
Load Balancing and Stability Issues in Algorithms
for Service Composition

Bhaskaran Raman, Randy H. Katz

Abstract— Service composition enables flexible creation of new
services by assembling independent service components. We are
focused on the scenario where such composition takes place
across the wide-area Internet. We envision independent providers
deploying and managing service instances and portal providers
composing them to quickly enable new applications in next-
generation networks.

One of the important goals in such service composition is
load balancing across service instances. While load balancing has
been studied extensively for web-server selection, the presence of
composition presents new challenges. First, each client session
involving composition requires a set of service instances and
not just one server. Second, unlike web-mirror selection, we
also concern ourselves with load balancing in the presence of
failure recovery during a client session. We introduce (a) a
metric to choose the set of service instances for composed client
sessions: the least-inverse-available-capacity (LIAC) metric, as well
as (b) a piggybacking mechanism to give quick feedback about
server load. We then introduce an additional factor in the load
balancing metric to avoid choosing far away service instances.
Our experiments, based on an emulation testbed, show that
our load balancing mechanism works well under a variety of
scenarios including network path failures.

I. INTRODUCTION

Service composition is the process of assembling inde-
pendent, reusable service components to construct a richer
application functionality. In the context of next-generation
networks, with services deployed and managed by independent
providers, composition can enable rapid development of new
applications. We term the set of service components in a partic-
ular composition, along with the network paths in-between as a
service-level path. When service components are deployed by
multiple providers, the service-level path could stretch across
the wide-area Internet, across Internet domains. In the scenario
of Internet-wide deployment, it is important to address issues
of scale, load-balancing across service instances, and stability.

Fig. 1 captures the scenario under consideration. There
are several replicas of different services at multiple Internet
locations. A client session is formed by choosing a specific set
of instances. Our focus is on the mechanisms for dictating this
choice to achieve load balancing across the service replicas.
Load balancing in any distributed system consists of several
components including: (a) a feedback loop between the point
where load is experienced and the point where decisions are
made, and (b) a mechanism to use the feedback to drive future
decisions of where to place load. These have to be designed to
prevent load oscillations and to provide stable behavior under
a variety of conditions.

Although the problem of web-server selection has been re-
searched in the past [1], [2], [3], [4], [5], [6], [7] in the context

of an Internet-wide distributed system, there are several aspects
of service composition that make our work novel. First, we
have to choose a set of service instances to form a service-
level path, and not just a single web-mirror. Second, composed
client sessions could involve real-time media and the session
could last for several minutes to hours. We consider load
balancing in the presence of failures during a session. These
considerations lead to an altogether different architecture and
set of mechanisms for load balancing.

We introduce a metric for choosing a set of service instances
for a composed client session: the least-inverse-available-
capacity (LIAC) metric. This is used to assign costs to edges in
a graph with service replicas at different nodes; the least cost
path in this graph is chosen as the service-level path for the
client. We first try a mechanism for load information dissem-
ination based on periodic updates from the service replicas.
Though this does well, we find that it causes load oscillations.
We then introduce a piggybacking mechanism to update load
information via the service-level path setup messages. This
does not update load globally, but only along the service-level
path, and has little additional overhead. Despite the fact that
piggybacking updates load only along the service-level path,
we find that it can achieve very good load balancing and can
effectively reduce oscillations.

Piggybacking achieves good load balancing across replicas,
but the LIAC metric often chooses far away service instances.
This results in longer service-level paths, and hence in larger
end-to-end latency for the client session. We introduce an
additional factor in our LIAC load balancing metric – this
achieves a good trade-off between length of service-level path
and load balancing between service replicas. We find that
this load balancing metric performs well under a variety of
scenarios, including failure recovery of service-level paths
during a client session.

The rest of the paper is organized as follows. In the
next section, we briefly present the background setting of
our work and the problem statement. We then present our
mechanisms for load balancing in Sec. III. We discuss the load
balancing metric as well as the piggybacking mechanism for
updating load information. Sec. IV presents experiments with
our load balancing mechanism under a variety of scenarios.
Sec. V discusses related work and Sec. VI presents concluding
discussions.

II. BACKGROUND

Service composition uses component services to enable new
applications. The reusability of the independent components

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Exit node
for client session

Service-level path

Alternate path

Service 0
Service 1
Service 2
Service 3
No-op Service

Text
to

Speech

Text-to-speech
engine

GSM
cell-phone

Independent
Service
Components

Independent
Service
Components

Client

Service instances
Service clusters

Overlay network

Two examples of service composition

Thin client

Video-on-demand
serverTranscoder

Email-repository

Fig. 1. Service composition: scenario under consideration

for different compositions gives flexibility. A simple example
of the concept of composition, albeit in a different context, is
that of combining independent programs using Unix piping.
We envision a scenario where independent service providers
deploy and manage their service instances at multiple locations
on the Internet. Other third-party portal providers compose
these for end-users. Two specific examples of composition
are shown in Fig. 1. The first is that of a composition
involving a video-on-demand server and a video transcoder to
enable video on a thin client. The second example composes
a text source such as an email repository with a text-to-
speech conversion engine to read out email to user on her
cell-phone [8]. There are several other composed applications
that we have built in previous work [9]; others are discussed
in [10].

While there are several challenges in the context of service
composition, in this paper we focus on load-balancing across
the replicas of services placed at different Internet locations.
In previous work [8], we have described an architecture for
wide-area service composition. We now give a brief overview
of the architecture to describe the context of the load balancing
issue.

Our architecture is based on a service platform consisting of
several service clusters deployed at different Internet locations
(see Fig. 1). Individual service providers deploy their services
at these service clusters. The service clusters form an overlay
network that enables service composition. The service network
is an overlay in the sense that it is constructed on top of the
IP layer. Each service cluster is thus an overlay node (we use
these terms interchangeably in the rest of the paper). Service-
level paths are constructed by choosing a set of required
service instances and forming a path in the overlay network.

