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Abstract— Efficient bandwidth allocation strategy with si-
multaneous fulfillment of QoS requirement of a user in a mobile
cellular network is still a critical and an important practical issue.
We explore the problem of finding the reservation schedue that
would minimize the amount of time for which bandwidth has to
be allocated in a cell while meeting the QoS constraint. With the
knowledge about the the arrival and residence time distribution of
a user in a cell, the above problem can be optimally solved using
a dynamic programming based approach in polynomial time. To be
able to use the solution, we provide a mechanism for constructing
the arrival/residence time distribution based on the measurement of
hand-off events in a cell. The above solution allows us to propose
an optimal time based bandwidth reservation and call admission
scheme. By being scalable and distributed, the proposed scheme
justifies for practical implementation. Simulations results are also
presented to show the effectiveness of the scheme to achieve the
target QoS level and optimal bandwidth utilization.

Index Terms— Cellular Networks, Mobility, Reservation, Op-
timization

I. INTRODUCTION

A. Background

The new upcoming wireless infrastructures such as 3G
and 4G are deemed to support broad band data applications
and new services. The expected services will also include mul-
timedia applications that need real time guarantees. To meet
the requirements of the above applications the service providers
ought to adopt some form of a reservation scheme or a service
differentiation to support high quality of service, and at the same
time extract high utilization from the network resources.

In a cellular network, a mobile user may visit different
cells in his lifetime. In each of these cells, resources must be
made available to support the mobile user else the user will
suffer a forced termination of his call in progress. Therefore,
careful resource allocation along with call admission control is
required to mitigate the chances of forced termination or dropping
of a call. Due to the uncertainty imposed by the mobility of the
user, it is considered impractical from the utilization stand point
to completely eliminate the chances of dropping a call. Thus,
keeping the probability of a user getting dropped (Pdrop) below
a pre-specified target value is considered as a practical design
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goal of any resource allocation scheme. Achieving the above goal
provides the probablistic quality of service (QoS) guarantee as
desired by a mobile user. However, from a network providers
stand point, with a fixed given cell capacity, the objective is
to extract high utilization by minimizing the overall resources
allocated for a user. In a reservation based framework, the overall
resources allocated per user has two principal components: the
spatial resources and the temporal resources. Minimizing the
spatial resources requires reducing the number of cells where
bandwidth needs to be reserved and can be done based on
considering either apriori knowledge or prediction about users
future movement pattern. Based on this consideration, several
schemes have been proposed that uses mobility profile [1], [2],
[3], direction prediction [4], knowledge about possible geographic
routes with the help of ITS Navigation system [5], [6] etc. The
objective of most of these schemes is to select the cells where
bandwidth reservation need to be made.

Temporal resources on the other hand refers to the amount
of time the resources are reserved in these selected cells and
expressed in terms of the time-bandwidth product. For example,
if a connection reserves B bandwidth units for t units of time
in cell s, then B ∗ t amount of resources gets used on behalf of
the connection in cell s. Clearly, minimizing the time-bandwidth
product per user in each cell should also be an objective of any
reservation scheme. However, to maintain the QoS, minimization
of the time-bandwidth product must meet the drop probability
requirement of a connection.

Although in future, it may be possible for a user to provide
exact information about the cells he is likely to visit, it may be still
difficult for the same user to provide apriori information about
when he may visit these cells and how long he is going to stay in
each cell. Consequently, with the uncertainty about the temporal
aspects in users mobility behaviour, it becomes a challenging
task to minimize the time for which bandwidth reservation must
be held in the cells for the user. To this end, our focus here
is to explore the use of time aspects in users mobility towards
minimizing the temporal resources allocated for a user subject to
meeting QoS constraint on drop probability.
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B. Related work and motivation

Majority of the earlier research in the area of resource
allocation was based purely on call admission control without
keeping any reservation states. These schemes such as in [7], [8],
[9], [10], [11] were mostly based on either dynamical or statical
prediction of the steady state distribution of users’ demand in
different cells. In contrast, in the recent past, several schemes
based on keeping reservation states and per user monitoring were
proposed in [1], [4], [3], [12] and found to perform better than
the above schemes based on simulation experiments presented in
[13]. Some of these reservation based scheme such as in [1] were
just based on estimating spatial per user resource demand while
others as in [4], [3], [12] also included the time aspects in users’
demands in their scheme.

It is worth mentioning that most of the allocations schemes
were based on predicting per/aggregate user demand and, employ-
ing it to provide QoS through call admission control with/without
reservation states. However, the problem of minimizing the allo-
cated resources to meet the drop probability constraint has not
been considered in the existing schemes. In essence, majority of
the allocation schemes are parametric in nature, in the sense that
these schemes provide a parameter which can be used to obtain
a particular level of QoS(drop probability) while trading-off
utilization. Futhermore, in explicit reservation based approaches
where bandwidth is simply reserved in cells, the problem of time
management of the bandwidth resources has not received attention
in the existing literature. Time management of resources leads
us to a range of following questions: How long do we reserve
resources in any given cell? Can we minimize the length of the
reservation in time by using any mobility related information?
Can the input QoS parameter such as drop probability be realized
using reservation in time domain? How does users mobility
behaviours affects the resource allocation in time? Focus of this
work is trying to understand and answer these questions.

C. Contributions

The main contribution of our work is to develop an optimal
scheme for resource allocation that finds a reservation schedule
which minimizes the amount of time resources gets reserved in a
cell. In order to do so, we cast the resource minimization problem
meeting the drop probability as a optimization problem, and adopt
a dynamic programming based approach to solve the problem
optimally in polynomial time. Our solution to this problem only
needs to know the probability of arrival, the arrival and the
residence time probability distribution of users in a given cell
based on the a very general assumption that the above distribution
follows a stationary stochastic process (a necessary condition for
predicting resource demand under any circumstances). Finally, to
apply the solution to practical situations, we develop a scheme
for constructing the arrival/residence time distribution based on
the measurements of hand-off events and propose a time based
reservation framework to enable the optimal resource allocation.
Our proposed scheme is scalable by not keeping any per user

x

× × × × × ×
Time →×: slots with bandwidth reserved

i j

Fig. 1. Bandwidth reservation at cell j in space and time

states and does not rely on remote cell query or messaging
except at the time of reservation set-up. We further provide an
extensive set of simulation results that lets us understand how the
different mobility behaviour affect the bandwidth reservation in
time and show the performance of the scheme under inaccurate
arrival/residence probability distribution of users.

