
Local Scheduling Policies in Networks of Packet
Switches with Input Queues

M. Ajmone Marsan, P. Giaccone, E. Leonardi, F. Neri

Abstract— A significant research effort has been devoted in
recent years to the design of simple and efficient scheduling
policies for Input Queued (IQ) and Combined Input Output
Queued (CIOQ) packet switches. As a result, a number of switch
control algorithms have been proposed. Among these, scheduling
policies based on Maximum Weight Matching (MWM) were
identified as optimal, in the sense that they were proved to achieve
100% throughput under any admissible arrival process satisfying
the strong law of large number.

On the contrary, it has been recently shown that the usual
MWM policies fail to guarantee 100% throughput in networks of
interconnected IQ/CIOQ switches. Hence, new policies suited for
networks of interconnected switches were proposed and proved
to achieve 100% throughput. All of these new policies require
coordination and cooperation among different switches.

In this paper we address the open problem of the existence
of local scheduling policies that guarantee 100% throughput in
a network of IQ/CIOQ switches, providing a positive answer to
such question. The only assumptions on the input traffic are that
it satisfies the strong law of large numbers and that it does not
oversubscribe any link in the network.

I. INTRODUCTION AND PREVIOUS WORK

Input Queueing (IQ) switch architectures have become an
attractive architectural solution for the design of large-size and
high-capacity packet switches. Anderson [1] and McKeown [2]
showed in their seminal works that the negative effects of
Head-of-the-Line (HoL) blocking on performance can be re-
duced or completely eliminated by adopting per-destination
queueing (also called Virtual Output Queueing – VOQ) at
input cards, and by controlling the switch operations with a
scheduling algorithm. The scheduling algorithm avoids internal
switch conflicts by deciding which input port is enabled to
transmit packets without conflicts through the switching fabric.

We refer in this paper to fixed-size data units, called
“cells” from the ATM jargon, possibly obtained by segmenting
variable-size packets (for example IP datagrams), and to a
synchronous switch operation, according to which input/output
permutations are changed synchronously at every cell time
(called “slot”) for all switch ports.

The problem faced by scheduling algorithms with virtual
output queues can be formalized as a maximum size or max-
imum weight matching on the bipartite graph in which nodes
represent input and output ports, and edges represent cells to
be switched. Edges may be associated with weights related to
the state of input queues. For an isolated switch dealing with

This work was supported by the MIUR PLANET-IP Project. The au-
thors are with Dipartimento di Elettronica, Politecnico di Torino, Italy;
{surname}@mail.tlc.polito.it

a single traffic class, scheduling policies implementing at each
slot a Maximum Weight Matching (MWM) with edge weights
proportional to input queue lengths were proved to achieve
the same performance in terms of throughput of an Output
Queueing (OQ) switch in [3], [4], and [5], under a wide class
of traffic patterns. The best known implementations of MWM
exhibit a computational complexity O(P 3), where P is the
number of switch ports. To achieve good scalability in terms
of switch size and port data rate, it is essential to reduce the
computational complexity of the scheduling algorithm. This
objective has been often pursued by introducing a moderate
speed-up with respect to the data rate of input/output lines [6]
in the switching fabric, as well as in the linecard memories. In
this case, buffering is required at outputs as well as inputs, and
the term “combined input/output queueing” (CIOQ) is used.

A wide set of results are known also for CIOQ switching
architectures. CIOQ switches with speed-up equal to 2 have
been proved to be able to exactly emulate OQ switches
implementing any monotonic work-conserving queueing dis-
cipline [6]. This result holds under general traffic conditions
also for switches interconnected to other switches; its practical
relevance, however, is strongly limited by the very large
complexity required to implement the scheduling policy. A
wide class of low complexity scheduling policies, among
which maximal size matching algorithms (see Sect. IV), have
been proved in [4] and [7], with speed-up equal to 2, to achieve
the same throughput performance of OQ switches. The best
known implementations of maximal size matching exhibit a
computational complexity O(P 2).

In [8] it was shown that a specific network of IQ switches
implementing a MWM scheduling policy can exhibit an
unstable behavior when switches are not overloaded. This
new, counterintuitive result, opened new perspectives in the
research on IQ and CIOQ switches, reducing the value of most
of the results obtained for switches in isolation. In [8] the
authors propose a policy named LIN that, if implemented in
each switch of the network, leads to 100% throughput under
any admissible traffic pattern when each traffic flow in the
network is leaky-bucket compliant. The LIN policy, however,
is based on a pre-scheduling of cell transmissions at each
switch of the network, thus relying on an exact knowledge
of the traffic pattern at each switch (which asks for a large
signaling bandwidth), and leading to excessive computational
complexity when the traffic load approaches 1.

In [9] we elaborated on the findings of [8], proposing a
stable scheduling policy that requires the exchange of state
information only among adjacent switches.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

In this paper we address the open (to the best of the authors’
knowledge) problem of the existence of local scheduling
policies that guarantee 100% throughput in a network of
IQ/CIOQ switches, i.e. scheduling policies that do not require
information about the states of other switches.

Two methodologies were applied in the past to obtain most
of the known theoretical results on IQ and CIOQ switches:
the Lyapunov function methodology, and the fluid models
methodology. The Lyapunov function methodology was ap-
plied in [3], [7], [5], to find the stability region of several
scheduling algorithms under general traffic patters. The fluid
models methodology [10], [11], was used in [4] for the same
purpose.

Results in this paper are obtained by applying both the
Lyapunov function and the fluid models methodologies. The
interested reader can refer to [9] for a presentation of the basic
theoretical results that form the background necessary to our
analysis.

After introducing our notation and assumptions in Sect. II,
we introduce in Sect. III stable scheduling policies for net-
works of IQ and CIOQ switches that avoid any exchange of
state information among switches. In Sect. IV, instead, we
introduce semi-local stable scheduling policies, which require
only a limited amount of signaling among switches. Sect. VI
concludes our paper. To ease a first reading of the paper, we
moved all proofs and heavier notations to appendices.

II. NOTATION AND DEFINITIONS

A. Queueing Systems

Consider a system of J discrete-time (physical) queues
q̃(j) of infinite capacity, each identified by an index j, with
0 ≤ j < J . The system of queues handles N ≥ J classes
of customers. Each customer arrives at the network from the
outside, receives service at a number of queues, and leaves
the network. Customers change class every time they move
through the network, since they cross different logical queues.
We suppose that each class k of customers, 0 ≤ k < N ,
univocally identifies a queue in the system at which all class
k customers are enqueued, i.e., all customers of class k are
enqueued at the same queue. Let L(k) = j be the system
location function that associates each class k of customers
with the queue j at which class k customers are enqueued.
L−1(j) is the counter-image of j through function L(k) and
returns the set of customer classes served at queue j. When
N = J , each customer class is in one-to-one correspondence
with a queue.