The different kinds of component services at the service
clusters could be content sources (e.g., the video-on-demand
server) or could be data transformation/personalization agents
(e.g., the text-to-speech engine). In addition to these, we also
have “no-op” services that can be instantiated at each service
cluster on demand. An example is shown in Fig. 1. These

no-op services do not change the data in any way and only
provide connectivity. This enables composition of services that
are not necessarily in adjacent clusters of the overlay network.

When a service-level path stretches across service clusters,
the Internet path in-between could span multiple domains
in the wide-area network. An important concern is that of
availability of the service-level path. In [8], we describe how
network path failures can be detected using periodic heart-
beats between service clusters. We recover failed service-level
paths by choosing an alternate service-level path for the client
session.

The construction of the original service-level path as well
as alternate paths for recovery is done at a service cluster that
we term the exit overlay node for the particular client session.
Each client chooses an overlay node that is “close” to it for all
service composition. Data traverses through the overlay nodes
along the service-level path and exits the overlay network at
the “exit” node (see Fig. 1).

All communication and messaging is done at the Cluster
Manager (CM) machine of a service cluster. The CM is
responsible for running the algorithms for selecting the specific
set of service instances needed to setup a composed client
session. Once the set of instances have been chosen, the exit-
node CM sends control messages along the service-level path
to instantiate the services as well as the no-op services as
required.

Since in our architecture, each overlay node is a service
cluster, we focus on load balancing across service clusters.
There has been past research in load balancing across ma-
chines within a cluster [11], [12] and we leverage on this.

Thus, in abstract terms, we have a graph that represents an
overlay network. Each node in the graph has a set of services.
We assume that the set of locations for each kind of service
is known globally (this is similar to the knowledge of the
set of mirrors for a web-site). Paths in the graph have to be
chosen to satisfy “constraints” – a set of services have to be
traversed in a particular order. Client requests can come in at
any graph node (each graph node may be an exit node for

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

a particular set of clients on the Internet). Each service when
instantiated at a graph node, adds a particular value to the load
at the node for the duration of the client session. Each graph
node has a particular capacity with respect to the amount of
load it can handle. This capacity would in practice depend on
the provisioning at the service cluster. We assume that each
machine within the cluster can be used to instantiate any of
the services present at the cluster. That is, there is no per-
service provisioning at the service clusters. (For instance, if a
service cluster has five machines and three kinds of services
“s0”, “s1”, and “s3”, any of the five machines can be used to
instantiate any of the three services).

Service 0 (s0)

Chosen path

Service 1 (s1)

Layer 0

Horizontal edges

Layer 2

Desired exit−node

Layer 1

Vertical edges

Fig. 2. Graph modification for service composition

In the context of programmable networks, a graph algorithm
for constructing paths with intermediate processing sites in
presented in [13]. This algorithm applies the well known
Dijkstra’s algorithm [14] for least-cost computation in a
transformed graph. While [13] presents a generic algorithm,
it does not say what metrics/costs should be used for the
graph edges. In our work, we use the generic algorithm
and graph transformation presented in [13], but we focus
on how the graph edge metrics/costs can be set, as well as
its interaction with load information dissemination. We now
briefly summarize the graph transformation in [13]. Given
the original network graph and the location of the different
services, and a client request involving k intermediate services,
the graph modification consists of replicating the graph k + 1
times. Vertical edges are added at nodes where the required
services are present. A simple example is shown in Fig. 2
where the client requests the composition of two services “s0”
and “s1”. Vertical edges are added between the first two layers
at the nodes where the service “s0” is present; and vertical
edges are added between the bottom two layers at the nodes
where the service “s1” is present. Any path from the top layer
to the exit-node at the bottom layer will thus pass through a
node with service “s0” and then a node with service “s1”.

III. LOAD BALANCING

We now turn to a discussion of the issue of load balancing.
Balancing load is important to ensure overall good perfor-

mance. Periods or regions of overload can result in poor end-
to-end performance of the client session. Or, in case admission
control is used, it could lead to rejection of client requests. The
essential issues with respect to load balancing in a distributed
system include: (a) the design of an appropriate feedback
loop to convey information about load-increase/decrease from
where it happens to where decisions are made (e.g., from
server to the client, or between nodes in a network), and (b)
the mechanism to use this feedback to drive future decisions.

We consider two main factors in the design of the load
balancing mechanism: (i) load variation across replicas as well
as load oscillations over time, and (ii) the length of the service-
level path in the overlay graph – this has to be minimized
since we do not want to choose service instances away from
the client’s exit node.

We now present the design of the feedback loop for load
balancing, and its interaction with the load balancing metric.
In Sec. III-A, we present the least-inverse-available-capacity
(LIAC) metric for choosing a set of service instances for a
service-level path. We study its interaction with a periodic
link-state-based dissemination of load information. In Sec. III-
B, we introduce a piggybacking mechanism for updating load
information along a service-level path as it is being setup. We
address the issue of overall latency and length of the service-
level path in Sec. III-C. We address this by introducing a “no-
op” factor in the LIAC metric.

A. Load balancing: basic mechanism

Our mechanism for load balancing consists of two compo-
nents: (a) mechanism for load information dissemination, and
(b) mechanism to use this load information. To disseminate
load information, we use a simple link-state-based1 approach
where each node periodically floods its load information to
the rest of the network. We need a way to set the costs of
the edges in the transformed graph (Fig. 2), based on the
information about the different nodes’ load. This is so that
the Dijkstra graph computation can then be applied to arrive
at the required service-level path. A metric that is simply the
addition of the current loads at the nodes along a service-
level path is unlikely to perform well. A consideration of the
total capacity and the currently available capacity at a service
cluster (graph node) is important. (The available capacity at a
service cluster is the difference between the maximum load it
can handle and its current load level). We are thus motivated to
think in terms of an inverse function of the available capacity
at a node. We borrow intuition from research in QoS literature.
A metric that is known to work well for choosing network
paths with requisite bandwidth guarantees is the least-distance
metric [15]:

P athCost = Σlink ε path
1

AvlbleBandwidthlink
(1)

The intuition behind this metric is that the cost of using
a particular link is inversely proportional to the bandwidth

1“Link”-state is a misnomer here since what we are flooding is really
“node”-state; i.e., its load.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

available on it currently. That is, the closer to capacity a link
is, the less likely that it will be used. The simulations in [15]
show that this metric can achieve low call blocking rate. This
means that the metric is good at distributing different clients’
data across the links of the network. In our scenario, we are
concerned not just with bandwidth balancing on links, but
more importantly with balancing load across cluster overlay
nodes. This is important since server load often has a greater
effect on the client session “quality”.