D. Organization of the paper

The rest of the paper is organized as follows. In the next
section, we discuss the issues of resource allocation particularly
focussing on allocation in time domain and finally formulating
the optimization problem. In section 3, we present the algorithm
for obtaining the solution to the optimization problem. We present
a scheme for constructing the arrival/residence time distribution
in section 4. We present our proposed time-based reservation
framework in section 5. Simulation results are presented in section
6. Finally the the main conclusion is drawn in section 7.

II. RESOURCE ALLOCATION IN SPACE AND TIME

In this section, first we describe system model of a cellular
system with bandwidth reservation. We then discuss in general
sense the resource allocation problem finally focussing on the
problem of allocation in time domain.

In a cellular network, let cell i be the current location
of the mobile user x as shown in figure [1]. Let C be the
set of cells where mobile user x requests to reserve resources
D(x) as shown by shaded region in figure [1]. D(x) refers
to the effective bandwidth [14], [15], [16] requirement of the
user computed based on users individual requirement regarding
channel quality, delay requirements etc. The set of cells C
correspond to the spatial component of the resources that maybe
reserved on behalf of the user. Minimizing the number of cells
in C will therefore constitute an objective towards increasing
overall utilization. Selection of these cells for reservation must
consider predicting users’ mobility profile, direction, velocity and
call duration. Reservation of bandwidth in multiple cells at call
set-up is discussed further in [17]. Once the cells in C have been
identified, the next important step would be to find how to reserve
the bandwidth over time in each of these cells in C. For simplicity,
let us assume that the time is divided into integer slots and that
bandwidth is reserved on slot basis in a given cell. Consider a
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Fig. 2. Reservation in slots in the relative time frame

single cell j in C, a particular case of reservation over time is
shown in figure [1]. If nj refers to the total number of slots
where resources needs to be reserved in cell j ∈ C, then total
bandwidth resources reserved for the given user x is given by
R(x) =

∑
j∈C D(x)×nj . Thus, minimizing R(x) should be the

goal of any resource reservation scheme.

A. Allocation problem in time domain

The allocation problem in time domain relates to finding
the exact reservation schedule for a given user in each cell j ∈
C. By reservation schedule, we refer to the time slots where
bandwidth needs to reserved on behalf of the user. A reservation
schedule for a given user x is derived from a Reservation vector
B which is defined as follows.
Definition : A reservation vector Bx

j is a binary vector of length
N where the ith position refers to the ith time slot in relative
time frame where slot 0 refers to the current time t0. Bx

j [i] = 1
implies that resource is reserved in the ith time slot and Bx

j [i] = 0
implies otherwise.

The concept of relative time frame is shown in figure [2].
As shown, a reservation request made by user x currently at cell
i to cell j at time ti is mapped to the slot index 0 in the relative
time frame. In general, if tmax be the maximum call duration of a
user, in that case, ti + tmax is mapped to slot index N 1. N refers
to the number of slots corresponding the maximum call duration.
Therefore, the reservation vector Bx

j denotes the the time window
of reservation for user x in cell j. A reservation schedule L for a
user x refers to the set of slots where L = {i |Bx

j [i] = 1}. Figure
[2] shows a request that arrives at current time ti for reservation
from ti to ti + t and the corresponding reservation vector Bx

j .
The figure also shows the slots in the real time domain in cell j
where the resources must reserved.

Our objective here is to find the reservation schedule
for a given cell j that would minimize the number of slots nj

and meet the drop probability requirement of the user x. We
therefore show two scenarios where the reservation schedule
maybe computed.

Ideal Case: In the ideal situation, the exact mobility
profile of the user x may be known apriori at call set-up time.

1There is no reason to keep a reservation state beyond the call duration time
in any cell
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Fig. 3. Ideal scenario of bandwidth reservation in time

An exact mobility profile would consist of the cells that the
user is going to visit along with the exact time of arrival and
departure in each of these cells (fig. [3]). In such a case finding
the reservation vector is trivial and is shown in figure 3 for each
cell.

Real-life Case: In the practical situation, such an exact
mobility profile for a given user may not be assumed to be known
at call set-up time. However, a more realistic mobility profile of
a user that may be known apriori can be characterized in the
following probabilistic terms.

• Probability of Arrival (px,j): In a realistic scenario, user x
may not visit all the cells in C in his call duration. Instead,
the user will have a probability of arriving at a cell j ∈ C
denoted by px,j .

• Arrival time probability density function (fx,j
a (.)): Al-

though the exact time of arrival for user x at cell j may not
be known apriori, but one can assume that the arrival time
of the user is likely to follow a stationary distribution. In
other words, the user may arrive in different time slots with
different probabilities. To express the above characterization,
we define the random variable Xa = k of lattice type as the
outcome that a user has arrived at the kth slot in a given cell
j. Given the statistics of Xa, we can define fx,j

a (Xa) as the
corresponding arrival time probability density function(pdf)
of user x in cell j. fa(Xa) is a discrete function with the
property that

∑N
0 fx,j

a (Xa) = 1.
• Residence time probability density function (fx,j

r (.))
Similar to the arrival time, the residence time of a user x
can expressed in terms of the probability density function.
We therefore define the random variable Xr = n as outcome
that user x departs the cell j at the nth time slot. fx,j

r (Xr)
thus denotes the corresponding discrete residence time pdf
for Xr.