Let Xn = (x(0)
n , x

(1)
n , . . . , x

(N−1)
n) be the row vector whose

k-th component x
(k)
n , 0 ≤ k < N , represents the number of

customers of class k in the system at time n. We say that the
set of customers of the same class forms a logical queue in
the system of queues; thus in the paper we indicate the set of
customers of class k with the term “logical queue k”. Logical
queue k is denoted by q(k). Each physical queue q̃(j), 0 ≤
j < J , therefore comprises the set L−1(j) of logical queues.
We suppose that the service times required by customers of
all classes are deterministic and equal to one unit of time.

The evolution of the number of queued customers is de-
scribed by x

(k)
n+1 = x

(k)
n + e

(k)
n − d

(k)
n , where e

(k)
n represents

the number of class k customers that entered logical queue
k (and thus physical queue L(k)) in time interval (n, n +
1], and d

(k)
n represents the number of customers departed

from logical queue k in time interval (n, n + 1]. En =
(e(0)

n , e
(1)
n , . . . , e

(N−1)
n) is the vector of entrances in the logical

queues, and Dn = (d(0)
n , d

(1)
n , . . . , d

(N−1)
n) is the vector of

departures from the logical queues. With this notation, the
system evolution equation can be written as:

Xn+1 = Xn + En − Dn (1)

The entrance vector is sum of two terms: vector
An = (a(0)

n , a
(1)
n , . . . , a

(N−1)
n) representing the customers

arrived at the system from outside, and vector Tn =
(t(0)n , t

(1)
n , . . . , t

(N−1)
n) of recirculating customers; t

(k)
n is the

number customers departed from some logical queue and
entered into logical queue k in time interval (n, n + 1]. Note
that when customers do not traverse more than one queue (as
it is typically the case for a switch in isolation), vector Tn is
null for all n, and An = En.

The N × N matrix R = [rij] is the routing matrix, whose
element rij represents the fraction of customers departing from
logical queue i and reaching logical queue j. We assume de-
terministic routing, hence R is a binary doubly sub-stochastic
matrix (i.e., rij = {0, 1},

∑
i rij ≤ 1,

∑
j rij ≤ 1); rij �= 0 if

queue q(j) follows q(i) along the customer route.
Note that Tn = DnR. The law of evolution of logical queues

can thus be rewritten as:

Xn+1 = Xn + An − Dn(I − R) (2)

where I is an identity diagonal matrix.
Let us consider the external arrivals process An =

(a(0)
n , a

(1)
n , . . . , a

(N−1)
n); we suppose that arrival processes are

stationary, i.e., E[An] = Λ = (λ(0), λ(1), . . . , λ(N−1)) does
not depend on the time interval [n, n + 1). Moreover, we
suppose that arrival processes at each logical queue satisfy
the Strong Law of Large Numbers (SLLN), i.e.:

lim
n→∞

∑n−1
i=0 Ai

n
= Λ with probability 1

The average workload W provided at each logical queue by
customers that entered the system of queues in time interval
[n, n + 1) is given on average by W = Λ(I − R)−1, since
(I − R)−1 = I + R + R2 +

B. Norms and Other Operators

Before proceeding, we define two norm functions that will
be helpful in the sequel.1

Definition 1: Given a vector Z ∈ IRN , Z = (z(k), 0 ≤
k < N), we call ||Z||2 the Euclidean Norm of Z, i.e., ||Z||2 =√∑N−1

k=0

(
z(k)

)2
.

1In this paper, IN denotes the set of non-negative integers, IR denotes the
set of real numbers, and IR+ denotes the set of non-negative real numbers.
Furthermore “with probability 1” will be abbreviated into “w.p.1”

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Definition 2: Given a vector Z ∈ IR+N , Z = (z(k), 0 ≤
k < N), and a location function L(k) = j, from 0 ≤ k < N
to 0 ≤ j < J , with J ≤ N , norm ||Z||maxL (the name refers
to maximum queue length) is defined as:

||Z||maxL = max
j=0,... ,J−1





∑

k∈L−1(j)

z(k)




 (3)

C. Stability Definitions for a System of Queues

Several definitions of stability for a network of queues can
be found in the technical literature. We refer in this paper to
rate stability.

Definition 3: A system of queues is rate stable if

lim
n→∞

Xn

n
= lim

n→∞

1
n

n−1∑

i=0

(Ei − Di) = 0 w.p.1

where Xn is the queue lengths vector at time n.
A necessary condition for the system of queues to achieve

rate stability is that the average workload provided at each
physical queue by customers entering the system of queues in
time interval [n, n + 1) does not reach 1. This condition, that
we call no-overload condition, is also a sufficient condition
for rate stability in any BCMP type network of queues [12].
This condition can be formalized as:

||W ||maxL < 1 (4)

In general, as shown in [10], [11], [8], [9], this condition does
not guarantee the stability of a generic network of queues.

A system that is rate stable under any workload meeting the
no-overload condition is said to achieve 100% throughput.

D. Notation for Networks of Switches

We introduce the notation for a network of S IQ/CIOQ
cell-based switches, which extends some of the previous
definitions. We refer to the case of fixed-size packets, often
called cells. Switch s, 0 ≤ s < S, has Ps input ports and Ps

output ports, all running at the same cell rate.
We say that packets that enter the network at a given input

port of a given switch, and leave the network from a given
output port of a given switch, belong to the same (information)
flow. The packets belonging to the same information flow
behave as customers in the queueing system of Section II-A:
they traverse a sequence of physical queues from the network
ingress point to the network egress point. At each physical
queue, customers belonging to a given flow are mapped onto
one logical queue. In other words, a sequence of different
logical queues is biunivocally associated with a flow. Under
deterministic routing, all logical queues belonging to the same
flow receive the same workload. We normally assume that each
physical queue is handled as a FIFO queue, while some state
information may have to be maintained for each logical queue
mapped onto that physical queue.

When instead each logical queue behaves as a FIFO, i.e.,
customers arrive and depart from logical queues, we have a
different, more complex queue management, called per-flow
queueing.

Each switch adopts a Virtual Output Queuing (VOQ) scheme
at the inputs: one physical FIFO queue is maintained at each
input for each output. As noted above, each physical queue
is partitioned in a number of logical queues, associating one
logical queue with each flow traversing the physical queue. If
C is the number of information flows, at switch s we have
P 2

s physical queues (VOQs), and up to CP 2
s different logical

queues.
For network of CIOQ switches under admissible traffic,

since it can been shown that instabilities may originate only
at input queues, we neglect the output queueing process2.