Since service instances are central to service composition,
and since we are concerned with server load balancing, we
are motivated to try a metric that is derived from the inverse
of the available capacity at an overlay node:

P athCost = ΣS ε path
1

MaxLoadS − CurrLoadS
(2)

Here, S represents a node on which a particular service is
meant to be instantiated. MaxLoad and CurrLoad represent
the maximum load a particular service cluster overlay node
can take, and its current value, respectively. This metric is
implemented by assigning a cost to each of the vertical edges
in the transformed graph (Fig. 2); this cost is the inverse
of the available capacity at the graph node corresponding to
the vertical edge. We apply the Dijkstra’s algorithm on the
transformed graph with this cost assignment to get a desired
service-level path. (We choose the minimum-cost path from a
node of the top layer to the desired exit node at the bottom
layer). Intuitively, this metric favors overlay nodes that have
the maximum difference between MaxLoad and CurrLoad,
just as Equation 1 favors network links with the maximum
available bandwidth. We term the metric in Equation 2 as the
least-inverse-available-capacity (LIAC) metric.

We are interested in the performance of this metric, and
its interaction with the link-state-based load information dis-
semination. We study this using an emulation platform. We
now present the emulation setup followed by our experimental
results.
The Emulation setup: We have a real implementation of
the algorithms and emulate wide-area latency. Our emulation
platform is the Millennium cluster of workstations [16]. Each
node in this cluster emulates the functionality of one (or in
some of our scaling studies, more than one) overlay node. We
emulate only the cluster manager functionality since we are
interested only in the behavior of the system as represented
by the exchange of signaling messages between the cluster
managers.

We generate the overlay network as follows. We first
generate an underlying physical network using the GT-ITM
package [17], [18]. We then select a random subset of nodes
to represent the location of the overlay network nodes. We
then form the overlay network links by choosing the shortest
paths along the original physical network. The latency on the
overlay links is determined as follows. The GT-ITM package
assigns costs on the edges of the graph it generates. We add up
the edge costs along an overlay link to determine its cost. We

then normalize this so that the maximum (one-way) latency
along an overlay link is 100ms. This forms the base latency
on an overlay link. We then vary the latency between this
base value and twice the base value. The variation is based
on results from a wide-area RTT-study [19]. The details are
not important here since our results do not depend on this; the
interested reader may refer to [8]. (Intuitively, load-balancing
depends on the feedback loop, and not the finer variations in
latency).
Setup for the study of the LIAC metric: For our study of the
behavior of the LIAC metric, we use an emulation setup with a
40-node overlay network, with 119 overlay links. This suffices
for the purpose of studying the LIAC metric now; we consider
larger overlay networks in Section IV. The emulation is set to
run on 40 different nodes of the Millennium testbed. We have
10 different services in the network: “s0”-“s9”. Each overlay
node implements exactly one kind of service (apart from the
special “no-op” service) and there are 4 replicas for each kind
of service. Having four different replicas allows us to study
the load variation across these replicas (we consider different
numbers of service replicas in Section IV). And having ten
different kinds of services ensures that each overlay node has
a service replica.

We setup client sessions at an overall rate of 20 requests/sec,
with each client path session lasting for a duration varying
uniformly between 70 and 90 sec. (Intuitively, a faster arrival
rate of clients would only increase the load variation. The
choice of client session duration is driven by the fact that
we are interested in long-lasting sessions. The nature of
our observations are independent of this parameter – we
verified this in other experiments). The experiment lasts for
400 sec (actually a little longer, including startup time for
the software), with 20 requests/sec × 400 sec = 8, 000
paths being setup totally. The duration of 400 seconds allows
several sets of client sessions lasting 70-90 seconds to be
setup and torn down. This allows us to observe the long-term
behavior of the load variation, and examine load variation over
time. The exit-node for each client session setup is chosen at
random from among the 40 nodes. Each client session requests
a composition of two randomly chosen services. We fix the
link-state update period to be 60 sec. We stipulate that the
load addition due to an instance of each of the 10 kinds of
services is the same: a value of 1. We fix the MaxLoad for
each overlay node to be 2, 5002.

While we have chosen this set of parameters for showing
our results, the nature of the results remain the same with other
parameter settings as well. We hope to convince the reader of
the same as we present the range of scenarios in this section
and the next.
Results: Table I shows the number of client paths which used
each of the four replicas for services “s0”-”s4”. (This number
is the total for the run of the experiment, and not for any
particular instant). We see that this metric does reasonably well

2We experimented with other values of MaxLoad; the qualitative nature
of the observations remain the same.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

in terms of load balancing across the service replicas, but for
some shortcomings. In the case of all the five services shown in
the table, there was one replica that was loaded consistently
less than the others. We explain this below. A plot of the
time-variation of the load across the different replicas is more
informative. Such a plot is shown in Fig. 3 for the replicas of
the service “s0” (the plot for the other services look similar).
The four replicas are placed at graph nodes with IDs 8, 19,
26, and 38. (Graph nodes are numbered 1-40; SCID stands for
service cluster ID – recall that each graph node represents a
service cluster in our architecture). The y-axis represents the
instantaneous load, measured at each 10-second interval, and
the x-axis represents time.

