
An Efficient Scheduling Algorithm for CIOQ Switches with Space-Division
Multiplexing Expansion

Mei Yang and S.Q. Zheng
Department of Computer Science

Univ. of Texas at Dallas
Richardson, TX 75083-0688, USA

{meiyang,sizheng}@utdallas.edu

Abstract— Recently, CIOQ switches have attracted interest
from both academic and industrial communities due to their
ability of achieving 100% throughput and perfectly emulating OQ
switch performance with a small speedup factor S. To achieve a
speedup factor S, a conventional CIOQ switch requires the switch
matrix and the memory to operate S times faster than the line
rate. In this paper, we propose to use a CIOQ switch with space-
division multiplexing expansion and grouped inputs/outputs
(SDMG CIOQ switch for short) to achieve speedup while only
requiring the switch matrix and the memory to operate at the
line rate. The cell scheduling problem for the SDMG CIOQ
switch is abstracted as a maximum bipartite k-matching problem.
Using fluid model, we prove that any maximal size k-matching
algorithm on an SDMG CIOQ switch with an expansion factor
2 can achieve 100% throughput assuming input arrivals satisfy
the strong law of large numbers and no inputs/outpus are
oversubscribed. We further propose an efficient and starvation-
free maximal size k-matching scheduling algorithm, kFRR, for
the SDMG CIOQ switch. Simulation results show that kFRR
achieves 100% throughput with an expansion factor 2 under
two SLLN traffic models, uniform traffic and polarized traffic,
confirming our analysis.

I. INTRODUCTION

Due to their ability of achieving 100% throughput and even
emulating output queueing (OQ) switch performance with a
small speedup factor, combined input and output queuing
(CIOQ) switches attract attentions from both academic and
industrial communities. An N × N CIOQ switch is shown
in Figure 1. To remove head-of-line (HOL) blocking [1], each
input maintains N virtual output queues (VOQs) with V OQi,j

buffering packets from input i destined for output j. With an
internal speedup larger than 1, packets need to be buffered at
outputs as well.

N X N Switch matrix
...

...

...

...

Output port 1

Input port 1

Input port N

Output port N

...
...

Scheduler

1

N

1

N

1

N

1

N

Fig. 1. A CIOQ switch.

In this paper, we assume that CIOQ switches are cell based.
In such a switch, variable-length packets are segmented into
fixed-size cells upon arrival, transferred through the switch
matrix, and then reassembled into packets before they depart.
Time is divided into cell slots and one cell slot equals to the
transmission time of a cell. In each cell slot, the scheduling
algorithm selects a matching between inputs and outputs such
that no input (resp. output) may be matched to more than one
output (resp. input). Fixed-size cells and slotted time switching
make it easier for the scheduler to configure the switch matrix
for high throughput [2].

The cell scheduling problem on VOQ-based switches can
be modelled as a maximum bipartite matching problem [2].
The most efficient maximum size matching algorithm has a
time complexity of O(N2.5) [3], [4]. However, maximum size
matching algorithms are not practical due to their high time
complexity and unfairness [5]. Although maximum weight
matching algorithms are proved to achieve 100% throughput
for all admissible i.i.d. arrivals [5], they are too complex for
high speed implementation due to their high time complexity
(O(N3 logN) [4]). Most practical scheduling algorithms pro-
posed, such as PIM [6], iSLIP [2], DRR [7], FIRM [8], static
round-robin (SRR) [9], and iterative ping-pong arbitration
scheme [10], etc., are iterative algorithms that find a maximal
size matching to approximate a maximum size matching.