The network of IQ/CIOQ switches can be thus modeled as a
system of N =

∑
s CP 2

s logical queues (at the inputs), each of
them being identified by a unique index. We restrict our study
to the case Ps = P ∀s, so that N = CP 2S and J = P 2S.
Let QI(s, i) be the set of indexes corresponding to the logical
queues of switch s at input port i. Similarly, let QO(s, j) be
the set of indexes corresponding to the logical queues of switch
s directed to output port j.

We can adapt the definition of ||Z||maxL to the case of a
network of switches handling multiclass traffic, as follows:

Definition 4: Given a vector Z ∈ IR+N , Z = {z(k), k =
CP 2s+CPi+Cj+l, 0 ≤ s < S, 0 ≤ i, j < P, 0 ≤ l < C},
the norm ||Z||IO is defined as:

||Z||IO = max
k = 0, . . . , S − 1
i = 0, . . . , P − 1





∑

k∈QI(k,i)

|z(k)|,
∑

k∈QO(k,i)

|z(k)|






If vector Z refers to the workload in a network of switches,
||Z||IO becomes the load on the most loaded input or output
port.

At each time slot, a set of non contending cells departs from
the VOQ of each switch. More formally, we say that:

Property 1: At each time slot, the departure vector D ∈
{0, 1}N satisfies:

||D||IO ≤ 1
Definition 5: Let W = [w(k)] = Λ(I − R)−1 be the

effective load vector. The traffic pattern loading a network of
IQ/CIOQ switches is admissible if and only if:

||W ||IO = ||Λ(I − R)−1||IO < 1
Remember that, with deterministic routing, the workload is the
same for all the logical queues along a given flow route in the
network.

Thanks to Bramson’s result [13] on the stability of a generic
queueing network adopting FIFO service policies, it is possible
to state the following:

Property 2: A network of OQ switches adopting a FIFO
service policy achieves 100% throughput.

2The formal proof relies on the fact the fluid limit of a rate stable queue is
an empty queue as better explained in [10]

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Note that, because of contentions inside switches, a network
of IQ/CIOQ switches cannot adopt a pure FIFO service policy
and Bramson’s result cannot be applied.

III. STABLE LOCAL POLICIES IN NETWORKS OF IQ/CIOQ
SWITCHES

In the following sections we consider two classes of policies,
the first based on Birkhoff-von-Neumann decomposition and
the second on the maximum weight matching algorithm.

A. Birkhoff-von-Neumann based policies

In Theorem 1 we discuss the properties of a generic lo-
cal policy that achieves 100% throughput in a network of
IQ/CIOQ switches. We show that a Birkhoff-von-Neumann
(BvN) decomposition of the workload matrix locally at each
switch is sufficient to achieve 100% throughput. The drawback
of this approach is that it requires the knowledge of the
arrival rates, and this motivates Theorem 2, which shows that
100% throughput can be achieved also by using the BvN
decomposition together with an estimation of the arrival rates.

The following definitions introduce some classes of schedul-
ing policies which we will show to achieve 100% throughput.

Definition 6: Consider a scheduling policy P and a vector
Γ = [γ(i)] of size N such that ||Γ||IO < 1. P is (t0,Γ)-
compliant if, w.p.1, there exists a t0 and a finite F such that
in every temporal window [t, t+F], with t > t0, P guarantees
an average service rate greater than γ(i) to every queue q(i)

that is constantly backlogged 3.
Definition 7: Consider a scheduling policy P and a vector

Γ = [γ(i)] of size N such that ||Γ||IO < 1. P is (t0,Γ)-weak-
compliant if, w.p.1, there exists a t0 and a finite F such that
in every temporal window [t, t+F], with t > t0, P guarantees
an average service rate greater than

∑
k∈L−1(j) γ

(k) to every
queue q̃(j) that is constantly backlogged.

Definition 8: A scheduling policy P is Γ-compliant if it is
(0,Γ)-compliant; it is Γ-weak-compliant if it is (0,Γ)-weak-
compliant.

Theorem 1: Let W be the workload on the network of
switches. Any W -compliant (and (t0,W)-compliant, with t0
finite) scheduling policy guarantees 100% throughput in any
network of IQ/CIOQ switches, whenever the ingress stochastic
processes satisfy the SLLN. The same holds for any W -weak-
compliant (and (t0,W)-weak-compliant) scheduling policy.

We report the proof of this theorem in Appendix I.
The problem to be solved can be summarized in the fol-

lowing way: Do local W -compliant (or (t0,W)-compliant)
scheduling policies exist in networks of IQ/CIOQ switches? If
yes, how can a W -compliant (or (t0,W)-compliant) schedul-
ing policy be constructed?

We can consider two cases: W is known and W is unknown.
Given the knowledge of any admissible workload W , a W -

compliant scheduling policy can be always obtained according
to a BvN decomposition [3], [14]. Indeed, the BvN result states

3More formally, there exists an ε > 0 such that the average service rate is
greater than γ(i) + ε

that any vector W such that ||W ||IO ≤ 1 can be written as a
convex combination of admissible departure vectors, i.e., for
each W with W =

∑
i αiDi with αi ≥ 0 and

∑
αi = 1,

where Di are admissible departure vectors, i.e. ‖Di‖IO ≤ 1.
Thus, given an admissible vector W (i.e., a vector with

||W ||IO < 1), it is always possible to obtain W ′ = W
||W ||IO

,
which can be decomposed in a convex combination of depar-
ture vectors according to the BvN theorem.

A policy that selects, at each time slot, a departure vector
Di according to a Weighted Round-Robin [15] (WRR) with
weights αi can be shown to be W -compliant. Rounding prob-
lems in the case of non rational αi can be made negligible by
choosing a window size F large enough. Note that this WRR-
based policy can be locally implemented if every switch selects
its own departure vector according to a BvN decomposition of
its local traffic. We call this policy W -driven Birkhoff-von-
Neumann (W-BvN) scheduling policy.

However, in this case, vector W must be a-priory known.
Unfortunately, in most applications the workload W is un-
known. Thus, the next question becomes: Is there a way to
locally estimate in a dynamic (on-line) fashion the information
on W ? We provide a positive answer in the next theorem.

Theorem 2: Given any network of IQ/CIOQ switches, a
BvN policy driven by an on-line estimation Ŵn = [ŵ(k)

n] of W
achieves 100% throughput under any admissible traffic pattern
if Ŵn → W w.p.1. This can be obtained if the estimation is
performed according to the rule:

ŵ(k)
n =

1
n

n−1∑

i=0

e
(k)
i (5)

We report the proof of this theorem in Appendix II.
By additivity of the limits, also the on-line estimation of the

arrival rate at the physical queues converges to the workload
of the physical queues. Hence, when the BvN policy is applied
directly on the physical queues, it achieves 100% throughput.

B. Maximum weight matching based policies

The BvN approach still has two drawbacks: i) it requires the
implementation of BvN decomposition at each switch, which
is costly; ii) being the policy insensitive to the queues state,
the delay performance can be poor. Moreover its reaction to
traffic changes can be slow.

