have a
root if Y ≥ K. If Y < K then, for a sufficiently large
ρ, the fact that Y −K

K! ρ
K < 0 results in f(ρ) < 0 . The

intermediate value theorem tells us that (13) should have
at least one root between 0 and the sufficiently large ρ.1

Note that it is always possible to have unique root of (13)
over

∏N
n=1[0, λ

max
n ] by an appropriate choice of λmax

n .
Suppose that the real root of (13) exists in the interval of
(0,

∑N
n=1

λmax
n

µn
). Once the root of (13) is found, we can easily

get λn from (11). Therefore, the following theorem is proven.

Theorem 3: Suppose that
∑N

n=1 yn < K. If (13) admits a
positive real root ρ∗ in (0,

∑N
n=1

λmax
n

µn
), the fixed point of the

unconstrained problem of (10) can be found from ρ∗ and (11).

1We evaluated several polynomials with large ρ̃ and various values of K
and found no more than a single root in the interval of interest (0, ρ̃).

Given the fixed point (NEP) of the unconstrained iteration
is known, the issue of convergence to it is our next point
of interest. We will study convergence of the Jacobi update
scheme described in Section II-C.

Theorem 4: If there is a Nash equilibrium λ ∈∏N
n=1(0, λ

max
n ) and if yn >

λ2
nE′

µn

∑N
l=1

1
µl

for all n where
E ′ = ∂E

∂ρ , then there is a neighborhood B of λ such that
the function λ(t) obeying the dynamics (10) will converge
to λ ∈ B as t→ ∞ for any initial parameters λ(0) ∈ B.

Proof: Define the potential function

L(λ) =
N∑

n=1

yn log(λn) −K log(ρ) + log(E). (14)

Since E ′ = ∂E/∂ρ = (−1+K/ρ)E +E2, we get the following
two equations:

∂L

∂λn
=
yn
λn

− 1 − E
µn

.

∂L(λ(t))
∂t

= < ∇L(λ(t)), λ̇(t) >

=
N∑

n=1

(1 − E)
µnλn

(
ynµn

1 − E
− λn)2

≥ 0 (15)

Note that ∇L = 0 and the equality in (15) holds for only the
fixed point λ = F (λ) . Finally, the components of the Hessian
H of L are

Hn,l ≡ ∂2L

∂λnλl
=






E′

µnµl
if n 	= l

− yn

λ2
n

+ E′

µ2
n

if n = l.

The condition,

yn >
λ2

nE ′

µn

N∑

l=1

1
µl

for all n

makes the Hessian diagonally dominant and, therefore [7], the
Hessian is negative definite at the Nash equilibrium. By the
continuity property of the Hessian, there is a neighborhood B
around λ where the Hessian is negative definite everywhere on
B. These facts imply that the Nash equilibria are local minima
using L as a local Lyapunov function.

B. Numerical studies

Consider a simple example of two user game with K = 1,
i.e., the two users share a single channel. Let (µ1, µ2) = (1, 2),
(y1, y2) = (1

3 ,
1
2 ) and (λmax

1 , λmax
2 ) = (10, 20). Using Matlab,

we have checked the condition that [0, λmax
1 ]× [0, λmax

2 ] ⊂ A.
We got ρ∗ = 5 and (λ∗

1, λ
∗
2) = (2, 6) from (11) and (13) and

used ε = 0.1 for the Jacobi iteration. From Figures 1 and 2, we
see that the quantities (λ∗

1, λ
∗
2) which were solved analytically
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coincide with the values obtained by the fixed point iteration.
Note that θ∗n = y∗

n for n = 1, 2.
For a variety of two-user experiments under various initial

points, we observed that this iteration always converged to
a single fixed point even when diagonal dominance of the
Hessian was not satisfied. We point out that the condition
of diagonal dominance is only sufficient to guarantee (local)
convergence.
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Fig. 1. The convergence of (10) when ρ < K
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Fig. 2. The convergence of the Jacobi iteration of (10) when ρ < K

Recall that if K ≥ ρ and the λmax
n are sufficiently large so

that λ∗ is in interior of
∏N

n=1[0, λ
max
n ], then all user demands

are met, i.e., θn = yn for all n. Clearly, there are two “causes”
of boundary NEPs: the first is that the network is not congested
but that λ∗

n > λmax
n for at least one user n where λ∗ is

the “unconstrained” NEP, and the other cause is congestion
wherein demand exceeds capacity, Y =

∑N
n=1 yn ≥ K, and

the network cannot therefore meet every user’s demand. Again,
recall that at NEPs λ∗ on the boundary of

∏N
n=1[0, λ

max
n ],

certain users receive less than their demand but no users
receive more than their demand (Lemma 1) which is, again, a
very basic notion of fairness.