A switch with a speedup of S can remove up to S cells
from each input and deliver up to S cells to each output
within a cell slot. S is defined as the speedup factor. Hence,
an input queueing (IQ) switch has a speedup of 1, an output
queueing (OQ) switch has a speedup of N , and a CIOQ
switch has a speedup between 1 and N . It has been shown
that a CIOQ switch with a speedup of 4 or 2 can exactly
emulate an OQ switch by employing some specially designed
scheduling algorithms, such as MUCFA algorithm [11], CCF
algorithm [12], and JPM algorithm [13]. These results have
significant implications: regardless of the switch size, a small
constant speedup is sufficient to implement a CIOQ switch
with behavior identical to an OQ switch which has a speedup
factor proportional to the switch size. Unfortunately, these
scheduling algorithms are highly impractical due to their
high time complexity. Iterative in nature, these scheduling
algorithms solve a stable marriage (matching) problem [14].
To find a stable matching [14], these scheduling algorithms
require O(N2) iterations in the worst case, and N iterations
for special cases (such as the acyclic case of [12]).

In [15], Dai and Prabhakar proved that employing any
maximal size matching algorithm a CIOQ switch with S = 2

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

can achieve 100% throughput for arbitrarily distributed input
patterns so long as input arrivals satisfy the strong law of large
numbers (SLLN) and no inputs/outputs are oversubscribed.
Since almost all real traffic processes satisfy these properties,
this result has high practical significance for at least two
reasons. First, achieving 100% throughput is a necessary
condition for a CIOQ switch to realize OQ-equivalent QoS
guarantees with carefully designed queuing disciplines at
each VOQ and at each output queue. Second, maximal size
matching algorithms are easier to implement than maximum
size matching algorithms or stable matching algorithms.

To achieve speedup for CIOQ switches, in the conventional
scheme, it requires the switch matrix and the memory to run
S times faster than the line rate. Under current technology, the
switch matrix can support up to 2.5Gbps line rate [16]. On the
other hand, advances in fiber-optic transmission technologies
have greatly pushed the increasing of optical transmission rate.
Each individual channel now can operate at OC-192 (10Gbps)
or even OC-768 (40Gbps). Although silicon technologies have
advanced rapidly, the gap between the data rate that optical
transmission technology can deliver and the switching speed
that electronic switch matrix can provide is becoming wider
and wider [17]. Thus it may not always be feasible to run the
switch matrix much faster than the line rate. Memories with
sufficient access rate are simply not available for high line
rate due to the limitation of current VLSI technology. Even
with fast switch matrix and memories, it may not always be
possible to run the cell scheduling algorithm fast enough to
realize switch speedup greater than 1.

To relax the stringent timing requirement of the switch
matrix and the memory operation time, we propose an efficient
scheduling algorithm based on an alternative CIOQ switch
architecture to achieve the same performance as a CIOQ
switch with speedup but only require the switch matrix and
the memory operate at the line rate. We first present a
CIOQ switch with space-division multiplexing expansion and
grouped input/output ports. For easy reference, we refer to
such a switch as an SDMG CIOQ switch. In an SDMG CIOQ
switch, the number of connections between each input/output
(port) and the switch matrix is increased, while the switch
matrix only needs to run as fast as the line rate. To relax
the memory access rate, the interface between each VOQ (or
output queue) and the switch matrix is expanded to multiple
copies to allow more than one cell to be transferred from a
VOQ (or into an output queue). The expansion factor of an
SDMG CIOQ switch is defined as the ratio of the number
of connections between an input/output port and the switch
matrix and the number of lines associated to an input/output
port.

We then focus our study on efficient scheduling algorithms
for the SDMG CIOQ switch. We model the cell scheduling
problem on the SDMG CIOQ switch as a maximum bipartite
k-matching problem. Using fluid model, we prove that any
maximal size k-matching algorithm for an SDMG CIOQ
switch with expansion factor 2 can achieve 100% throughput
assuming input arrivals satisfy SLLN and no inputs/outpus
are oversubscribed. We further develop a k-connection FIRM-
based round-robin (kFRR) algorithm to find maximal size k-

matchings on SDMG CIOQ switches. Through simulations,
we show that the kFRR algorithm achieves 100% throughput
under two SLLN traffic models: uniform traffic (both Bernoulli
arrivals and bursty arrivals) and polarized traffic. This confirms
our analysis based on fluid model. And the performance of
kFRR with expansion factor 2 is generally better than the
performance of FIRM with speedup factor 2. We further
show that the kFRR algorithm can be easily implemented in
hardware using programmable k-selectors [18].