It may thus be appealing to devise more reactive local
policies that guarantee 100% throughput. Bearing this goal
in mind, we first investigate MWM scheduling policies. We
wonder if there is a way to assign weights to queues based on
local informations so that any network of IQ/CIOQ switches
achieves 100% throughput under any admissible traffic pattern.
Also in this case the answer is positive.

Theorem 3: A network of IQ/CIOQ switches implementing
a MWM scheduling policy in which the weight φ(k)

n of queue
q(k) at time n is computed as:

φ(k)
n = n − f(d(k)

n)

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

achieves 100% throughput if:

lim
n→∞

f(n)
n

=
1

w(k) w.p.1

We report the proof of this theorem in Appendix III. From
this last result, it is possible to devise a stable local policy,
which is equivalent to the LIN policy proposed in [8]:

Corollary 1: A network of IQ/CIOQ switches implement-
ing a N-OCF (Network Oldest Cell First) scheduling policy,
where the weights are the age of packets inside the network,
achieves 100% throughput.

Proof: Define ā
(k)
n =

∑
m≤n a

(k)
m the cumulative function

of the external arrivals for queue k. ā(k)
n can be viewed as a

function of (discrete) time n, with image set corresponding
to packet ordinal numbers. Call [ā(k)

n]−1 the inverse function,
mapping packet numbers to their (arrival) time slots4. The age
of the p-th packet inside the network observed at time n at
queue k is simply n− [ā(k)

n]−1(p). The age of the p-th packet
at its departure time d

(k)
n is n − [ā(k)

n]−1(d(k)
n). Observe now

that:

lim
p→∞

[ā(k)
n]−1(p)

p
=

1
w(k) w.p.1

because the external arrival process satisfies the SLLN; now
apply Theorem 3.

An interesting corollary of this theorem provides a result
which does not refer to a network of switches, but is an
extension of the one in [3], showing that MWM using age
of cells at the switch as weights achieves 100% throughput
under admissible i.i.d. Bernoulli traffic processes.

Corollary 2: A single switch in isolation implementing
OCF, i.e., a MWM with weights equal to the age of cells
at queue heads, is rate stable when the arrival process is
admissible and satisfies the SLLN.
The proof is immediate, since it is a rephrased version of
Corollary 1, when the network comprises one single switch.

We now propose a scheduling algorithm, called Approximate
Oldest Cell First (A-OCF), that is able to achieve 100%
throughput because of Theorem 3.

A-OCF Algorithm. Recall that physical queue q̃(j), 0 ≤
j < J , comprises the set L−1(j) of logical queues. At time
slot n, the algorithm works in the following way (note that the
algorithm is local to each switch):

1) for each queue q̃(j), 0 ≤ j < J , update the estimate of
the average queue load:

w̃(j)
n =

∑

k∈L−1(j)

ŵ(k)
n

according to new arrivals, using (5);
2) assign a tag g

(j)
p to queue q̃(j); tags are initialized to 0.

If the queue has experienced the departure of the p-th

4Care must be paid in inverting ā
(k)
n : we skip here mathematical details to

improve readability

packet at time n − 1, tags are updated according to the
formula:

g
(j)
p+1 = g(j)

p + 1/w̃(j)
n

3) if queue q̃(j) is non-empty, associate a weight equal to
max(0, n − g(j)); otherwise, its weight is equal to 0;

4) compute the MWM with weights as above, and configure
the switching fabric.

Let us now derive the computational complexity of A-OCF.
Considering the whole network, Steps 1 and 2 require O(J)
operations, Step 3 requires O(J) operations, whereas Step 4
requires O(SP 3) operations, since each MWM costs O(P 3).
Considering the single switch, the previous complexity figures
should be divided by S.

To conclude this section, we report two conjectures, that we
formulate, but we were unable to prove.

Conjecture 1: A network of IQ/CIOQ switches in which
each switch implements a MWM scheduling policy whose
weights are cell ages achieves 100% throughput.

If proved, this can be seen as an extension of Bramson’s
result [13], which proved that every generalized Kelly net-
work [17] of queues, in which each queue implements a FIFO
service policy, is rate stable.

Conjecture 2: A policy in which at each switch the de-
parture vector is made on average proportional to the queue
lengths vector achieves 100% throughput.

IV. STABLE SEMI-LOCAL POLICIES IN NETWORKS OF

CIOQ SWITCHES

We now present a class of semi-local policies for intercon-
nected IQ/CIOQ switches that guarantee 100% throughput.

By semi-local policy we mean a scheduling policy that
requires some form of coordination among the switches in
the network, but a small amount of signaling, since it can
be implemented in a distributed fashion at different switches
on the basis of (dynamic) local information, and of (static)
topological information.

For this purpose, we define the concept of logical-queues
dependency graph:

Definition 9: The logical-queues dependency graph is a
direct graph GD = G(V,E) whose vertexes correspond to
logical queues. A direct edge vi → vj corresponding to queues
qi and qj exists if the state of queue qj depends in some way
the state of qi. In particular, an edge vi → vj exists if:

• qj immediately follows qi on the route of some flow. In
this case packets leaving qi enter qj modifying its state,
thus, the scheduling decision at qi impacts the state of qj .

• qi and qj are conflicting queues, located at the same
switch, and thus the selection of a packet from qi prevents
the selection of a packet from qj .

Note that, if the scheduling policy at the switch in which qi

and qj are located is such that packets from qj are selected
only when qi is empty (strict priority system), then no edge
exists from vj to vi in the dependency graph, since the service
at qi is not affected by the state of qj .

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Although it is easy to observe that, in a generic network of
IQ/CIOQ switches, the logical-queues dependency graph GD

can be cyclic, the following nice property holds when graph
GD is acyclic:

Theorem 4: Given a network of IQ/CIOQ switches satisfy-
ing the following two properties:

1) every switch in the network implements a scheduling
policy that locally guarantees 100% throughput (i.e., that
would guarantee 100% throughput if the switch were
isolated);

2) every switch implements a scheduling policy such that
the logical-queues dependency graph is acyclic;

then the network of switches achieves 100% throughput.
We report the proof of this theorem in Appendix IV.

We must therefore face the problem of designing a schedul-
ing policy that achieves 100% throughput at every switch in
isolation, while keeping acyclic the logical-queues dependency
graph. We partition the logical queues in C sets C(i), with
0 ≤ i < C, where C is the number of packet flows traversing
the network. C(i) comprises all the logical queues storing
packets of the i-th flow in the network. This is called per-
flow partition.

The problem can be transformed in the definition of a
scheduling policy such that: i) logical queues are served ac-
cording to strict priorities depending on the per-flow partition:
queues belonging to set C(i) are given strict priority over
queues belonging to set C(j), with i < j; ii) it locally achieves
100% throughput.