The probability of arrival along with the arrival/residence
pdf constitutes the probabilistic mobility profile (PMF) of a user
x. At this point, we assume that such a PMF for an user is known
to us and discuss importance and usability of it in finding the
reservation schedule. We defer the construction of the PMF to
section 4. For the time being let us assume that px,j = 1 and
discuss the issues in finding the reservation schedule based on
the arrival/residence pdf through the following example.
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B. An Example

Figure 4(a) shows a user x currently at cell i and can arrive
at cell j in two different paths. The arrival time at cell j along
each path is uniformly distributed and the resulting the arrival
time pdf shown in figure 4(b). Similarly the residence time is
also uniformly distributed as shown in figure 4(c). Based on the
given pdfs, we consider the following cases of finding reservation
schedule.

• Case A: Since the earliest and latest arrival time for fig. 4(b)
is t1 and t4 respectively and also the latest departure time is
tr, resources can be reserved simply from slot corresponding
to t1 to slot corresponding to t4+tr. as shown in figure 5(a).
In that case user will be guaranteed availability of bandwidth
and we note that nj = 8 [fig. 5(a)].

• Case B: Another possibility maybe to reserve bandwidth
from the mean arrival time till latest departure time as shown
in figure 5(b). In that case although nj is greatly reduced but
about half of the users coming between time [t1:t2] will be
dropped. Obviously this is not a practical possibility.

• Case C: Here we take a closer look at arrival pdf and based
on its nature find the allocation slots. From figure 5(c) we
see that there is no point in allocating in the slot 4 where
there is no chance for a user to stay.

Although in case C, we were able to identify slots where
probability of a user staying is zero but such case may not exist
for most arrival/residence time pdfs. In a general case, for every
slot there might some nonzero probability for a user to stay. Under
such a case how do we find the right slots to reserve? We cannot
simply use a strategy of excluding slots for allocation with zero
probability of users staying. Also in above cases A,C we tried to
obtain a drop probability of zero. But what will be the reservation
schedule if the required drop probability is not zero but some
value greater than zero. Therefore it is difficult to find out the
right reservation schedule that will assure a level of QoS(drop
probability) along with minimizing the allocated slots. In the next
section we provide a formal specification of the problem.

C. Problem Statement

In order to provide a certain bound on the drop probability
to a given user during his visit to cell j, one must allocate
bandwidth over the time slots. Our goal here is to minimize
the number of slots nj in a given cell j where the bandwidth
must be reserved to meet the constraint on the drop probability.
Therefore, we need to relate the drop probability to the slots where
bandwidth is reserved for the user. In order to do so, we define
a projection vector P for a given the reservation vector Bx

j .
Definition : A projection vector is a binary vector of lenght

N denoted as P [0 . . . N ] where P [i] is defined as follows.

P [i] = 0 IF Bx
j [i] = 0

P [i] = k IF ∀ j = i . . . i+ k − 1, Bx
j [j] = 1

Therefore, P [i] basically denotes the number of consecu-
tive 1’s starting from the ith position in Bx

j . In that case, if a user
arrives at cell j in the ith slot and P [i] = k, it implies that the
user will find resources reserved for him for the next k slots. If
this user stays beyond k slots, he may be dropped. Therefore, the
maximum conditional drop probability under the condition that
the user arrives at ith slot is given by Pcdrop(i) = 1 − Fr(P [i])
where Fr(·) is residence time distribution function2. For example,
if no bandwidth is reserved in the ith slot( P [i] = 0 ) and since
Fr(P [i]) = 0, Pcdrop(i) becomes equal to 1. Thus the total drop
probability for a given user will be given by

Pdrop(Bx
j ) = px,j ×

N∑

i=0

fa(i) × Pcdrop(i). (1)

We observe that the drop probability depends upon Bx
j and

the total resources allocated for a user nj is given by
∑N

i=0B
x
j [i].

For ease of presentation we omit the subscript/superscript of Bx
j

henceforth. Our aim is to minimize the amount of resources used
to provide a given QoS defined by the maximum drop probability.
We therefore specify our optimization problem as follows.

Find B s.t.

N∑

i=0

B[i] is minimized

Pdrop(B) < TQoS

where TQoS ∈ [0 . . . 1] is the prespecified upper bound on the
drop probability corresponding to a given level of QoS.

2In cases where the base station can relinquish unreserved bandwidth for user
staying beyond k slots, the drop probability will be lower than Pcdrop(i) as
defined. Here we consider the constraint on the upper bound on drop probability
that serves as a QoS metric
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III. ALGORITHM FOR FINDING OPTIMAL B

Finding B in order to minimize the sum of 1’s in B subject
to meeting the constraint is a combinatorial optimization problem.
We use a dynamic programming based approach to devise a
polynomial time algorithm in finding the optimal solution. For the
ease of presentation, we rewrite the above optimization problem
by redefining Pdrop as

Pdrop(B) =
N∑

i=0

fa(i) × Pcdrop(i). (2)

and the contraint equation as

Pdrop(B) < T

where T = TQoS/px,j . Initially we consider B[i] = 1 for all i,
which results in Pdrop(B) = 0 from (2). Therefore inserting zeros
in B may increase Pdrop(B). Our intention is to insert maximum
number of zeros while keeping Pdrop(B) < T . We present an
iterative algorithm where in each iteration step we insert a single
zero in B and we stop at the iteration step where the constraint
is no more satisfied or Pdrop(B) ≥ T. We denote the updated B
at the end of the kth iteration step as Bk which has k zeros. The
solution of Bk at the end of the kth iteration step in the algorithm
provides the position of the 0’s in Bk for which Pdrop(Bk) is
a minimum with k zeros.Therefore, in the kth iteration we are
trying to find out the combinations of k zeros in B the gives the
minimum drop probability. Consequently, if we stop at the ith

iteration step, we claim that (i-1) zeros in the optimal permutation
(found at the end of (i− 1)th iteration) gives the optimal B. The
above approach is based on the following proposition which we
use in the algorithm.