The remainder of this paper is organized as follows. Section
II presents the SDMG CIOQ switch architecture, describes the
graph model of the cell scheduling problem for the SDMG
CIOQ switch and gives an analysis of the expansion factor
that is sufficient for an SDMG CIOQ switch employing any
maximal size k-matching scheduling algorithm to achieve
100% throughput assuming input arrivals satisfy SLLN and no
inputs/outputs are oversubscribed. In section III, we propose
the kFRR scheduling algorithm and discuss its properties.
Section IV presents simulation results of kFRR. In Section
V, we discuss a hardware implementation scheme of kFRR.
Section VI summaries the paper.

II. SDMG CIOQ SWITCHES

In this paper, we assume that the SDMG CIOQ switch
we discuss is cell based. In such a switch, variable-length
packets are segmented into fixed-size cells as they arrive and
reassembled into packets before they depart. Time is divided
into cell slots and one cell slot equals to the transmission time
of a cell. In addition, we assume that cells arrive at the switch
at the beginning of a cell slot and cells depart from the switch
prior to the end of a cell slot.

A. Switch Architecture

In the CIOQ switch shown in Figure 1, one input (resp.
output) line connects to one input (resp. output) port, and there
is one connection between an input (resp. output) port and the
switch matrix. To achieve a speedup of S for a CIOQ switch,
conventionally it requires the switch matrix and the memory
of the CIOQ switch to run S times faster than the line rate.

Nk x Nk
switch matrix

.

.

.

1

.

.

.

Input port 1

Scheduler

1

N/g

...

1

N/g

...

Output port 1

2

g

...

...

N-g

N-g+1

N

...

...

...

...

.

.

.

1

g

...

1

g

...

1

k

1

k

1

k

1

k

Input port N/g Output port N/g

1

.

.

.

2

g

...

...

N-g

N-g+1

N

...

Fig. 2. An SDMG CIOQ switch.

To achieve the speedup required for a CIOQ switch, we
consider an alternative CIOQ switch architecture with more

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Nk x Nk
switch matrix

.

.

.

1

.

.

.

Input port 1

Scheduler

1

N

...

1

N

...

Output port 1

N

...

...

...

...

.

.

.

1

k

1

k

1

k

1

k

Input port N
Output port N

1

.

.

.

...

N

Fig. 3. An SDMG CIOQ switch with g = 1.

connections between each input/output port and the switch
matrix. We generalize this CIOQ switch architecture by group-
ing multiple lines into one port. The purpose of introduc-
ing grouped input/output ports is to achieve better buffer
utilization [19], improve scheduling performance [20], and
balance switch I/O loads. We name such a CIOQ switch as a
CIOQ switch with space-division multiplexing expansion and
grouped input/output ports (SDMG CIOQ switch for short).
Figure 2 shows an N × N SDMG CIOQ switch, where N
is the number of input/output lines. Figure 3 shows a special
SDMG CIOQ with g = 1. The characteristics of the SDMG
CIOQ switch are listed as follows.

• It has N/g grouped input ports and N/g grouped output
ports; each grouped port is associated with g lines. g is
called the group factor.

• Each input port maintains N/g VOQs, denoted as
V OQi,j , where i is the input port number, j is the output
port number, 1 ≤ i, j ≤ N/g.

• Each output port maintains g output queues, each asso-
ciated with an output line.

• It has an Nk/g×Nk/g switch matrix with k connections
to each port. We assume that the switch matrix is non-
blocking or rearrangeable non-blocking. k is called the
port connection factor.

• Cells belonging to each VOQ of an input port will be
transferred through the switch matrix in order.