The latter property cannot be obtained with speed-up 1,
since stable local policies rely on the application of a MWM
algorithm whose weights are related to queue lengths or cell
ages, which is incompatible with the defined strict priority
scheme.

However, it is possible to define maximal-size-matching5

(called “mSM”) policies that are compatible with the strict
priority scheme defined above, thanks to the fact that CIOQ
switches with mSM and speed-up 2 were proved to achieve
100% throughput. Thus any network of interconnected CIOQ
switches with speed-up 2 can be made stable if the scheduling
policy implemented at each switch is a mSM, that is compat-
ible with the priority scheme based on the per-flow partition
as defined above.

Since a speedup equal to 2 is adopted, two matchings
are computed at each time slot. Within a single switch, the
algorithm used to compute each matching is called Prioritized
maximal Size Matching (P-mSM):

P-mSM Algorithm. The policy runs through the following
steps:

1) set all the inputs and outputs as unmatched; set k = 0;
2) compute a mSM only among the logical queues belong-

ing to C(k) and set as matched all the input/output pairs
of the matching;

5A maximum matching is one with the highest weight/size, whereas a
maximal matching is a matching to which it is impossible to add edges. A
maximum matching is always maximal, but not viceversa.

3) if any non-empty input (or output) remains unmatched,
increment k by one and repeat from Step 2; otherwise,
stop.

At the end of P-mSM, a maximal matching is computed
among logical queues; this dictates switch configurations. Note
that the P-mSM algorithm can be split in local sub-problems:
the maximality of the matching at a switch guarantees the
maximality of the overall matching. The only non-local infor-
mations required is a unique flow identification; moreover, a
unique agreement is required on the flow priority assignment.

Thanks to Theorem 4 we can state the following:
Corollary 3: Consider a network of CIOQ switches with

speedup 2. P-mSM with per-flow partition achieves 100%
throughput.

In each switch, the complexity of this algorithm is O(CP 2),
since the complexity of an P × P mSM is O(P 2). Unfortu-
nately, complexity grows with the number of flows, which is
unacceptable from a practical point of view.

This motivates us to extend the definition of cyclic depen-
dency graph to devise more practical stable semi-local policies:

Definition 10: A logical-queues dependency graph is semi-
acyclic if, for any cycle (ei1 , ei2 , . . .), all the corresponding
queues (qi1 , qi2 , . . .) belong to the same switch, that is, cycles
are “local” within switches.
Theorem 4 can be extended to:

Theorem 5: Under the same first assumption of Theorem 4,
but with a rephrased second assumption:

2. every switch implements a scheduling policy such that
the logical-queues dependency graph is semi-acyclic;

then the network of switches achieves 100% throughput.
The proof of this theorem is given in Appendix V.

The logical-queues dependency graph can be made semi-
acyclic according to the following per-hop partition. We par-
tition the logical queues in ∆ sets Q(i), with 0 ≤ i < ∆, where
∆ is the maximum number of hops traversed by a packet, i.e.,
the diameter of the network topology. Q(0) contains all the
ingress logical queues; Q(1) contains the queues that follow
some queue in Q(0) along the packets path; in general Q(i)

comprises all the logical queues storing packets at the i-th
hop in the network. The scheduling policy at each switch
gives strict priority to queues in Q(0) with respect to Q(1),
etc. Furthermore, we assume per-flow queueing: each logical
queue can be accessed directly from the scheduler, and a packet
can be enqueued/dequeued to/from a particular logical queue.

Note that the information on the distance expressed in
number of hops from the network ingress point can be obtained
either from the source address if a topological knowledge of
the network is available at the router, or by maintaining a hop
count in packet headers (for example using the time-to-live
field of the IP packet headers).

Thanks to Theorem 5 we can state the following:
Corollary 4: Consider a network of CIOQ switches with

speedup 2. P-mSM with per-hop partition and per-flow queue-
ing achieves 100% throughput.
The complexity of this algorithm is proportional to the number
of maximum hops inside the network.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Note that, from a practical point of view, it is in general
difficult to evaluate the real complexity of the considered
algorithms, which is very dependent on implementation details.
While we assumed a sequential complexity of O(P 3) for
MWM and of O(P 2) for mSM, very efficient hardware im-
plementations have been proposed to compute or approximate
mSM (e.g, WFA [18] and iSLIP [3]).

A possible way to approximate a scheduling algorithm
satisfying the assumptions of Theorem 4 consists of running a
heuristic approximation of MWM with weights corresponding
to logical queue sizes multiplied by coefficients large enough
to mimic the strict-priority scheduling mechanisms that are
required to break cycles in dependency graphs.

A final observation regards the fairness of hierarchical
schedulers with priorities based on packet routing. We do not
deal with this problem in this paper, but we recognize that
priority systems can introduce relevant fairness problems, in
particular when some flows are misbehaved and the traffic is
not admissible.

V. SIMULATION RESULTS

We consider the network of 8 IQ/CIOQ switches depicted
in Fig. 1, in which continuous lines represent links between
switches, and dashed lines represent information flows and
their routing in the network; this network closely resembles
the one studied in [8] to highlight instabilities in networks of
IQ switches.

Note that each pair of switches (all pairs are alike) is
traversed by a locally originated flow, a locally terminating
flow, and an in-transit flow. The cell arrival process at the
source of each flow is Bernoulli, and the normalized arrival
rate for each flow is 0.33.

We compare the performance of the following 4 schemes:
MWM with weights proportional to the queue lengths, A-
OCF, P-mSM with per hop partition and P-mSM with per flow
partition.

Figure 2 is very similar to graphs presented in [8] and
[9], and shows that queue lengths take a divergent oscillating
behavior when a local MWM scheduling is adopted. Queue
lengths cannot be bounded. Figure 2 plots the curves only for
the two switches IQS1 and IQS3, since IQS5 and IQS7 show
almost identical behavior. Queues of IQS2, IQS4, IQS6 and
IQS8 remain very small. The stationary network utilization for
MWM is about 75%, corresponding to a normalized service
rate 0.25 for each flow.

On the contrary, A-OCF and P-mSM with flow/hop partition
show non-divergent behavior of the queues, whose occupancy
remains small and finite; Figure 3 shows the occupancy of
physical queues in IQS1 and IQS3 for A-OCF (very similar
queues occupancy is experienced by both versions of P-mSM).
All the three algorithms achieve the maximum throughput
achievable in the network, i.e. 100% of network utilization.
These results corroborate the results of theorem 3 and corol-
laries 3 and 4.

IQS1 IQS2

IQS6 IQS5

IQS3

IQS4

IQS8

IQS7

Fig. 1. The network of IQ switches considered in our simulation; continuous
lines represent links between switches, and dashed lines represent information
flows.