Proposition 1: If the ith position of B has zero then

Pdrop(B) = Pdrop(B[0 . . . i−1])+fa(i)+Pdrop(B[i+1 . . . N ])
(3)

Proof: From eqn(2), we can express Pdrop(B) as follows:

Pdrop(B) =
i−1∑

j=0

fa(j) · Pcdrop(j)

︸ ︷︷ ︸
X

+ fa(i) · Pcdrop(i)︸ ︷︷ ︸
Y

+
N∑

j=i+1

fa(j) · Pcdrop(j)

︸ ︷︷ ︸
Z

Since P [j] and hence Pcdrop(j) in X does not depend
upon the values in positions i . . . N of B because of the zero in
the ith position, therefore X equals to Pdrop(B[0 . . . i−1]). Also
since P [j] is based on values of B in the forward (≥ j) positions
and therefore, Z is equal to Pdrop(B[i+ 1 . . . N ]). Finally, since
P [i] = 0 which implies Pcdrop(i) = 1 thus making Y being equal
to fa(i), hence proves the proposition.

We next provide the iteration steps in our proposed optimal
algorithm. Let us consider N subarrays A0

0 . . . A
0
N where A0

i is

B0[i . . . N ]. At the end of each iteration we construct a new
N subarrays i.e. at the end of the kth iteration we construct
Ak

0 . . . A
k
N where Ak

i is Bk[i . . . N ]. We also define POS(Ak
i )

to be a set denoting the position of zeros in Ak
i . Initially

POS(A0
i ) = {∅} ∀i.

Iteration 1: Consider a particular subarray A1
i which

initially has all 1’s in it. The position p is obtained where by
inserting a zero minimizes the value of Pdrop(A1

i ). We next
update A1

i by inserting a zero in the pth position. We also
obtain POS(A1

i ) = POS(A0
i )∪ p. Likewise we compute A1

i for
i = 0 . . . N . At the end of this iteration, we note that POS(A1

0)
gives the position of the single zero in B0 for which the drop
probability is a minimum. Therefore, we assign B1 = A1

0. We
move into the second iteration if Pdrop(B1) < T .

Iteration 2: Consider a particular subarray A2
i which

initially has all ones in it. In this iteration our intention is to
find out the position of two zeros to be inserted in A2

i which
minimizes Pdrop(A2

i ). In other words, there are C(N − i+ 1, 2)
possible combinations of inserting two zeros in A2

i . We want
to find out the particular combination for which Pdrop(A2

i ) is
minimum. Consider the case where the 1st zero is in the pth

position in A2
i , then Pdrop(A2

i ) = Pdrop(A2
i [0 . . . p−1])+fa(p)+

Pdrop(A2
i [p+1 . . . N − i]) from (3). Since A2

i [0 . . . p− 1] has all
ones and fa(p) is fixed, therefore once we set the 1st zero in pth

position, the minimum Pdrop(A2
i ) will correspond to the second

zero in A2
i [p+ 1 . . . N − i] for which Pdrop(A2

i [p+ 1 . . . N − i])
is a minimum. It may be noted that the second zero must be
in position p + POS(A1

p+1) which we already found in the 1st

iteration. For example, consider N = 5, then following are A2
0

for different value of p (the first position of zero).

p = 0 → A2
0 = [0, A1

1]

p = 1 → A2
0 = [1, 0, A1

2]

p = 2 → A2
0 = [1, 1, 0, A1

3]

p = 3 → A2
0 = [1, 1, 1, 0, A1

4]

p = 4 → A2
0 = [1, 1, 1, 1, 0, A1

5]

p = 5 → A2
0 = [1, 1, 1, 1, 1, 0]

Thus the minimum Pdrop(A2
i ) will correspond to the 1st zero at

the position given by

l = min
p

[Pdrop(A2
i [0 . . . p− 1] + fa(p) + Pdrop(A1

p+1)]

Therefore A2
i is obtained by inserting zeros at l, l+POS(A1

l+1)
positions and one can obtain POS(A2

i ) likewise. Finally we as-
sign B2 = A2

0. Now that we have provided sufficient background
about the working of the algorithm we describe the general kth

iteration step.
Iteration k: Consider the subarray Ak

i where we find the
position of the first zero ( only if the size of Ak

i ≥ k ) given as

l = min
p

[Pdrop(Ak
i [0 . . . p− 1] + fa(p) + Pdrop(Ak−1

p+1)]
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We obtain POS(Ak
i ) as

POS(Ak
i ) = {l} ∪ {y | y = x+ l, x ∈ POS(Ak−1

p+1)}

Ak
i is then updated by inserting zeros in the positions given in

POS(Ak
i ). Finally, we assign Bk = Ak

0 .

Proof of Correctness: The proof of correctness for the
above algorithm in finding the optimal solution is based on the
following the two propositions. In the first proposition, we show
that Pdrop(B) is a monotonically decreasing function of the
number of zeros in B.

Proposition 2: Pdrop(Bk) ≤ Pdrop(Bk+1) ∀k.
Proof: Let us consider the first and the second zero to be

in the pth and qth position in Bk+1 respectively. From the above
proposition (1), we can write Pdrop(Bk+1) as

Pdrop(Bk+1) = Pdrop([1 . . . 1
p

0 1 . . .
q−1
1 ])

︸ ︷︷ ︸
C1

+ fa(q)︸ ︷︷ ︸
C2

+Pdrop(Bk+1[q + 1 . . . N ])
︸ ︷︷ ︸

C3

If Pdrop(Bk+1) < Pdrop(Bk), it follows c1 + c2 + c3 <
Pdrop(Bk) from (5). Now if we insert a 1 in the pth position
in Bk+1, we get c = Pdrop(Bk+1[0 . . . q − 1]) ≤ c1 + c2, since
adding the 1 can only increase P [i] ∀i = 0 . . . q − 1. Therefore
we get c + c3 < Pdrop(Bk) or we constructed a B′ from Bk+1
with k zeros and Pdrop(B′) < Pdrop(Bk). But such a construction
contradicts the definition of Bk and hence proves the proposition.

Proposition 3: B = Bk achieves minimum of Pdrop(B)
using k zeros where Bk is found by the above algorithm.