Replica number s0 s1 s2 s3 s4
1 461 440 140 238 493
2 462 170 496 438 226
3 176 499 448 452 494
4 458 470 579 467 369

TABLE I

LOAD DISTRIBUTION ACROSS SERVER REPLICAS

0

50

100

150

200

250

0 60 120 180 240 300 360 420 480

C
P

U
 L

oa
d

Time(sec)

replica 1, scid=8
replica 2, scid=19
replica 3, scid=26
replica 4, scid=38

Fig. 3. Load variation with the load-balancing metric

We observe large variations over time in the load at each
of the four replicas of the service. There are periods when the
load at a service replica increases steadily, and periods when
the load decreases steadily. We also observe that the duration
of these periods of load increase/decrease is about 60 seconds
– the same as the link-state update period. To confirm this
correlation, we re-run the experiment with a link-state update
period of 30 seconds. This plot is shown in Fig. 4. Here again,
we observe that there can be periods as long as 30 seconds
during which the load at a service replica keeps increasing, or
keeps falling.

The fact that the constant load increase/fall duration matches
the link-state update period offers an explanation for the
variation. Although we have requests equally distributed across
all the overlay nodes, load variation happens in-between link-
state updates. If the load increases during a cycle, the link-state
update causes the load to drop during the next cycle, and vice
versa. In short, the feedback loop for carrying load information
is not quick enough to prevent load oscillations.

0

20

40

60

80

100

120

140

160

0 60 120 180 240 300 360 420 480

C
P

U
 L

oa
d

Time(sec)

replica 1, scid=8
replica 2, scid=19
replica 3, scid=26
replica 4, scid=38

Fig. 4. Effect of lower link-state update period

The load variation also offers an explanation for the behav-
ior observed in Table I. The phases of load variation for three
of the replicas happen to be such that, most of the time, there
is one of the three that (seemingly) has a very low load in
comparison to the fourth replica (this fourth replica with low
load in Table I is replica #3 at node 26). This fourth replica
thus get used much lesser than the other three.

B. Piggybacking

In the above experiments, we did not have the load go
beyond a small fraction of MaxLoad. Such a setup allowed
us to study the load variations without pushing the system to
overload. We did run other experiments where we loaded the
system close to its overall capacity, and many of the replicas
experienced periodic overload due to the load variations. Even
if the system is operating well within its overall capacity, if a
part of it gets a lot of client requests all of a sudden, such load
variation, due to lack of a good feedback mechanism, could
cause that part of the system to be driven to overload. The
effect of such overload is application dependent. For some ap-
plications, the new requests may have to be rejected altogether
due to overload, while for others, the overall performance goes
down with overload. In either case, load variations and the
resultant overload conditions are undesirable. We now look at
how load balancing can be achieved.

We now turn to the mechanism for reducing load oscilla-
tions. Two possible approaches are to reduce the link-state
update period, or to have on-demand link-state updates. In
the on-demand approach, we flood the network when there
is “substantial” change in load information since the time of
the previous flood. We reject both of these approaches for
different reasons. Having frequent link-state floods increases
the overhead in the system, especially for larger networks. On
the other hand, having on-demand link-state updates is not
desirable due to the following reason. If and when the system
load increases rapidly, on-demand updates would generate a
lot of link-state updates. That is, we would be adding more to
the system load especially when it is experiencing overload.
This could potentially lead to instability.

Instead of these two approaches, we introduce a mechanism
where we leverage the service-level path setup messages to

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

piggyback load information. The path setup messages traverse
downstream to upstream and an acknowledgment is generated
upstream to downstream. We piggyback load information in
either direction. Each node in the path reads the piggybacked
load information, and adds its own load information to the
message. Note that this mechanism would update load infor-
mation only along a service-level path, and not along the entire
graph (a link-state flood updates load along the entire graph).

0

20

40

60

80

100

120

0 60 120 180 240 300 360 420 480

C
P

U
 L

oa
d

Time(sec)

replica 1, scid=8
replica 2, scid=19
replica 3, scid=26
replica 4, scid=38

Fig. 5. Effect of piggybacking load information

We experiment the performance of this piggybacked load
update mechanism with the same emulation setup as in the
previous sub-section. Fig. 5 shows the load variation across
the same four service replicas as earlier. We observe that the
load across the four replicas follow the same trend at all times
throughout the experiment. The flat region in the graph starts
when we have as many paths timing out as there are new paths
being created – the overall system load level is constant at this
point. This was not apparent in the previous plots due to the
oscillations.

Piggybacking load information only along the portions of
the network on which client paths are setup is thus able to
achieve near-perfect load balancing. Piggybacking has several
nice properties. First, load updates are as frequent as client
path setups, without much additional cost. Hence we can
expect periods of overload (when there are a lot of path setup
requests) to be handled gracefully. In comparison, frequent
or on-demand flooding of load information would have had
a lot of overhead. The second nice property about piggy-
backing is with respect to its handling of “load information
discrepancies” – that is, wrong information about load at
a particular server replica. Such discrepancies happen in a
distributed system since no node can have perfect global
information at any instant. Wrong information could be of
two kinds: underestimate of load, or overestimate. In a system
trying to do load balancing, underestimates are especially bad
since this could cause the portion of the system whose load
is underestimated to be driven to overload (an underestimate
means that the server actually has high load, but everyone
thinks it has low load). With piggybacking, the behavior with
underestimate is good since the moment a client request is
made to the server whose load is underestimated, the feedback
from the load information piggybacked on the path setup

messages would immediately correct the underestimate. That
is, underestimates are inherently short-lived with the use of
piggybacking.

The effects of overestimate are not as bad since it would
simply mean that the replica would remain unused. Piggy-
backing will not help here since the replica remains unused.
However, after a link-state update corrects the load information
discrepancy, since the load at that replica was small to begin
with, it would be used. And since it would be used, the
exit nodes using it for client requests would get piggybacked
load information about the replica. Note that periodic load
information updates cannot be done away with for this reason
– they are required to correct load overestimates.