0

500

1000

1500

2000

2500

3000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Q
ue

ue
 s

iz
e

(p
ac

ke
ts

)

Time (slots)

IQS1
IQS3

Fig. 2. Physical queues occupancy under MWM scheduler for the network
of Figure 1. The two curves correspond to switches IQS1 and IQS3; IQS5
and IQS7 behave almost identically to IQS1 and IQS3. MWM achieves 75%
of network utilization.

VI. CONCLUSIONS

This paper described scheduling policies that are stable in
networks of IQ/CIOQ switches, i.e., they can achieve 100%
throughput for any admissible traffic pattern satisfying the
strong law of large numbers.

When the scheduling algorithm running at each switch
can work only with state information which is local to the
switch, we proposed a stable algorithm based on a Birkhoff-
von Neumann decomposition. This algorithm is stable also
if packet arrival rates are unknown and they are estimated
on-line, using local information. We also proposed a stable
algorithm based on Maximum Weight Matching, which is able
to provide rate guarantees inside a network. A corollary of
these findings is the extension of the results in [4] on the
stability of the Oldest Cell First policy in an isolated IQ/CIOQ
switch. Furthermore, two conjectures are reported which could

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

0

200

400

600

800

1000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Q
ue

ue
 s

iz
e

(p
ac

ke
ts

)

Time (slots)

IQS1
IQS3
IQS5
IQS7

Fig. 3. Physical queues occupancy under A-OCF scheduler for the network
of Figure 1. The curves correspond to the 4 switches IQS1, IQS3, IQS5 and
IQS7. Behavior of P-mSM with both partitions is very similar to A-OCF. All
these algorithms achieve 100% of network utilization.

be an interesting research field for future work.
If the scheduling algorithm can have some limited infor-

mation about the routing of packet flows, we showed that
strict-priority schedulers, based on maximal size matching
algorithms, are stable when speedup 2 is allowed within the
switching fabric.

Although all these results have mainly a theoretical rele-
vance, they can be seen as a solid base to develop practical
algorithms that exhibit reliable throughput properties in very
large networks.

REFERENCES

[1] T.Anderson, S.Owicki, J.Saxe, C.Thacker, “High Speed Switch Schedul-
ing for Local Area Networks”, ACM Transactions on Computer Systems,
Nov.1993, pp. 319-352.

[2] N.McKeown, Scheduling Algorithms for Input-Queued Cell Switches,
Ph.D. Thesis, Un. of California at Berkeley, 1995.

[3] N.McKeown, A.Mekkittikul, V.Anantharam, J.Walrand, “Achieving
100% Throughput in an Input-Queued Switch”, IEEE Transactions on
Communications, vol.47, n.8, Aug.1999, pp. 1260-1272.

[4] J.G.Dai, B.Prabhakar, “The Throughput of Data Switches with and
without Speedup”, IEEE INFOCOM 2000, Tel Aviv, Israel, Mar.2000,
pp.556-564.

[5] N.McKeown, A.Mekkittikul, “A Pratical Scheduling Algorithm to
Achieve 100% Throughput in Input-Queued Switches”, IEEE INFOCOM
98, San Francisco, CA, USA, Apr.1998, pp.792-799.

[6] S.T.Chuang, A.Goel, N.McKeown, B.Prabhakar, “Matching Output
Queuing with Combined Input and Output Queuing”, IEEE Journal on
Selected Areas in Communications, vol.17, n.6, Dec.1999, pp.1030-1039.

[7] E.Leonardi, M.Mellia, F.Neri, M.Ajmone Marsan, “On the Stability
of Input-Queued Switches with Speedup”, IEEE/ACM Transactions on
Networking, vol.9, n.1, Feb.2001, pp.104-118.

[8] M.Andrews, L.Zhang, “Achieving Stability in Networks of Input-Queued
Switches”, INFOCOM 2001, Anchorage, Alaska, Apr.2001, pp.1673-
1679.

[9] M.Ajmone Marsan, E.Leonardi, M.Mellia, F.Neri, “On the Throughput
Achievable by Isolated and Interconnected Input-Queued Switches under
Multicass Traffic”, INFOCOM 2002, New York, NY (USA), June 2002.

[10] J.G.Dai, “Stability of Fluid and Stochastic Processing Networks”, Mis-
cellanea Publication n.9, Centre for Mathematical Physichs and Stochas-
tic, Denmark (http://www.maphysto.dk), Jan.1999.

[11] J.G.Dai, “On Positive Harris Recurrence of Multiclass Queueing Net-
works: a Unified Approach Via Fluid Limit Models”, Annals of Applied
Probability, n.5, pp.49-77, 1995.

[12] F.Baskett, K.M.Chandy, R.R.Muntz, F.Palacios, “Open, Closed and
Mixed Networks with Different Classes of Customers”, Journal of the
ACM, vol.22, n.2, April 1975, pp.248-260.

[13] M.Bramson, “Convergence to Equilibrium for Fluid Models of FIFO
Queueing Networks”, Queueing Systems, vol.22, 1996, pp.5-45.

[14] C.-S.Chang, W.-J.Chen, H.-Yi Huang, “Birkhoff-von Neumann In-
put Buffered Crossbar Switches”, INFOCOM 2000, Tel Aviv, Israel,
Apr.2000, pp.1614-1623.

[15] M.Katevenis, S.Sidiropoulos, C.Courcoubetis, “Weighted Round-Robin
Cell Multiplexing in a General-Purpose ATM Switch Chip”, IEEE
Journal on Selected Areas in Communications, vol.9, n.8 , Oct.1991,
pp.1265-1279.

[16] J.Y. Le Boudec, P. Thiran, “Network Calculus: A Theory of Determin-
istic Queuing Systems for the Internet”, Springer Publishing Company,
Jul.2001.

[17] F.P. Kelly, Reversibility and Stochastic Networks, John Wiley, New York,
1979.

[18] Y. Tamir, H.-C. Chi, “Symmetric Crossbar Arbiters for VLSI Com-
munication Switches”, IEEE Transactions on Parallel and Distributed
Systems, vol.4, n.1, Jan.1993, pp.13-27.