Proof: By induction, on the size of the array B, the base
case is easy. Now assume that the algorithm finds Bk correctly
for all k ≤ n for all inputs. Equation (3) plays the crucial role in
the induction step. If k = N then there is nothing to prove. So
assume that k < N , in that case there is some index i with ith

entry 0 in B. In the algorithm, we try all the N possible values
of i; and for a given value of i we get a set of two independent
subproblems: For all j, k such that j+k = n, find Bj for the left
subarray (upto index i−1), and find the Bk for the right subarray
(from index i+ 1 to N ).

This takes care of all the possible ways in which Bn+1
could occur, and since the algorithm tries them all, it finds the
minimum value.

Propositions (2) and (3) imply that Bk is the optimal B
(optimal for the optimization problem above) if we stop at the
(k + 1)th iteration of the algorithm where Pdrop(Bk) < T .

A. Complexity

Proposition 4: The algorithm has a space complexity of
O(N2) and a time complexity of O(i∗N2) where i is the stopping
iteration.

Proof sketch: First we discuss the space complexity needed by
the above algorithm. We note that at the ith iteration step we need
to store the value of Pdrop and POS for all subarrays obtained
in the (i − 1)th iteration step. The above storage needs O(N)
space for storing Pdrop values and O(N2) space for storing POS
values. Now for time complexity we note that to find the position
of the first zero in Ak

i , it takes O(N2) time to find Ak
i [0 . . . p−1]

for all p and (N − i) time to find the minimum giving a total of
O(N2 ∗ (N− i)) time. Therefore, to find the first zeros for all the
subarrays takes O(N4) time. The other operations in the iteration
takes O(1) time. Since Ak

i [0 . . . p−1] always has all ones in it and
we anyway evaluate it in the first iteration and therefore do not
need to evaluate it again in subsequent iterations if we store the
values of it. In that case the time complexity of a single iteration
reduces to O(N2). Finally, given that we stop at ith iteration the
total time complexity of the scheme becomes O(i ∗N2).

B. Modified Algorithm with Slot Restrictions

In the above algorithm we assumed that bandwidth is
available in all slots in vector B for the request. Therefore, if
in some slots in the computed reservation schedule bandwidth
is not available, the request is blocked. But it is still possible
to compute a admissible reservation schedule by modifying the
algorithm to include the slot restrictions where bandwidth cannot
be reserved. In the modified algorithm, we create a new vector
B′ of length N ′ where N ′ is the number of slots in the orginal
vector B where bandwidth is available for the request. We also
define another vector M of length N ′ which maps the slots in
B to corresponding slots in B′. For example M [i] = j means
that ith slot in B correspond to the jth slot in B′. Our next
step would be to compute B′ such that

∑N ′

i=1B
′[i] is minimized

subject to the drop probability constraint. In order to compute B′

we need to compute the The drop probability for a given B′ is
computed by first obtaining B from B′ and then using equation
(1). B can be obtained from B′ and M as B[i] = 1 if and only if
B′[M [i]] = 1. For computing B′ we follow exactly same steps as
for computing B. It can be easily verified that above algorithm is
correct since both proposition 1 and 2 hold for B′ (formal details
of the proof is same as for B and thus omitted).

It should also be noted that we presented the above
algorithm for bandwidth optimization in a single cell for the sake
of distributed implementation. The solution does not preclude the
scenario where optimization needs to be done over all cells user
may visit. In that case one needs to consider a cluster of cells
conceptually equivalent to a single cell and extend the application
of the solution.

IV. CONSTRUCTION OF THE PROBABILISTIC MOBILITY

PROFILE

The probability of arrival for a user Px,j can be computed
based on the knowledge of the geographical location of the current
cell and cell j, velocity of the user, existing geographical route
and past monitored mobility profile. Schemes using the above
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knowledge used prediction to find out probability of a user to visit
cells in the adjacent region. Details about such location prediction
schemes can be found in [3], [4], [6].

A significant amount of research has also been done
is computing the probabilistic models about the arrival time
and residence time probability distribution [19], [20], [21]. The
general approach tries to collect statistics of multiple users in the
region and fit the information into known probabilistic model.
The assumption in using a probability distribution to predict users
movement is that such distribution follows a stationary stochastic
process.

Since our algorithm works on any general arrival/residence
time distribution, therefore it is not necessary that a probabilistic
model needs to be used for computing the reservation schedule.
Rather, distribution function constructed empirically can achieve
much better approximation to the actual mobility profile. Next we
discuss the issues and construction of such a distribution function.

A. Source cell based Arrival/Residence pdf

From the definition of the arrival time pdf in section 2, we
see that it refers to the probability distribution of the time a user
takes to reach cell i from his current location at cell s. Therefore,
users residing in a different cell s′ will have a different arrival time
pdf to cell i. For that reason, our sample space for constructing
the arrival time pdf can be only restricted to the information about
past users originating at cell s and visiting cell i. Consequently, a
base station for the need of resource allocation, requires to know
the arrival time pdf for each call originating cell. Residence time
pdf, on the other hand, can be based on the sample space of past
users residence time in cell i. Our justification for using past
history in constructing the arrival/residence time pdf is based on
the following observation. The observation is that in a given cell
a user has very low probability of acting differently from other
users in the same cell. For example, inside a mall, users moving
in slow walking pace, a particular user may have maximum a
running pace but not a velocity of when he is driving a car in
highway. In other words locality imposes on users a statistical
distribution on velocity, residence time, direction etc. Next we
discuss in detail how we construct the arrival/residence time pdf.

B. Construction of Arrival and Residence time pdf

The following construction of the density function is based
only on monitoring the handoff events in a given cell and does
not involve any remote cell query or any monitoring of per-user
profile/status. For clarity sake, let us refer the arrival time pdf
for user from the originating cell s by fs

a() and discuss the
construction of fs

a() at cell i.
Consider a user that arrives at cell i, at handoff the user

informs the base station(bs) of cell i with his call originating time
ti and the originating cell. To obtain fs

a(), the bs consider users
only from cell s and based on current time t finds the slot where
he has arrived. The specific slot is found by mapping the value

∆t = t−ti to integer slots3. Therefore the arrival event (Xs
a = k)

denotes that a user from cell s has arrived in the current cell i
at slot k. We now consider a window of time W and find the
relative frequency of each event based on its occurrence on the
time window W. Therefore, at current time t, we look back up
to t-W time to find out how many times the event (Xs

a = k)
has occurred and let it be Nk. Let N be the total number users
who came from cell s during the time interval [t-W : t]. We
obtain the relative frequency of the event (Xs

a = k) as Nk/N .
Analogously, we obtain the relative frequency for all other event
for k = 0, . . . , N and construct the density function fs

a(Xs
a) at

a current time. The above construction is done every δT time or
in other words the time window W slides by δT time units.