Figures 3 and 4 illustrate user behavior when Y > K; more
specifically, (y1, y2) = (1/3, 5/7) and ε = 0.1 for Jacobi
iteration are used. The plots show that the fixed points occur
on the boundary of the space: (λ∗

1, λ
∗
2) = (5.5, 20) is obtained

from the iteration resulting in (θ1, θ2) = (0.3333, 0.6061).
Note that θ2 < y2 and θ1 = y1 < y2.
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Fig. 3. The convergence of (10) when ρ > K
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Fig. 4. The convergence of the Jacobi iteration of (10) when ρ > K

We conducted simulations using additive increase and multi-
plicative decrease function (6) with decrease factor 1−α = 0.5
and increase parameter δ = 1. The results for the congested
(Y ≥ K) example above are shown in Figures 5, 6, and 7.
All simulations have used y = (10, 15, 20, 25, 30) and µ =
(15, 20, 25, 30, 35). We found a single equilibrium point (irre-
spective of initial values) for the iteration using MIMD and a
slightly different single equilibrium point (again, independent
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of initial values) under AIMD. In the depicted simulation
results, the initial value of (10, 30, 10, 30, 10) was used. The
dynamics of the fixed point and the fairness properties were
investigated for various choices of λmax. As fairness indices,
the absolute fairness (throughput θ) and demand proportional
fairness (i.e., the ratio of θ to y, θ/y) were used.
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Fig. 5. Fairness of MIMD and AIMD: Case I

The values of λmax
n = 100 for all n were used for Figure

5. The fixed point reached was λ∗
n = λmax

n ≡ 100 for all n
for both MIMD and AIMD.
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Fig. 6. Fairness of MIMD and AIMD: Case II

For Figures 6 and 7, (1500, 1500, 3000, 3000, 3000) and
(1500, 1500, 3000, 5000, 8000) were respectively used for
λmax. In Figure 6, λ∗

n < λ
max
n for all n except n = 3. Note

that the fixed point is also on the boundary in Figure 7 even if,
for all n, larger values of λmax

n are used (here λ∗
n = λmax

n for
n = 2, 3, 4). This is expected because the condition ρ > K
implies no analytical solution of the unconstrained problem
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Fig. 7. Fairness of MIMD and AIMD: Case III

exists. All the figures show that the fairness of MIMD is very
close (almost equal) to the fairness of AIMD in both absolute
and demand proportional fairness (which is not the case for
TCP congestion control in the present-day Internet [6]). In
addition, we observed that the convergence rate of AIMD is
much slower than MIMD as λmax

n increases. We conclude that
values of λmax

n significantly affect the fixed point and fairness
from these plots.

IV. AN ALTERNATIVE NONCOOPERATIVE

CIRCUIT-SWITCHED GAME

In the context of the example of Section III, assume now
that the nth user will subject the network to highest connection
arrival rate λn subject to a desired upper bound on his/her
connection blocking rate yn. This user could, for example, be
a call center that accepts a call only if it can guarantee set-up
through the network for the call with high probability (1−yn)
[12].

The actual blocking rate of the nth user is

θn(λ) ≡ λnEK(ρ(λ)).

Again, under the fixed point iteration (1) with multiplicative
increase and decrease (7), after the jth step the nth user has
control parameter:

λj+1
n = min

{
yn
θn(λ)

λn, λ
max
n

}

= min
{

yn
EK(ρ(λ))

, λmax
n

}
(16)

A. The fixed point of the problem

Suppose that λ∗ is a fixed point for the unconstrained
problem of (16), i.e., λ∗

n = yn

E(ρ(λ∗)) . To simplify notation,
the superscript * for a fixed point is dropped and ρ and E
denote ρ(λ∗) and EK(ρ(λ∗)), respectively as in Section III.
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Then,

λn

µn
=
yn
µnE

. (17)

The summation (17) over n gives

ρE =
N∑

n=1

yn
µn

(18)

where y =
∑N

n=1 yn. From (18), we get the following
polynomial in ρ:

g(ρ) ≡ ρK+1

K!
−

N∑

n=1

yn
µn

K∑

k=0

ρk

k!
= 0. (19)

Since g(0) < 0 and g(ρ) > 0 for sufficiently large ρ, we can
always find a root of g(ρ). Note that nth component of fixed
point, λn can be obtained using (17). We have the following
theorem as in the previous section.