C. No-op factor

The combination of piggybacking-based load updates with
the LIAC metric performs well so far as load balancing is
concerned. However, it has a bad effect not apparent from the
results presented so far. We observe that the path length in
terms of the number of hops for the service-level path in the
overlay graph is too large. (This path length includes the “no-
op” services in-between the instantiated services). Fig. 6 shows
the CDF of the path length of all the 8,000 paths that were
setup in the experimental run from the previous sub-section.
The plot compares the case where we used a minimum-latency
(ML) metric for path selection, with the case where we used
the LIAC metric. The ML-metric works simply by assigning
the overlay link latency as the metric for path selection.

0

20

40

60

80

100

0 5 10 15 20

C
um

ul
at

iv
e

pe
rc

en
ta

ge

Path length

Min-Lat metric
LIAC metric

Fig. 6. CDF of path lengths: comparison

The load-balancing algorithm performs poorly in terms of
path length since it tries to optimize on the load balancing
and has no factor to discourage the choice of very long
paths. Hence even if a far-away service instance has slightly
smaller load, it is chosen over a nearer service instance.
Higher path length has several bad effects including wasted
network resources (since data travels over a larger portion of
the network), higher end-to-end latency in the client session,
as well as greater probability of experiencing outages.

The minimum-latency metric assigns costs to the horizontal
edges of the transformed graph (Fig. 2), and these costs
correspond to the overlay link latency. (It turns out that in the
overlay graph we generate, although latency and hop-count do

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

not have a perfect correspondence, they have a high degree of
correlation). In contrast, our LIAC metric assigns costs only
to the vertical edges of the transformed graph.

Ideally, we would like to achieve good load balancing, while
at the same time not lose out on path length. However, we note
that there is no easy way of combining the minimum-latency
metric with the LIAC metric since one represents latency and
the other represents the inverse of the available capacity. (In
the language of physics, these have different “dimensions”).

The reason why the LIAC metric ends up with long paths
is that it assigns no cost on the horizontal edges of the
transformed graph. We now introduce a factor to account for
horizontal hops as well. For each horizontal edge, we assign
a cost proportional to the inverse available capacity of the
node “downstream” of the edge (downstream with respect to
the direction of the service-level path towards the client – this
usually represents the direction of data flow towards the client).
The metric is thus:

P athCost = ΣS ε path
1

MaxLoadS − CurrLoadS
+

Σ(D,U) ε path
α

MaxLoadD − CurrLoadD
(3)

Here, (D, U) represents an edge on the service-level path (a
horizontal edge in the transformed graph), from an upstream
node U to a downstream node D. Since this metric is meant
to discourage large path lengths, that is, the use of unneces-
sary no-op services, we term this the least-inverse-available-
capacity metric with the no-op factor (LIAC-NF).

An important feature of the LIAC-NF metric in Equation 3
is the parameter α, which is a fraction less than 1. The
intuition behind this is that we do not want to give as
much weightage to reducing path length, as to balancing load
between replicas. The parameter α can potentially be tuned
to give more weight to optimizing path length versus giving
weight to load balancing. If α is 0, this metric is the same
as the LIAC metric and there is no weightage to reducing
path length. (It is important that the system behavior is not
particularly dependent on the value of α – we study this in
more detail in a Sec. IV-B).

Fig. 7 shows the effect of using the LIAC-NF metric, with
an emulation run similar to the previous ones. It compares
the CDF of the path lengths of the 8,000 paths that were
setup. The comparison is again with a case where we have the
minimum-latency metric for choosing the service instances.
This plot uses a value of α = 0.1. We see that the path
lengths are comparable and in many cases even lesser than the
minimum-latency algorithm. (Recall that the minimum-latency
metric need not achieve the minimum number of hops since
the correlation between hop-count and latency is not perfect).

While the LIAC-NF metric does well in terms of path
length, we also wish to ensure that it does well in terms of load
balancing. Fig. 8 shows the load variation for this case with the
use of the metric in Equation 3. We use a link-state update
period of 60 seconds again. We see that the load variation

0

20

40

60

80

100

0 5 10 15 20

C
um

ul
at

iv
e

pe
rc

en
ta

ge

Path length

Min-Lat metric
LIAC-NF metric

Fig. 7. Comparison of path length CDFs, with α = 0.1

is still very less in comparison to Fig. 3, where we had no
piggybacking. We observe more variations than in Fig. 5 –
the case where we used the LIAC metric, which is the same
as the LIAC-NF metric with α = 0. However, these variations
are small.

0

20

40

60

80

100

120

140

0 60 120 180 240 300 360 420 480

C
P

U
 L

oa
d

Time(sec)

replica 1, scid=8
replica 2, scid=19
replica 3, scid=26
replica 4, scid=38

Fig. 8. Load variation with piggybacking, with no-op factor α = 0.1

IV. BEHAVIOR UNDER OTHER SCENARIOS

In this section, we study the performance of the LIAC-
NF metric and the piggybacking mechanism under a variety
of scenarios. In particular, we consider: (a) uneven load
distribution, where a portion of the network is constantly
loaded more than the rest of the network (Sec. IV-A), (b)
effect of varying α as well as the number of service replicas
in the network (Sec. IV-B), (c) effect of increasing the size of
the network (Sec. IV-C), and finally (d) the behavior of the
system when there is single/double link failure and a large
number of service-level paths are simultaneously recovered
(Sec. IV-D & IV-E).

In all these experiments, we use the LIAC-NF metric, and
incorporate the piggybacking mechanism, in addition to the
periodic link-state update. The link-state update period is
fixed at 60 seconds. Unless mentioned otherwise, we have ten
kinds of services in the network: “s0”-“s9”, and results are
plotted for the replicas of the service “s0” (with the results
for the other services being similar). Also, unless mentioned
otherwise, we use a path setup rate of 20/sec and setup a total
of 8,000 paths.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

A. Effect of uneven load

So far we have not considered the effect of uneven load
distribution in terms of path creation requests coming into
the different overlay nodes. We now introduce uneven load
by having 80% of the path creation requests coming into
20% of the overlay nodes. Fig. 9 shows the load variation
in this scenario. We set α = 0.1. We see that although the
incoming request load is uneven, the LIAC-NF metric and
the piggybacking mechanism are able to achieve good load
balancing across the replicas.