• A cell in an input port can be switched to its destination
output port through any of the k connections to the switch
matrix and any of the k connections between the switch
matrix and the destination output port.

We define P = k/g as the expansion factor of an SDMG
CIOQ switch. To relax the memory access rate, the interface
between each VOQ (or output queue) and the switch matrix
is expanded to multiple copies to allow more than one cell to
be transferred from a VOQ (or into an output queue). Clearly,
additional interconnection schemes are needed inside input and
output ports to implement parallel memory access. This issue
is not going to be addressed in this paper. In the rest of this
paper, we will use input (resp. output) and input (resp. output)
port interchangeably.

We would like to point out that Obara et al. proposed a
similar switch architecture to enhance the scheduling perfor-
mance for an ATM switch [20]. Our purpose of using the
SDMG CIOQ switch architecture is to achieve speedup but
only require the switch matrix and the memory to operate as
fast as the line rate.

B. Graph Model for The Cell Scheduling Problem

For an SDMG CIOQ switch, in each cell slot, the scheduling
algorithm needs to determine a conflict-free switch matrix
setting for switching cells from input ports to output ports.
The cell scheduling problem on the SDMG CIOQ switch can
be modelled as a maximum k-matching problem on bipartite
graph G = (V,E), where V = V1 ∪ V2, V1 = {input ports},
V2 = {output ports}, | V1 |=| V2 |= N/g, E = {connection
requests from input ports to output ports}, and let M =| E |.

Note that G may not be a simple graph since there may be
more than one edge between one pair of nodes. A k-matching
is a subset of edges K ⊆ E such that no node of G is incident
with more than k edges in K, where k ≥ 1. A match is an
edge (i, j) ∈ K. A matching is a special case of k-matching
with k = 1. A maximum size k-matching is one with the
maximum number of edges, while a maximal size k-matching
is one that is not contained in any other k-matchings. A perfect
k-matching K is one that each node of G is incident with k
edges in K. Figure 4 compares a maximum size 2-matching
and a maximal size 2-matching for a 4×4 SDMG CIOQ switch
with g = 1 and k = 2. With the maximum size 2-matching
shown in Figure 4(b), V OQ1,1, V OQ1,3, V OQ2,2, V OQ2,4
and V OQ3,2 will be served.

Input Output Input Output

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

(a) Request graph (b) Maximum 2-matching

Input Output

1

2

3

4

1

2

3

4

(c) Maximal 2-matching

Fig. 4. A maximum and maximal size 2-matching of a 4×4 SDMG
CIOQ switch.

As a special case of the bipartite b-matching problem [21],
the maximum bipartite k-matching problem can be trans-
formed to a maximum-flow problem in O(M) time. Since
the transformed flow network is a unit network [4], we can
use Dinic’s algorithm to solve the corresponding maximum-
flow problem in O(

√
NM) time [4]. However, this algorithm

is too complex to be implemented at high speed. Another
noticeable problem with maximum size k-matching algorithm
is that it may cause unfairness. For example, in Figure 4, if
V OQ1,1, V OQ1,3, V OQ2,2, V OQ2,4 and V OQ3,2 continue
having requests and other VOQs continue having no requests
in successive cell slots, then V OQ1,2 may get starved since
edge (1, 2) does not belong to any maximum size 2-matchings.

For practical use, we desire scheduling algorithms to be fast,
starvation-free, easy to implement and of high throughput [2].
A maximal size k-matching algorithm is a better option than

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

a maximum size k-matching algorithm since it is easier to im-
plement and possible to avoid unfairness. In the next section,
we will propose a practical and starvation-free maximal size
k-matching algorithm, kFRR, for SDMG CIOQ switches.

C. Analysis of Maximal k-Matching Algorithms

An interesting question is what expansion factor, P , is
sufficient for an SDMG CIOQ switch employing a maximal
size k-matching algorithm to achieve 100% throughput assum-
ing input arrivals satisfy SLLN and no inputs or outputs are
oversubscribed?