Theorem 5: If (19) admits a positive real root ρ in
(0,

∑N
n=1 λ

max
n /µn), the fixed point of the unconstrained

problem of (16) can be found from ρ and (17).

The following function tells us useful information about the
location of fixed points, especially if multiple NEPs exist.

Λ(λ) = −

(∑N
n=1 λn

) (∑N
n=1 ynλn

)

∑N
n=1 yn

+
1
2

(
N∑

n=1

λ2
n

)
+

1
2

(∑N
n=1 λn

)2 (∑N
n=1 y

2
n

)

(∑N
n=1 yn

)2

Theorem 6: ∇Λ(λ∗) = 0 for all “unconstrained” fixed
points λ∗ of (16), i.e., all λ∗ such that λ∗

n = Fn(λ∗) =
yn

EK(ρ(λ∗)) for all n.

Proof: The lemma follows direct differentiation and from the
following relation that holds at unconstrained fixed points λ∗

of (16):

yn = EK(ρ(λ∗))λ∗
n

N∑

n=1

yn = EK(ρ(λ∗))
N∑

n=1

λ∗
n

Note that the equation ∇Λ(λ∗) is linear in λ, i.e.,

∇Λ(λ∗) = Aλ∗

where the N ×N matrix A has the following components:

Ak,n =






− yk+yn∑N

i=1
yi

+
∑N

i=1
y2

i

(
∑N

i=1
yi)2

for k 	= n

− 2yk∑N

i=1
yi

+ 1 +
∑N

i=1
y2

i

(
∑N

i=1
yi)2

for k = n

Therefore, all unconstrained fixed points lie in the null space
of A. Also note that ∇Λ(y) = 0 and ∇Λ(0) = 0. Therefore,
if rank(A) = N −1, then all unconstrained fixed points lie on
the line connecting the origin (0) and y.

The following theorem is the main convergence result of
this section.

Theorem 7: The following function is a potential function
of (16):

L(λ) = −
∑ λn

µn
+K log(ρ) +

N∑

n=1

yn
µn

log(λn) − log(E).

Proof: Note that the following two equations.

∂L

∂λn
= − 1

µn
+K

1
ρµn

+
yn
µnλn

− E ′

Eµn

=
1
µn

{ yn
λn

− E}.

∂L(λ(t))
∂t

= < ∇L(λ(t)), λ̇(t) >

=
N∑

n=1

E
µnλn

(
yn
E

− λn)2 ≥ 0.

Moreover, the components of the Hessian H of L are

∂2L

∂λnλk
=

{
−E′

µnµk
if n 	= k

− yn

µnλ2
n

− E′

µnλn
if n = k.

Clearly, the Hessian H is negative definite.

B. Numerical studies

Consider the case K = 1, (y1, y2) = (1/3, 1/2) and
(µ1, µ2) = (1, 2). Then ρ = 1.1092 and (λ1, λ2) =
(0.6338, 0.9508) from (19). Note that λ1

λ2
= y1

y2
, hence (λ1, λ2)

is on the line which connects the origin and y.
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Fig. 8. The convergence to the fixed point using (1)

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



0 0.5 1 1.5 2
0

1

2

3

4

5

λ
1

λ 2

0 0.5 1 1.5 2
0

1

2

3

4

5

λ
1

λ 2

0 0.5 1 1.5 2
0

1

2

3

4

5

λ
1

λ 2

0 0.5 1 1.5 2
0

1

2

3

4

5

λ
1

λ 2

sequence of λn

last point of λn

the fixed point

Fig. 9. The convergence to the fixed point using the Jacobi iteration

V. SUMMARY

We have proposed a generic user-network interface for the
emerging Internet offering premium CoSs which are billed
based on usage. Corresponding convergence dynamics to a
Nash equilibrium (fixed point) were studied. This paper has
focused on the fixed points of two problems in which users
modify their access parameters to satisfy their demands for
QoS in an MPLS Internet offering LSPs having a resizable
(renegotiable) provision of bandwidth. In both cases, the fixed
points of the noncooperative game can be determined from the
roots of certain specified polynomials. Convergence to these
fixed points was studied analytically using potential functions
and by simulation. Fairness issues were also explored by
considering the boundary fixed points when total user demand
exceeds network capacity, i.e., the network is in a congested
state.
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