0

20

40

60

80

100

120

140

0 60 120 180 240 300 360 420 480

C
P

U
 L

oa
d

Time(sec)

replica 1, scid=8
replica 2, scid=19
replica 3, scid=26
replica 4, scid=38

Fig. 9. Load variation with uneven incoming load

B. Varying α

The parameter α determines the trade-off between path
length and load-balancing. It is desirable that the system
performs well in terms of both measures (path length, and
load-balancing) for a range of values of α, since then tuning
this parameter would not be an issue. We wish to study the
effect of varying α. Alongside, we also wish to see the effect
of varying the number of services. This is because, intuitively,
the path length is also determined by the availability of close-
by service instances, and in turn by the number of service
replicas in the network.

For these set of experiments, we represent the results in a
more compact form than in the previous plots. For the path
length measure, instead of showing the CDF of the lengths of
all the paths setup, we simply show the average path length.
And instead of showing the load variation over time, we simply
show the ratio of the maximum loaded node and the minimum
loaded node. We call this load-balancing metric as the max-
min-ratio (MMR). Since this might be an extreme measure, we
also show the ratio of the next-to-maximum loaded node and
the next-to-minimum loaded node (note that this might be less
than 1 if we have only two service replicas, and will be exactly
1, if we have three service replicas). We term this metric the
next-to-max-min-ratio (N-MMR). MMR as well as N-MMR
are measured at an instant, and not using the max/min values
of load over the duration of the experiment. The ideal values
for these ratios is 1, when all replicas have the same load. We
show these two ratios as measured at the end of the setup of
8,000 paths, for the case of service “s0”.

Fig. 10 shows the variation of the average path length for
different values of the number of service replicas. Each line
represents a different value of α. We see that except for the
case where α = 0, the path length is comparable for all other
values. The path length reduction by increasing the value of
α by an order of magnitude, from 0.01 to 0.1 is very small.

3

4

5

6

7

8

9

10

2 3 4 5 6

P
at

h
le

ng
th

Number of service replicas

alpha=0
alpha=0.01
alpha=0.02
alpha=0.05

alpha=0.1

Fig. 10. Path length variation with α

0.9

1

1.1

1.2

1.3

1.4

1.5

2 3 4 5 6

M
M

R

Number of service replicas

alpha=0
alpha=0.01
alpha=0.02
alpha=0.05

alpha=0.1

Fig. 11. Max-min-ratio (MMR) for different values of α

0.9

1

1.1

1.2

1.3

1.4

1.5

2 3 4 5 6

N
-M

M
R

Number of service replicas

alpha=0
alpha=0.01
alpha=0.02
alpha=0.05

alpha=0.1

Fig. 12. Next-to-max-min-ratio (N-MMR) for different values of α

Fig. 11 shows the variation of MMR with the number of
service replicas, for different values of α, and Fig. 12 shows
similar plots for N-MMR. We see that for a range of the
number of service replicas, and for different values of α,
the LIAC-NF metric performs well in combination with the
piggybacking mechanism.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

C. Scaling the number of overlay nodes

As the scale of the overlay network grows, the feedback
loop for the load-balancing algorithm has more delay. We
now show the effect of a larger overlay network. We generate
overlay graphs as described earlier, with number of nodes
varying from 40 to 160. In these experiments, we have 20
different kinds of services (“s0”-“s19”), and there are enough
replicas so that each node had exactly one kind of service.
Thus in the 40-node configuration, each service had two
replicas, and in the 160-node case, each service had 8 replicas.
The value of α was fixed at 0.02 for all these experiments. The
rate of client path request arrival as well as the number of paths
created are proportional to the number of overlay nodes. For
the 40-node network, the rate of request arrival was 80/sec
and the number of paths 10,000. For the 160-node network,
these were 320/sec, and 40,000.

We again show MMR and N-MMR as in the previous sub-
section. Instead of showing these for a single service “s0”, we
show it averaged across all the 20 kinds of services “s0”-“s19”.
Fig. 13 shows the two ratios as a function of the number of
overlay nodes. Fig. 14 shows the path length as a function of
the number of overlay nodes.

We see that with a larger overlay size, the load variation
shows an increase, but only a small increase. The MMR
measure has an average value of around 1.4, and the N-MMR
measure metric has an average value of around 1.2, even in the
case of 8 service replicas in the 160-node network. The path
length remains more or less the same with increasing overlay
size since we have the number of service replicas proportional
to the overlay size.

0.6

0.8

1

1.2

1.4

1.6

1.8

20 40 60 80 100 120 140 160 180

M
M

R
, N

-M
M

R

Number of nodes in overlay

MMR, even load
N-MMR, even load
MMR, uneven load

N-MMR, uneven load

Fig. 13. MMR, N-MMR for different overlay sizes

D. Load balancing and failures

One of the primary goals of our architecture is the recovery
of client path sessions on network failure. In [8], we studied
the detection of failures, and recovery using alternate service
replicas. We considered end-to-end recovery, where an alto-
gether new path is established for each failed client session
after an overlay link failure is detected. One of the concerns
with path recovery is that a large number of client sessions may
have to be restored when an overlay link fails. It is important
that this process of restoration does not overload any particular

3

3.5

4

4.5

5

5.5

6

20 40 60 80 100 120 140 160 180

A
ve

ra
ge

 p
at

h
le

ng
th

Number of nodes in overlay

Even load
Uneven load

Fig. 14. Path length for different overlay sizes

service replica. Here we study the behavior of our mechanism
when a large number of client sessions have to be restored.