Let an N/g×N/g matrix Z(n) be the request matrix at cell
slot n, where Zi,j(n) denotes the number of cells in V OQi,j

at the beginning of cell slot n. A maximal size k-matching
algorithm determines a matrix π(n) in cell slot n, where
π(n)i,j indicating how many cells can be transferred from
input i to output j during cell slot n. We have the following
equations.

∀i, j, π(n)i,j ≤ k,

∀i,
N/g∑

j′=1

π(n)i,j′ ≤ k,

∀j,
N/g∑

i′=1

π(n)i′,j ≤ k,

N/g∑

j′=1

π(n)i,j′ +
N/g∑

i′=1

π(n)i′,j ≥ k, if Zi,j(n) ≥ k. (1)

Equation (1) comes from the fact that for a maximal size k-
matching algorithm, if input i has at least k cells destined for
output j in cell slot n, then at least one of the following holds:
(i) input i has k matches to some outputs, (ii) output j has k
matches to some inputs.

Consider the fluid model of the SDMG CIOQ switch
shown in Figure 2 with port connection factor k, operating
under a maximal size k-matching algorithm. We follow all
the definitions of fluid model and SLLN used in [15]. We
define Ai,j(n) as the number of cells that have arrived at
V OQi,j up to cell slot n. We assume that the arrival processes
{Ai,j(·), i, j = 1, ..., N/g} satisfy a strong law of large
numbers (SLLN) with probability of one,

lim
n→∞

Ai,j(n)
n

= λi,j , i, j = 1, ..., N/g, (2)

where λi,j is called the arrival rate at V OQi,j . We also assume
that no inputs or outputs are oversubscribed, i.e.,

∀i, j,
N/g∑

j′=1

λi,j′ ≤ g,

N/g∑

i′=1

λi′,j ≤ g. (3)

Let (D,T,Z) be a fluid model solution with Z(0) = 0. Let
Li(t) =

∑
j′ Zi,j′(t) denote the total amount of fluid queued

at input i at time t and Mj(t) =
∑

i′ Zi′,j(t) be the total
amount of fluid destined for output j and queued at some
inputs at time t. Define Ci,j(t) = Li(t)+Mj(t). In addition to
the fluid model equations (5)-(7) in [15], we have the following
lemma.

Lemma 1: For an SDMG CIOQ switch with expansion
factor P = k/g operating under a maximal size k-matching
algorithm, each fluid limit must satisfy the following equation:

·
Ci,j(t)≤

N/g∑

j′=1

λi,j′+
N/g∑

i′=1

λi′,j−k, whenever Zi,j(t) > 0, (4)

where
·

Ci,j(t) represents the differential of Ci,j(t).
Proof : Proving Equation (4) is equivalent to showing that,

if Zi,j(n) ≥ k, then

Ci,j(n + 1) − Ci,j(n) ≤
∑N/g

j′=1(Ai,j′(n + 1)−
Ai,j′(n)) +

∑N/g
i′=1(Ai′,j(n + 1) − Ai′,j(n)) − k.

(5)
Let Vi,j denote the set of all VOQs holding cells at input

i or destined for output j. Then Ci,j(n + 1) − Ci,j(n) is the
difference of the number of arrivals to Vi,j at cell slot n + 1
and the number of departures from Vi,j at cell slot n. The
number of arrivals to Vi,j at cell slot n + 1 equals to

N/g∑

j′=1

(Ai,j′(n + 1) −Ai,j′(n)) +
N/g∑

i′=1

(Ai′,j(n + 1) −Ai′,j(n)).

Since Zi,j(n) ≥ k and the switch employs a maximal
size k-matching algorithm, from Equation (1), we have the
following equation:

N/g∑

j′=1

π(n)i,j′ +
N/g∑

i′=1

π(n)i′,j ≥ k.

That is to say, at least k cells are removed from those
V OQ’s that are in the set Vi,j . Thus, we get the bound on
the right side of Equation (5).