We observe here that the above construction is based on
the size of the window W. Choosing the right size of the time
window W is extremely important for accurate construction of
the pdf. If W is too large then the constructed pdf at time t
may be significantly different from the true pdf at time t. For
example, in a highway the arrival pdf at day time busy hours
will be much different from that at middle of the night. Keeping
the window length of about a whole day will not capture the
true pdf at a particular time of the day. On the other hand if
we have the time window very small, we may not have enough
samples to construct the right pdf. Since the arrival of users is
a stochastic process meaning that the arrival time pdf has time
dependence, therefore the window size must be less than the
period for which the process stays stationary at a given time.
Based on these considerations, we choose a small window and use
hysteresis or weighted information about past pdf to construct the
estimated pdf at current time. Let fs

a(Xs
a = k, t−δt) represent the

pdf obtained at time t−δt and in the current window Rk denotes
the relative frequency of the event (Xs

a = k), then estimated pdf
at current time t is obtained as

fs
a(Xs

a = k, t) = αRk + (1 − α)fs
a(Xs

a = k, t− δt)

where α ∈ [0, 1]. The value of α near to 1 can be
used if there are significant number of events taking place in
the time window which may be true in rush hours. Otherwise,
keeping α closer to 0.5 is suitable where the number of events
occurring is less. The other strategy is to change the size of
the window dynamically with changing traffic condition but we
believe that in practice changing window will be more difficult
than changing the value of α. Our experiments have shown
that a given fractional change in window length will lead to
more change in the measured value of the pdf than with the
corresponding change in α.

In construction of the residence time pdf we only consider
the departure events pertaining to a user handoff to another cell.
Premature dropping or call termination events are not considered
since such events do not reflect the locality based mobility
behavior of users. Based on time occurrence of the departure

3Slot index is always relative to the call set-up time, i.e., δt (not t ) gives the
slot index
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events, the pdf for the residence time is constructed similar to the
arrival time pdf.

V. TIME BASED RESERVATION FRAMEWORK

In this section we propose a time-based reservation frame-
work where bandwidth is reserved on slot basis on the time do-
main using the optimal allocation algorithm discussed in section
II. The framework is based on the advanced time reservation
framework in fixed network as proposed in [22], [23]. First we
describe the messaging and states required in the reservation
setup. Next we discuss how the bandwidth becomes available
to a handoff user based on this reservation framework.

A. Reservation Setup

User x currently located at cell s initiates the reservation
by sending a reservation request to cell i where he wants reserve
bandwidth. The reservation request denoted by RQST is a triplet
< s,D(x), d > where s is the origin cell where request is
initiated, D(x) is the bandwidth requested and d is the optional
call residence time. The base station bs in any given cell keeps
the following states to aid the reservation scheme: 1) a bandwidth
state vector V of length N (refer to sec II) and 2) a reservation
schedule for bandwidth allocation denoted by Ls per origin cell
s as defined in sec II. In reference to the absolute time line of
slots, the state vector V captures the bandwidth state starting
from current time t (slot 0) to the future time t′ ( slot N).
Therefore the vector V is updated at the end of every slot as
V [j] = V [j + 1] ∀j = 0 . . . (N − 1). In this way, V [i] keeps the
amount of bandwidth reserved in the ith slot relative to slot 0,
which corresponds to the current time.

Now, upon receiving RQST message < s,D(x), d > from
user x, bs at cell i finds out if there are available bandwidth to
satisfy the users request in the slots given by Ls. This is done by
checking the following condition given by

V [l] +D(x) ≤ Ci ∀l ∈ Ls

where Ci is the capacity of cell i. If the above condition is not
satisfied, the bs sends a DENY message to the origin cell s for
user x.

If the user x receives a DENY message from any cell,
the call gets rejected. Otherwise, the user x sends a subsequent
RESV message with the same information as the RQST message
to same cells where RQST message was sent. Receiving a RESV
message, the bs reserves bandwidth by updating the vector V
given as

V [l] = V [l] +D(x) ∀l ∈ Ls.

B. Availability of bandwidth

When a user handoffs to a cell i, as a part of authentication
procedure, the user passes the following information to the bs: 1)
the origin cell id, 2) call originating time ti. Based on the current
time t and ti, the bs finds out the slot offset loffset by mapping

t+4t2t+1 t+3 t+5 t+6 t+7

0 00 0 0

0 33 0 3

3 03 3 0

5 52 0 0

5 00 0 0

Vt+1

Vt1

Vt+2

Vt+3

Vt2

Vt+4

Vt+5

3 30 0 0

2 05 0 0

t1 t+2 t3

U1:RQST U2:RQST U3:RQST U1:HANDOFF

th

Fig. 6. Updating of V over time

the difference t− ti to integer slots. Finally from Ls, the bs finds
out the slots l′ ∈ L′

s where L′
s = {l− loffset |l ∈ Ls}. Therefore

if the user stays in slots l′ ∈ L′
s and l′ ≥ 0, bandwidth gets

available to the user by virtue of the above reservation scheme.
On the other hand, if the user stays in slots where bandwidth is
not reserved for him, the bs can either make bandwidth available
from the unreserved pool of bandwidth if available or terminate
the connection.