We use an 80-node configuration for this experiment. The
network has ten kinds of services (“s0”-“s9”), each with four
replicas. The path creation rate is 80/sec, and the total number
of paths created in the duration of the experiment is 20,000. As
client path sessions are setup and torn down, we introduce a
deterministic failure in the overlay link that has the maximum
number of client paths traversing it. The failed link is between
nodes 12 and 20, and the failure happens around 243 seconds
into the experiment. A total of 595 paths are recovered.

400

450

500

550

600

650

700

750

800

220 240 260 280

C
P

U
 L

oa
d

Time(sec)

replica 1, scid=20
replica 2, scid=56
replica 3, scid=34
replica 4, scid=10

Fig. 15. Load variation under failure/recovery: s8

400

450

500

550

600

650

700

750

800

220 240 260 280

C
P

U
 L

oa
d

Time(sec)

replica 1, scid=21
replica 2, scid=79

replica 3, scid=5
replica 4, scid=8

Fig. 16. Load variation under failure/recovery: s0

We show the load variation for two different services: one

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

for which one of the replicas is present at a node that is at
one end of the failed link, and the other for which none of the
replicas are present at either end of the failed link. We choose
services “s8” and “s0” respectively: the service “s8” has one
of its replicas at node 20. Fig. 15 shows the load variation for
the service “s8” and Fig. 16 shows the case of “s0”. While
we show the plots only for the services “s8” and “s0”, the
behavior for the other services are the same.

We make two observations: (1) In the case of “s8”, as well
as for “s0”, the load for one of the replicas temporarily goes
below the other three, and it catches up in a short period of
time (20-30 sec), (2) The difference between the loads of the
three replicas (that get used more), and the load of the single
replica (that gets used less), is much more in the case of “s8”
than for “s0”.

The reason for the split in the load is the following. The
entire set of paths that fail undergo recovery within about 1.5-
2 seconds [8]. This is simply the signaling time for the setup of
the alternate paths. Our piggybacking mechanism’s feedback
loop is not fast enough to react within this short period of
time for the simple reason that the feedback loop itself takes
the same time as the (alternate) path creation. The load of the
replica that falls below the other three catches up over time
since future client requests use this replica. The explanation
for the larger difference in the case of “s8” is simply that in
the case of node 20, a larger fraction of its service-level paths
undergo failure recovery, since it is closer to the failure, than
the case of the replicas of service “s0”.

E. Simultaneous failures

We now show the effect of simultaneous failures on the
load variation. The setup is similar to that in the previous
sub-section except that we fail two of the most loaded overlay
links this time: the one between nodes 56 and 58, and the one
between nodes 29 and 35. There are a total of 1205 client
paths that undergo recovery. The failures happen at around
247 seconds into the experiment. Fig. 17 and Fig. 18 show
the load variation across the four replicas of “s5” and “s0”
respectively, as a function of time. The service “s5” has a
replica on node 35 (one of the ends of one of the failed links),
while “s0” has no replica on any of the four nodes involved
in the link failures.

500

550

600

650

700

750

800

220 240 260 280

C
P

U
 L

oa
d

Time(sec)

replica 1, scid=35
replica 2, scid=3

replica 3, scid=54
replica 4, scid=32

Fig. 17. Load variation under simultaneous failure/recovery: s5

500

550

600

650

700

750

800

220 240 260 280

C
P

U
 L

oa
d

Time(sec)

replica 1, scid=21
replica 2, scid=79

replica 3, scid=5
replica 4, scid=8

Fig. 18. Load variation under simultaneous failure/recovery: s0

The same two observations that we made in the previous
subsection are valid here too: (1) one of the replicas is left
behind during the load increase, and (2) the difference is larger
in the case of the service with a replica close to the failure.
The explanation for these remains the same too. One difference
between Fig. 15 and Fig. 17 that can be observed is that the
load at the replica that gets left behind remains flat for a longer
time in Fig. 17 than in Fig. 15. A look at the plots for the other
services (from the 20 services “s0”-”s19”) for the experiment
in the previous subsection as well as for the experiment here
reveals that such variations in finer behavior do exist across the
different services. Specifically, the difference between Fig. 15
and Fig. 17 is not due to the double-link failure in Fig. 17.

This difference is due to an implementation artifact – we
tear-down a service-level path of a client session at its exit
node immediately after switching the session to an alternate
path (in case of failure). This causes the exit node to decrement
its load immediately. But, the tear-down and the corresponding
load decrement happen after a period of time (about 8 sec
in our implementation) at the other upstream nodes. In the
case of Fig. 15, node 20 happens to be an exit node for a
larger fraction of the failed paths, whereas in Fig. 17, node
35 was an exit node for a smaller fraction of the failed paths.
Hence the load for node 35 falls a little later. While we did
observe such finer variations in the nature of the plots for the
20 different services, due to the dynamics of the system, the
two observations that we made in the previous sub-section are
valid across all the 20 services.

V. RELATED WORK

The issue of load balancing among server replicas has been
considered in past work. The mechanism for the intelligent
redirection of client requests to machines within a cluster [12],
as well as mechanisms for the choice among wide-area dis-
tributed replicas have been studied. Several mechanisms have
been proposed for load balancing of distributed web-server
systems [1]. These include client-based approaches [2], [3],
[4], DNS-based approaches [5], [6], as well as dispatcher-
based approaches [7]. Service composition involves at least
two novel aspects that pose new challenges. First, unlike web-
mirror selection, we have to choose a set of service instances

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

for each client. Second, we consider failure detection and
recovery of composed service in the middle of a long-lived
session. These lead to a consideration of a fundamentally
different architecture that consists of an overlay network
of service clusters over which services are composed. Our
architecture, the use of metric-based choice of service-level
paths, and the piggybacking mechanism distinguish our work
from previous research on web-server selection.

Path selection in a network has been studied in QoS
literature [15]: clients request bandwidth between two points
in the network and the goal is to minimize call blocking rate.
The least-distance metric is known to perform well in this
context [15]. While the problem considered in [15] is quite
different, we borrow intuition for the LIAC metric from this.
Our use of the piggybacking mechanism is novel. Also, we
have considered behavior under failure recovery, while this has
not been considered in [15]. In the context of MPLS, failure
recovery has been considered in path selection [20], but it uses
pre-allocation and not dynamic path selection as in our case.
Our work also differs from these in that we have considered
“constrained” path selection – paths with intermediate services
in them.