Then we have the following theorem.
Theorem 1: For an SDMG CIOQ switch shown in Figure 2,

any maximal size k-matching algorithm with k = 2g, i.e., P =
k/g = 2, can achieve 100% throughput assuming input arrivals
satisfy SLLN and no inputs or outputs are oversubscribed.

Proof : From Lemma 1 and Equation (3),

·
Ci,j(t)≤

N/g∑

j′=1

λi,j′ +
N/g∑

i′=1

λi′,j − k ≤ g + g − 2g = 0.

Refer to the proof of Theorem 2 of [15] for the rest of the
proof. We omit the details in this paper.

III. THE kFRR SCHEDULING ALGORITHM

Iterative maximal size matching scheduling algorithms pro-
posed for input-buffered switches include PIM [6], RRM,
iSLIP [2], DRR [7], FIRM [8], static round-robin (SRR) [9],
and iterative ping-pong arbitration scheme [10], etc. Among
these algorithms, round-robin based algorithms, such as iSLIP,
are more attractive than others because of their fairness and
implementation simplicity. FIRM, which uses round-robin
arbitration scheme, improves iSLIP by reducing the service
guarantee time from (N − 1)2 + N2 cell slots to N2 cell

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

slots. It is starvation-free and easy to implement at high
speed [8]. In the following, we generalize the idea of FIRM
for the SDMG CIOQ switch and present the k-connection
FIRM-based round-robin (kFRR) scheduling algorithm. As
FIRM, kFRR is an iterative algorithm. It also uses round-robin
arbitration scheme to schedule active inputs and outputs.

We use Ii and Oj , 1 ≤ i, j ≤ N/g, to denote the inputs
and outputs respectively. For Ii, let ai be its accept pointer
indicating the accept starting position in the circular round-
robin priority queue, where 1 ≤ ai ≤ N/g, and C(Ii) denote
the number of available connections at Ii. For output Oj , let gj

be its grant pointer indicating the grant starting position in the
circular round-robin priority queue, and C(Oj) be the number
of available connections at Oj . Prior to the first iteration of
kFRR in any cell slot, we set C(Ii) = C(Oj) = k, 1 ≤ i, j ≤
N/g.

In each cell slot, kFRR iteratively finds a k-matching. It
terminates after a fixed number of iterations or until a maximal
size k-matching is found. Each iteration of kFRR consists of
the following three steps.

Step 1: Request. ∀Ii, 1 ≤ i ≤ N/g, if Ii has available
connections and unresolved requests (requests to outputs with
available connections), it sends all unresolved requests to their
corresponding Oj’s.

Step 2: Grant. ∀Oj , 1 ≤ j ≤ N/g , if Oj has available
connections and receives requests from any inputs, it grants
min{C(Oj), number of requests to Oj} requests, starting from
gj . These grants are sent to their corresponding Ii’s. gj is
updated to the first input that receives Oj’s grant but does not
accept it in the Accept phase or the first input that does not
receive Oj’s grant if all Oj’s grants are accepted in the first
iteration, starting from gj in a circular manner if and only if
in the the first iteration. C(Oj) is updated to the number of
available connections at Oj .

Step 1: Accept. ∀Ii, 1 ≤ i ≤ N/g , if Ii has available
connections and receives any grants, it accepts min{C(Ii),
number of grants to Ii} grants starting from ai. ai is updated
to the next position to the last output whose grant is accepted
by Ii in a circular manner. C(Ii) is updated to the number of
available connections at Ii.