APPENDIX I
PROOF OF THEOREM 1

Proof: To prove the theorem we apply the fluid model
methodology. In [4] the deterministic fluid model of a switch
operating under some matching algorithm has been formally
described. We consider an extension of that fluid model to
a network of switches. Let Π = {π} be the set of all
possible network-wide matchings (which can be viewed as
the composition of S single-switch matchings). The fluid
equations of the system, corresponding to (2), are:

X(t) = X(0) + Λt − D(t)(I − R) (6)

D(t) =
∑

π∈Π

πTπ(t) (7)

∑

π∈Π

Tπ(t) = t (8)

where X(t) ≥ 0, and Tπ(t) is a non-decreasing function giving
the cumulative amount of time that matching π has been used
up to time t. Since W = Λ(I − R)−1,

Ẋ(t) = (W − Ḋ(t))(I − R)

where:

ḋ(k)(t) > w(k) + ε whenever x(k)(t) > 0 (9)

ḋ(k)(t) = ė(k)(t) ≥ w(k) whenever x(k)(t) = 0 (10)

for some ε > 0, due to the W -compliance of the scheduling
policy. Note that in (10) the first equality was proved in [10]
for a general system of queues, whereas the inequality can be
shown as follows: consider the case when all the progenitor
queues of q(k) (i.e., queues that precede q(k) on the same
packet flow) are empty, since the equality in (10) holds for
every progenitor, then ė(k)(t) = w(k). If there are some non
empty progenitor queues then considering the last non empty
progenitor h, and applying (9) it results: ė(k)(t) = ḋ(h)(t) >
w(h) = w(k).

Now consider the Lyapunov function L(X(t)) = X(I −
R)−11IT , where 1I is a vector in IRN whose components
are all equal to 1. Rate stability is guaranteed by a negative

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

drift of Lyapunov function; in other words, if L̇(X(t)) ≤ 0
when L(X(t)) > 0, then X(t) = 0 is the only solution of the
fluid model with initial condition X(0) = 0 and the system of
queues is rate stable.

For every regular point t such that ‖X(t)‖ > 0, we can
estimate the drift of the Lyapunov function:

L̇(X(t)) = Ẋ(t)(I − R)−11IT = (W − Ḋ(t))1IT =

=
∑

k:x(k)(t)>0

[w(k) − ḋ(k)(t)] +
∑

k:x(k)=0

[w(k) − ḋ(k)(t)] ≤

≤ −
∑

k:x(k)(t)>0

ε ≤ −ε (11)

From the latter we can conclude that X(t) = 0 is the only
solution of the fluid model equations under the initial condition
X(0) = 0. Thus the system of queues is rate stable.

Similar proof can be devised to show that also any W -weak-
compliant policy is rate stable.

Note that the proof of this theorem strongly resembles the
proof of Theorem 2.4.9 reported in [10], of which it may be
considered an extension to networks of IQ/CIOQ switches.

APPENDIX II
PROOF OF THEOREM 2

Proof: First we prove the initial part of the theorem,
regarding the BvN decomposition. Let ρ = ||W ||IO. Consider
a sample path of the system evolution for which Ŵn → W .
Since the scheduler follows a BvN approach driven by an on-
line estimation Ŵn, the service rate assured at each queue is:

r(k)
n ≥ ŵ

(k)
n

||Ŵn||IO

Since, by assumption, Ŵn → W w.p.1, then, given a queue
q(k) such that w(k) > 0 and any arbitrary positive ε, there
exists a t0 such that, for any m > t0:

w(k) − ε < ŵ(k)
m < w(k) + ε

Thus, ||Ŵm||IO ≤ ρ + Nε, and:

r(k)
m ≥ ŵ

(k)
m

||Ŵm||IO

≥ w(k) − ε

ρ + Nε

Condition:

r(k)
m ≥ w(k) (12)

is satisfied when:

w(k) − ε ≥ w(k)ρ + w(k)Nε ⇒ ε ≤ w(k)(1 − ρ)
1 + Nw(k)

If we define:

wmax = max
k

{w(k)} wmin = min
k

{w(k) : w(k) > 0}

we can choose

ε =
wmin(1 − ρ)
1 + Nwmax

to satisfy (12) and guarantee that the policy is (t0,W)-
compliant, hence achieving 100% throughput. Since the fluid
limits of the system are not affected by the behavior of
the scheduling policy in a transient phase of finite length,
the previous results can be immediately generalized to W -
compliant policies.

Now we have to prove the second part of the theorem, i.e.,
to show that:

ŵ(k)
n =

1
n

n−1∑

m=0

e(k)
m → w(k) w.p.1.

Since we assume deterministic per-flow routing, it is possi-
ble to partition the set of queues {q(k)} into different sets Q(h),
according to the following rule: Q(i) contains those logical
queues storing packets that have already traversed i switches in
the network. Thus Q(0) contains the queues of packets that just
entered the network, while Q(1) contains the logical queues
that follows those in Q(0) along flow routes.

Since the arrival process satisfies the SLLN,

ŵ(k)
n =

1
n

n−1∑

m=0

e(k)
m → w(k) k ∈ Q(0) w.p.1

thus queues in Q(0) are rate stable. Thanks to the results shown
in the first part of this proof, there exists t0 such that, for
m ≥ t0, r(k)

m ≥ w(k) and:

1
n

n−1∑

m=0

e(k)
m − d(k)

m → 0 k ∈ Q(0) w.p.1

which implies: 1/n
∑n−1

m=0 d
(k)
m → w(k), w.p.1 i.e., the de-

parture processes from queues in Q(0) satisfy the SLLN.
But departure processes from queues in Q(0) are the arrival
processes of queues in Q(1), then the arrival processes to
queues Q(1) satisfy the SLLN. As a consequence also queues
in Q(1) are rate stable. In general, if we assume that queues in
Q(n) are rate stable, then the departure processes from queues
in Q(n) satisfy the SLLN. But as departure processes from
queues in Q(n) are the arrival processes for queues in Q(n+1),
then the arrival processes to queues Q(n+1) satisfy the SLLN.
As a consequence, also queues in Q(n+1) are rate stable. Then,
by mathematical induction, every queue in the network is rate
stable.

APPENDIX III
PROOF OF THEOREM 3

Proof: Consider again the fluid equations (6), (7) and (8).
Since the scheduler realizes a MWM, it is useful to define:

Π′(t) = {π′ : 〈π′,Φ(t)〉 = max
π

〈π,Φ(t)〉} (13)

where 〈v1, v2〉 = v1v
T
2 is the scalar product between the two

vectors v1 and v2; the vector Φ(t) = [φ(k)] collects the weights
of all the logical queues. Hence the fluid equations are:

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

X(t) = X(0) + Λt − D(t)(I − R) (14)

Ḋ(t) =
∑

π∈Π′(t)

πṪπ(t) (15)

∑

π∈Π′(t)

Tπ(t) = t (16)

φ(k)(t) = t − d̄(k)(t)
w(k) (17)

being d̄(k)(t) =
∑

n≤t d
(k)(n) the cumulative number of

services at queue k up to time t, whose fluid limit is D(t). Note
that d̄(k)(t) → ∞ for t → ∞. Equation (17) is obtained by
observing that, for n → ∞, f(n) → n/w(k) and, for t → ∞,

f(d̄(k)(t)) → d̄(k)(t)
w(k)

Note that (17) estimates the average waiting time of HOL cells.
Let Γ = [γ(i,j)] be the diagonal matrix with γ(k,k) = w(k),

and let Γ−1 be inverse of Γ. From (17) we have:

Φ̇(t) = 1I − Ḋ(t)Γ−1 (18)

Consider the Lyapunov function:

V (Φ(t)) =
1
2
〈Φ(t)Γ,Φ(t)〉 (19)

Hence, to prove stability, we want to show that:

d

dt
V (Φ(t)) ≤ 0 (20)

Indeed we have:

d

dt
V (Φ(t)) =

1
2
〈Φ̇(t)Γ,Φ(t)〉 +

1
2
〈Φ(t)Γ, Φ̇(t)〉 =

= 〈Φ̇(t)Γ,Φ(t)〉 = 〈[1I − Ḋ(t)Γ−1]Γ,Φ(t)〉 =

= 〈Γ,Φ(t)〉 − 〈Ḋ(t),Φ(t)〉 =

= 〈Γ,Φ(t)〉 − 〈
∑

π∈Π′(t)

πṪπ(t),Φ(t)〉 =

= 〈Γ,Φ(t)〉 −
∑

π∈Π′(t)

Ṫπ(t)〈π,Φ(t)〉 ≤ 0 (21)

The last inequality holds because: (i) 〈π,Φ(t)〉 is the weight
of the MWM, which depends only on t by (13), (ii) from (16)
it is

∑
π∈Π′(t) Ṫπ(t) = 1, and (iii) Γ belongs to the convex

hull generated by Π.
Thanks to (21), Φ(0) = 0 implies Φ(t) = 0. Hence, from

(17), we can say:

d̄(k)(t)
w(k) = t

lim
t→∞

d̄(k)(t)
t

= w(k) w.p.1

lim
t→∞

D(t)
t

= W

which corresponds to the rate stability conditions for X(t).

APPENDIX IV
PROOF OF THEOREM 4

Proof: This proof is again obtained by means of fluid
models of the network of IQ/CIOQ switches. From (14):

Ẋ(t) = Λ − Ḋ[X](t)(I − R)

where the notation D[X](t) explicitly expresses the fact that
D(t) depends on X(t). In addition:

||D[X](t)||IO ≤ 1

The policy is locally stable, then the functional relation be-
tween D(t) and X(t) is such that, for any admissible Γ with
||Γ||IO < 1, equation:

Ẋ(t) = Γ − Ḋ[X](t) (22)

admits Ẋ(t) = 0 as the only possible solution with initial
condition X(0) = 0.

Let us now establish the following partial ordering rule
among logical queues in the network. Let q(i) and q(j) be
two queues; we say that q(i) < q(j) (i.e q(i) is an “ancestor”
of q(j)) if there exists a directed path on the dependency graph
from q(i) to q(j). Since the graph is acyclic, it can be easily
verified that “<” defines a good partial ordering relation.

Now we partition the queues in the network according to the
following rule (note that this partition is different from the one
used in the proof of Theorem 2): Let V (k) be the k-th partition
of the network of queues. V (0) comprises the queues that do
not have any ancestor according to the ordering relation defines
above. V (1) contains those queues that have all ancestors in
V (0); V (2) comprises those queues that have all ancestors in
V (0) or V (1), etc. Note that, by definition, in any set V (i) there
cannot be two logical queues that refer to the same flow.

Consider now a rate stable policy which is applied only on
queues in V (0). Queues in V (0) are surely stable since:

• Queues in V (0) are fed by network ingress traffic, that
thus satisfy the SLLN; the fluid arrival process to queue
q(k) ∈ V (0) is a constant-rate process with parameter
w(k).

• No queues in V (i) with i > 0 can prevent queues in V (0)

by obtaining service; thus the scheduling policy ignores
queues in V (i) with i > 0 when it allocates service to
queue in V (0).

• If the queues in V (i) with i > 0 are ignored, the set of
queues V (0) corresponds to a system of isolated IQ/CIOQ
switches subject to an admissible process satisfying the
SLLN. Then the fluid evolution for queues in V (0) is
described by:

Ẋ(0)(t) = W (0) − Ḋ(0)[X(0)](t) (23)

||D(0)[X(0)](t)||IO ≤ 1 (24)

where components of X(0), W (0) and D(0)[X(0)], cor-
responding to queues in V (0), are equal to those of
vectors X(t), W and D[X](t) respectively, while the
other components are null.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Note that Equation (23) is structurally identical to the fluid
equation (22); then the only solution corresponding to the null
initial condition is X(0)(t) = 0. All queues in V (0) are rate
stable and the departure process from queues in V (0) must
satisfy the SLLN.

Now, let us focus on queues in V (1); they are fed by other
ingress processes or departure processes of queues in V (0).
Thus the ingress processes to queue V (1) satisfy the SLLN.
Let us consider the fluid model of V (0) and V (1); we know
that queues in V (0) are rate stable, thus x(k)(t) = 0 is the only
solution of fluid model equations with null initial condition for
every queue q(k) ∈ V (0) . As a consequence ḋ(k)(t) = w(k)

for every queue in V (0) and the departure process from queues
in V (0) satisfy the SLLN.

Thus, the fluid evolution of queues in V (0) and V (1) can be
described by:

Ẋ(1)(t) = W (1) − Ḋ(1)[X(1)](t) (25)

||D(1)[X(1)](t)||IO ≤ 1 (26)

where components of X(1), W (1) and D(1)[X(1)], corre-
sponding to queues in V (0) and V (1) are equal to those of
vectors X(t), W and D[X](t) respectively, while the other
components are null.

Then the departure processes from queues in V (1) must
satisfy the SLLN.

By iterating the same argument on all partitions V (i) with
i = 2, 3, . . . in sequence, we obtain that all the queues of the
network are rate stable.

APPENDIX V
PROOF OF THEOREM 5

Proof: The proof of this theorem is carried out in a
way very similar to the proof of Theorem 4. All the major
conceptual steps are repeated.

The only significant difference resides in the fact that, since
the dependency graph contains cycles, we cannot establish the
same partial order relation among logical queues as before.
Thus we have first to divide all the logical queues in equiva-
lence classes, putting in the same class all the logical queues
that belong to the same cycle. Note that queues belonging to
the same equivalence class are, by construction, located at the
same switch, and thus refer to different flows.

Now, neglecting in the dependency graph edges among
queues in the same equivalence class, i.e., imploding in a single
node all the nodes of the dependency graph corresponding to
queues inside the same equivalence class, we can proceed as
in the proof of Theorem 4, defining sets V (k) of equivalence
classes of logical queues. Also in this case set V (k) cannot
contain two queues that belong to the same flow. Moreover
queues in V (0) are fed by ingress traffic, while queues in V (i)

with i > 0 are fed by packets leaving queues in V (i−1). Thus
the same arguments as before apply, and the assert is proved.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

	INFOCOM 2003
	Return to Main Menu