An algorithm for the construction of paths with intermediate
services is presented in [13], albeit in a different context. We
leverage this in our work, and address the important aspects
of setting the costs for the transformed graph in the algorithm
to reflect load at the service replicas. We also study the
interaction with the load information propagation mechanism
(link-state updates and the piggybacking mechanism).

VI. SUMMARY AND CONCLUSIONS

Service composition is a way to enable flexible creation of
new services through the use of existing service components.
In this paper, we have looked at the important issue of load bal-
ancing among service replicas in the context of composition.
Service composition offers new challenges over traditional
web-server selection since a set of instances have to be chosen
for each client session, and since we are also concerned with
failure detection and recovery during a client session. This
leads to an altogether different architecture than the case of
web-mirror replicas. We have an overlay network of service
cluster execution platforms that participate in composition,
load-balancing among themselves, and failure recovery.

We introduce the least-inverse-available-capacity (LIAC)
metric for choosing service instances, as well as a piggy-
backing mechanism for quick feedback about server load.
Piggybacking has several nice properties including low over-
head, and an inherent mechanism to quickly correct load
underestimates. We then introduce the no-op factor in the
LIAC metric to avoid choosing far away service instances. We
find through emulation experiments that the LIAC-NF metric
combined with the piggybacking mechanism can perform well
both in terms of load balancing and service-level path length
in a variety of scenarios including single/double link failures.

There are several other scenarios that we have not consid-
ered and deserve further exploration. First is the issue of scale

of the overlay network. Our graph algorithm is based on the
Dijkstra’s algorithm and takes O(E × log(N) time, where E
is the number of edges in the network, and N is the number of
nodes. In practice, for a few thousand node graph, this could
translate to about 50ms on a commodity PC [8]. To address
this, one can think of maintaining an “active” set of close-by
replicas for each service, and hence not consider the entire
graph. This merits further study. Another issue relates to the
behavior of the piggybacking mechanism in the presence of
failure recovery of service-level paths. It would be interesting
to explore the usefulness of artificially delaying the recovery of
a fraction of the paths. The fraction of failed paths that recover
immediately would provide piggybacked feedback of current
load at the different replicas. This could avoid the temporary
load variation that happens during failure recovery.

Acknowledgments: We thank Lakshminarayanan Subrama-
nian, Kameswari Chebrolu, Adam Costello, Sridhar Machiraju,
and the anonymous reviewers for their comments on earlier
versions of this paper.

REFERENCES

[1] V. Cardellini, M. Colajanni, and P. S. Yu, “Dynamic Load Balancing on
Web-Server Systems,” IEEE Internet Computing, May/Jun 1999.

[2] C. Yoshikawa et al., “Using Smart Clients to Build Scalable Services,”
in Usenix, Jan 1997.

[3] M. Baentsch, L. Baum, and G. Molter, “Enhancing the Web’s Infrastruc-
ture: From Caching to Replication,” IEEE Internet Computing, Mar-Apr
1997.

[4] S. Seshan, M. Stemm, and R. H. Katz, “SPAND: Shared Passive
Network Performance Discovery,” in USITS, Dec 1997.

[5] T. T. Kwan, R. E. McGrath, and D. A. Reed, “NCSA’s World Wide Web
Server: Design and Performance,” IEEE Computer, Nov 1995.

[6] A. Singhai, S. B. Lim, and S. R. Radia, “The SunSCALR Framework
for Internet Servers,” in IEEE Fault-Tolerant Computing Systems, Jun
1998.

[7] G. D. H. Hunt et al., “Network Dispatcher: A Connection Router for
Scalable Internet Services,” Computer Networks and ISDN Systems,
1998.

[8] B. Raman and R. H. Katz, “Emulation-based Evaluation of an Archi-
tecture for Wide-Area Service Composition,” in SPECTS, Jul 2002.

[9] B. Raman, R. H. Katz, and A. D. Joseph, “Universal Inbox: Providing
Extensible Personal Mobility and Service Mobility in an Integrated
Communication Network,” in WMCSA, Dec 2000.

[10] A. Beck, M. Hofmann, and M. Condry, Example Services for Network
Edge Proxies, Internet Draft, Nov 2000.

[11] A. Fox, “A Framework for Separating Server Scalability and Avail-
ability from Internet Application Functionality,” Ph.D. dissertation,
U.C.Berkeley, 1998.

[12] V. S. Pai et al., “Locality-Aware Request Distribution in Cluster-Based
Network Servers,” in ASPLOS, Oct 1998.

[13] S. Choi, J. Turner, and T. Wolf, “Configuring Sessions in Programmable
Networks,” in IEEE INFOCOM, Apr 2001.

[14] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. McGraw-Hill, 1992, ch. 25, pp. 527–532.

[15] Q. Ma and P. Steenkiste, “On Path Selection for Traffic with Bandwidth
Guarantees,” in ICNP, Oct 1997.

[16] Millennium, http://www.millennium.berkeley.edu/.
[17] “Modeling Topology of Large Internetworks,”

http://www.cc.gatech.edu/fac/Ellen.Zegura/graphs.html.
[18] E. W. Zegura, K. Calvert, and S. Bhattacharjee, “How to Model an

Internetwork,” in IEEE INFOCOM, Apr 1996.
[19] A. Acharya and J. Saltz, “A Study of Internet Round-Trip Delay,” Uni-

versity of Maryland, College Park, Tech. Rep. CS-TR 3736, UMIACS-
TR 96-97, 1996-97.

[20] M. S. Kodialam and T. V. Lakshman, “Dynamic Routing of Bandwidth
Guaranteed Tunnels with Restoration,” in IEEE INFOCOM, Mar 2000.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

	INFOCOM 2003
	Return to Main Menu