Figure 5 shows how kFRR adapts to a time-division mul-
tiplexing for a 4 × 4 SDMG CIOQ switch with k = 2 under
saturated load. Saturated load means at some cell slot, ∀1 ≤
i, j ≤ 4, V OQi,j > 0, and input arrivals are maintained in
such a manner that V OQi,j > 0 in the following cell slots. At
the start of cell slot 0, assume ∀1 ≤ j ≤ 4, gj = 1, ∀1 ≤ i ≤ 4,
ai = 1. Then after the scheduling, the grant and accept
pointers are updated as g1 = 3, g2 = 3, g3 = 1, g4 = 1, and
a1 = 3, a2 = 3, a3 = 1, a4 = 1. Due to the desynchronization
of grant pointers, a perfect 2-matching is achieved at cell slot
1 and thereafter.
kFRR has the following properties.
Property 1: At each output, due to the property of round-

robin, the lowest priority element is set as the input before the
first input that receives its grant but does not accept it in the
first iteration or the input before the first input that does not
receive Oj’s grant if all Oj’s grants are accepted in the first

Slot 0

Input Output

Slot 1

4
3

a1

a2

a3

a4

g1

g2

g3

g4

a1

a2

a3

a4

g1

g2

g3

g4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Input Output

Slot 2

Input Output

Slot 3

a1

a2

a3

a4

g1

g2

a1

a2
a3

a4

g1

g2

g3

g4

1

2

3

4

1

2

1

2

3

4

1

2

3

4

Input Output

g3

g4

3

4

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

Fig. 5. Illustration of desynchronization effect of grant pointers of
kFRR for a 4 × 4 SDMG CIOQ switch under saturated load.

iteration.
Property 2: Under saturated load, all VOQs with a common

output have the same throughput. The grant pointer moves to
each requesting input in a fixed order (every N

kg cell slots),
thus providing each with the same throughput.

Property 3: No connection is starved. This property comes
from the following theorem.

Theorem 2: kFRR serves an existing connection request
within no more than (N

gk)2 cell slots.
Proof: The worse case service scenario of kFRR is the

situation where a request from Ii to Oj has to wait all
other N/g − k inputs to be served by Oj , i.e., for some n,
Zm,j(n) > 0 for all Im’s and gj = ((i+1) mod N/g), where
m �= i. The delay between posting a request and serving the
request consists of the delay for the request to be granted
and the delay for the grant to be accepted. The delay for the
request from Ii to Oj to be granted is (N

gk − 1) N
gk since it

takes N
gk − 1 cell slots for Oj to grant requests from other

N/g − k inputs and it takes at most N
gk cell slots for each

grant to be accepted. After the grant to Ii is issued, it also
takes N

gk cell slots to get it accepted. Thus totally it takes
(N

gk − 1) N
gk + N

gk = (N
gk)2 cell slots to serve an existing

connection request.

Property 4: kFRR finds a maximal size k-matching in
at most N/g − k + 1 iterations, i.e. kFRR converges in
at most N/g − k + 1 iterations. The reason is as follows.
The size of a maximal size k-matching is at most Nk/g. If
finding a maximal k-matching takes more than 1 iteration,
the first iteration finds at least k2 matches, the last iteration
finds at least 1 match, and other iterations find at least k
matches. Thus, the total number of iterations needed is at most
�Nk/g−k2−1

k � + 2, which is given by N/g − k + 1.
Figure 6 shows an example of how many iterations needed

for kFRR to converge for an 8 × 8 SDMG CIOQ switch with
k = 2 under saturated load. In cell slot 0, kFRR takes 4
iterations to converge. It takes 3 and 2 iterations for kFRR to
converge in cell slot 1 and 2 respectively. After cell slot 3, all
grant pointers have become totally desynchronized and kFRR

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

converges in a single iteration.