C. An Example

Consider a slotted time domain with slot duration of unit
time. Let the beginning of each slot be t+ i where i is an integer
as shown in fig. 6. Consider users U1,U2 and U3 be located in
cell 1,2 and 3 respectively. All the above users are suppose to
request for reservation in cell i. We show how the bandwidth
state vector V in cell i is updated with time. In fig. 6, Vt refers
to the content/state of vector V at time t. Initially, at time t+1, no
bandwidth is reserved in cell i. At time t1 user U1 request for 3
units of bandwidth. Let L1 = {1, 2, 4} and therefore bandwidth is
reserved in slot 1,2 and 4 as shown in updated Vt1 (fig. 6). Vt+2
and Vt+3 shows how V gets updated at the beginning of each
slot. At t2, U2 requests for 2 units and V is updated (as Vt2 )
by adding 2 units to respective slots given by L2 = {0, 1, 2}. At
t3, U3 request for 2 units and let L3 = {0, 3, 4}. Since capacity
constraint is not met in slot 0, U3 is rejected.

Now consider the user U1 who handoffs to cell i at time
th as shown in fig. 6. Mapping of (th − t1) gives an offset of 4
slot from which we obtain L′

1 = −3,−2, 0. The only valid slot is
0 where we can see from Vt+5 that there is available bandwidth
to support U1.

D. Implementation Issues

First we observe that the state space maintained by a single
base station b is (S + 1) × N where S is the total number of
possible call originating cell from where user may be expected to
visit a given cell served by the b. Thus our proposed scheme is
scalable as it does not not require any per-user state. Secondly, the
scheme does not employ any significant messaging or remote cell
query except at the time of reservation set-up. It is also important
to discuss the frequency at which the base station computes the
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allocation vector Ls for a origin cell s. In most real life cases the
traffic pattern changes slowly and it is not necessary to compute
Ls continuously. Therefore computation of Ls can be triggered
when there is sufficient change in the arrival/residence time pdf
expressed in terms of mean square error(MSE). MSE for two pdfs
fi[1 . . . N ] and fj [1 . . . N ] is given as

∑N
k=1(fi[k] − fj [k])2/N .

Every δT interval of time when a new pdf is constructed, MSE is
calculated with the last pdf used for computing Ls. If the MSE ≥
threshold, a new Ls is computed where the value of the threshold
is based on how fast is the reaction to changing traffic is wanted.

VI. PERFORMANCE EVALUATION EXPERIMENTS

The main goal behind the experiments is is directed at
understanding how resource utilization depends upon the QoS
level and the arrival/residence time density functions. As a part
of evaluating each part of the scheme, we tried to focus on the
performance of our density function measurement scheme and
also on how our resource allocation scheme meets the target of
providing QoS level to each individual user. Before going into
discussing the experiments we first define the main performance
metrics we are looking for.

• % Bandwidth Used(%BU) is defined as %BU =∑N
i=1B[i]/N where B is the reservation vector and N refers

to the length of the reservation vector. %BU refers to the
overall resource utilized for a user.

• % Utilization is defined as 1−nj/na where na is the actual
number of slots used by the user when he visited the cell j.

• Drop Ratio is defined as the ratio of the number of hand-
off users dropped due to unavailability of resources to the
total hand-off users. The drop ratio does not refer to the
drop probability which is an input to the resource allocation
algorithm.

• Blocking Ratio is defined as the ratio of the number of new
calls blocked to the total number of newly arrived calls.

A. Exact Arrival/Residence PDF

Here we are trying to evaluate the performance of the
optimal algorithm in the ideal case where the exact arrival and
residence time density functions are known for a given source
cell. In order to obtain the required results we input the density
function of arrival and residence time along with the target QoS
level or drop probability to the allocation algorithm.

The arrival and residence time density functions used in
this experiment are shown in fig. 7. Figure 8 and 9 show the
utilization versus the drop probability for residence time pdf I
and II respectively. We observe that for a given drop probability,
the utilization %BU depends upon both the arrival and residence
time pdf.

For example, we observe from fig. [8,9] that using uniform
pdf for both arrival and residence time gives higher utilization
than the exponential pdfs. We also note from comparing the
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results for arrival time pdf I and II that although both are having
the same mean arrival time yet gives different utilization for
a given QoS level. Most importantly, it is observed from the
same comparison that more variance in the arrival time pdf
generates lower utilization. Applying the observation to real life
scenarios suggests that in areas like highways where there is
less variance in velocity, high utilization will be achieved with
respect to crowded areas (near downtowns) with high variance
in velocity. Although variance is a good measure to indicate the
utilization level but it does not extend to the cases of bimodal
density functions(arrival time pdf IV). Although the variance of
arrival time pdf II(2.0325e-04) is much higher than variance
of pdf IV(7.3422e-05), but utilization for arrival time pdf II
is lower compared to that of arrival time pdf IV. Arrival time
pdf III being bimodal may represent a real life scenario of two
possible independent behaviours of mobile users. But since the
density function corresponding to individual bahaviours cannot
be estimated and therefore it is difficult to characterize the effect
of multimodal pdf on utilization.

B. Simulation Experiments

We conduct simulation experiments to explore more re-
alistic scenarios on an event driven simulator. The specification
of the parameters used in the simulator is given as follows. The
time is quantized into slots of length TL.. The time window of
measurement(W) and value of α in pdf measurement are 500 secs
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Fig. 12. Drop rate vs target QoS level

and 0.8 respectively. The length of the reservation vector(N ) is of
length 250 slots. The call holding time is exponential distributed
with mean 100 slots. Arrival of new calls follows a poisson
process with mean rate λ.

Measurement of Density Functions: The overall perfor-
mance of the scheme strongly depends upon how accurate the
measured density functions are. Therefore we try to establish how
far our measurement scheme meets the actual or true arrival time
density function. In order to do that we consider two different
scenarios where users from cell C1 are arriving at cell CM

where the measurement is done. In the first scenario( SCEN1),
the velocity of the users are considered exponentially distributed
with a mean value of 40mph. In the second scenario( SCEN2),
the velocity of users are assumed uniformly distributed with
probability 0.7 from 40 to 60 mph and with probability 0.3 from
0 to 10 mph. We assume that the distance between C1 and CM

is 1 mile and users maintain a constant velocity during their call
duration.

In cell CM we use our pdf measurement scheme based
on the above assumptions and compare the measured pdf with
actual pdf constructed based on data collected over the entire
simulation time. For a simulation time of 20 hours, we show the
results in Fig. 10. The measured pdf in figure 10 refers to the
pdf as measured at the end of 10 hours of simulation time. We
observe that the measured pdf is not much different from the
actual pdf for user arrival under both scenarios for TL = 10sec.
From figure 11, we also observe that decreasing the slot length Tl

introduces more spikes although retaining the same trend as the
actual pdf. Such spikes represent inaccuracy in the measurement
and brings us to the conclusion that although decreasing slot size
is favorable in giving higher utilization, it introduces measurement
inaccuracy(for a given number of samples per window) and also
higher time complexity for allocation algorithm and state space.

Measured Drop Ratio: Our objective here is to find out
how much difference exists between the measured drop ratio
and the target drop probability. In the simulation model, we
consider the scenario SCEN2 again and assume that the cell CM

has infinite capacity, λ to be 0.7, TL = 10sec and simulation
time of 20 hours. Since the drop rate is not dependent upon the
capacity of the cell but on the reservation vector and therefore
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infinite capacity assumption is valid. From fig. 12, we observe
that the difference between the measured drop rate and the target
drop probability is not significant. Therefore, small inaccuracies
as shown in fig. 10 related to the measurement do not affect
significantly the achieved drop rate.
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Bandwidth Utilization Comparison: Our intention is to
find out the dependence of the %BU on the achieved drop
ratio which takes into consideration the inaccuracies involved
in the measurement of the pdfs. The simulation model for this
experiment considers scenario SCEN2 and also assumes infinite
cell capacity for reason stated above. For each simulation run we
vary the target drop probability to obtain the graph as shown in
fig. 13. From the graph we observe that the measured density

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

B
lo

ck
in

g 
R

at
e

Drop Probability

  

w/o Slot Restriction
with Slot Restriction

Fig. 16. Blocking rate vs. drop probability

functions results in a lower utilization compared to the actual
density functions. But the observed difference is less than 5
percent and does not vary with the target QoS level.

Fig 14 also shows the %Utilization obtained from %BU
compared for two version of the algorithm where one considers
slot restriction and other does not. We show the %Utilization
curve follows from the %BU curve with higher utilization in case
of the algorithm without slot restriction.

New Call Blocking Ratio: The simulation scenario con-
sidered here consist of 8 cells C1 to C8 from where users try
to reserve bandwidth at cell CM . Velocity of users follows from
scenario SCEN2 and each cell is at a different distance from
CM . The bandwidth requirement of the mobile can be 1,2,4 and
8 bandwidth units with probability 0.5,0.3,0.1 and 0.1 respectively
with target Pdrop = 0.1. Based on the above simulation model,
we intend to compare the new call blocking ratio of our scheme
to that of a non time-based scheme where resources are reserved
for the entire duration of the call.

For each simulation run of 20 hours we vary the offered
load λ for the results as shown in Fig 15. We observe that our
scheme achieves much lower new call blocking rate than the non
time-based scheme. An important point to note here is that the
new call blocking rate achieved is not just a function of %BU
but also depends upon the bandwidth fragmentation in time. Due
to this effect, we observe that the algorithm with slot restriction
has lower call blocking at lower load. At higher load, though the
difference becomes less. A possible reason may be that at higher
load there is more requests leading to higher probability in filling
up the holes created due to bandwidth fragmentation. Figure 16
also shows that the call blocking rate in the case of the algorithm
without slot restriction is higher than that with slot restriction for
different drop probabilities.

Time Varying Mobility: In this experiment, we consider
the two cells C1 and CM again with the assumption that the
arrival time distribution of the users is uniformly distributed over
a period [t1 : t2] secs. Both t1 and t2 varies with time in the
following way in the simulation experiments. For every 10000
secs simulation time, t1 is also varied randomly(with uniform
distribution) selected from 0 to 1000secs and t2 is randomly(with
uniform distribution) from v1 to 1000secs. In such a time varying
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mobility scenario, our objective is to find out how the measured
drop rate varies with time. We define the cumulative drop rate at
a given time t as the ratio of the total number of handoffs drops to
total number of handoffs in the interval [0, t]. The instantaneous
drop rate at a given time t is defined as the total number of handoff
drops to total handoff in the interval [t − w : t] where w is a
constant time window of 500 secs. In the simulation experiment
we have kept target drop probability of 0.1. Figure 17 shows the
temporal behavior of the cumulative and the instantaneous drop
rates. We observe that the cumulative drop rate slowly approaches
towards the target drop rate with time. This implies that over a
sufficient amount of time, the scheme achieves almost the target
drop rate. The spikes in the instantaneous drop rate curves indicate
the time when there was change in the mobility scenario.

VII. CONCLUSION AND FUTURE WORK

The objective of the work presented in the paper is to
explore the time-based resource allocation problem to increase the
utilization of a cellular network. Our work in this regard resulted
in the following main contributions: (1) an algorithm for finding
the optimal bandwidth allocation in time. (2) a measurement
scheme to construct arrival/residence time distribution based on
just monitoring the handoff events and (3) a time-based resource
reservation framework.

Based on simulation results, we have shown that optimal
utilization of a single cell depends strongly on both the target QoS
level( drop probability) and the arrival/residence time distribution.
The results confirm the fact that a scheme which does not
incorporate the arrival/residence time distribution and the QoS
level is not likely to result in efficient utilization. Further, the
present studies also reveal that despite the little inaccuracies in
our measurement process, the proposed scheme still achieve the
target QoS level with near to optimal utilization.

Our further extension of our work will involve taking
more realistic scenarios as mentioned in [13] and use different
spatial resource allocation schemes along with our scheme to find
how they work together under varied mobility patterns. Also this
work focus only on a class of applications needing hard QoS
guarantee. A more interesting work will address how to allocate

resource based on time windows in a multiple class scenario with
coexistence of bandwidth adaptive applications.
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