a1=1

a2=1

a6=1

a7=1

g1=1

g2=1

g6=1

g7=1

Iteration 0
Input Output

a3=1 g3=1

a4=1 g4=1

a5=1 g5=1

a8=1 g8=1

Iteration 1
Input Output

Iteration 2
Input Output

Iteration 3
Input Output

Switch slot 0

Input Output Input Output Input Output

Input Output Input Output Input Output

Iteration 0 Iteration 1 Iteration 2

Iteration 0 Iteration 1 Iteration 0

Switch slot 1

Switch slot 2 Switch slot 3

Input Output

Iteration 0

Switch slot 4

a1=3

a2=3

a6=1

a7=1

a3=1

a4=1

a5=1

a8=1

g1=3

g2=3

g6=1

g7=1

g3=1

g4=1

g5=1

g8=1

a1=3

a2=3

a7=1

a3=5

a4=5

a5=1

a8=1

a6=1

g1=3

g2=3

g6=1

g7=1

g3=1

g4=1

g5=1

g8=1

a1=3

a2=3

a7=1

a3=5

a4=5

a5=7

a8=1

a6=7

g1=3

g2=3

g6=1

g7=1

g3=1

g4=1

g5=1

g8=1

a1=3

a2=3

a7=1

a3=5

a4=5

a5=7

a8=1

a6=7

g1=3

g2=3

g6=1

g7=1

g3=1

g4=1

g5=1

g8=1

a1=5

a2=5

a7=1

a3=3

a4=3

a5=7

a8=1

a6=7

g1=5

g2=5

g6=1

g7=1

g3=3

g4=3

g5=1

g8=1

a1=5

a2=5

a7=1

a3=3

a4=3

a5=1

a8=1

a6=1

g1=5

g2=5

g6=1

g7=1

g3=3

g4=3

g5=1

g8=1

a1=5

a2=5

a7=7

a3=3

a4=3

a5=1

a8=7

a6=1

g1=5

g2=5

g6=1

g7=1

g3=3

g4=3

g5=1

g8=1

a1=7

a2=7

a7=1

a3=5

a4=5

a5=3

a8=1

a6=3

g1=7

g2=7

g6=3

g7=1

g3=5

g4=5

g5=3

g8=1

a1=7

a2=7

a7=1

a3=5

a4=5

a5=3

a8=1

a6=3

g1=7

g2=7

g6=3

g7=1

g3=5

g4=5

g5=3

g8=1

a1=1

a2=1

a7=3

a3=7

a4=7

a5=5

a8=3

a6=5

g1=1

g2=1

g6=5

g7=3

g3=7

g4=7

g5=5

g8=3

Fig. 6. Example of the number of iterations for kFRR to converge
for an 8 × 8 SDMG CIOQ switch under saturated load.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of kFRR
on SDMG CIOQ switches in terms of average transit time,
measured by number of cell slots. The transit time is defined
as the cell’s waiting time in VOQs at input ports plus the
transmission time through the switch matrix.

A. Traffic Models

Two traffic models are used in our simulations: uniform
traffic and polarized traffic. For uniform traffic, we consider
both Bernoulli arrivals and bursty arrivals. Polarized traffic is a
non-uniform, locally unbalanced but globally balanced traffic
pattern. It is defined as follows [22]. Let di,j be the proportion
of traffic received by V OQi,j . q is defined as the polarization
factor with

di,j =
q(i+j) mod N/g · (q − 1)

qN/g − 1

such that,

∀i ∈ [1..N/g],
N/g∑

j′=1

di,j′ = 1,∀j ∈ [1..N/g],
N/g∑

i′=1

di′,j = 1,

where q ≥ 1.00. Polarized traffic with q = 1.00 is unform
traffic. One can verify that both uniform traffic and polar-
ized traffic satisfy SLLN condition and no inputs/outputs are
oversubscribed. Simulations have been done for the kFRR
algorithm for SDMG CIOQ switch sizes of 4×4, 8×8, 16×16,
and 32 × 32 with different group factors (g), different port

connection factors (k), different polarization factors (q) and
different number of iterations. Without loss of generality, in
our simulations, all pointers in kFRR are initialized randomly.

B. With Bernoulli Arrivals

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

Load

A
ve

ra
ge

 tr
an

si
t t

im
e

(c
el

l s
lo

ts
)

kFRR−1.00−1
kFRR−1.00−2
kFRR−1.00−4
kFRR−1.50−1
kFRR−1.50−2
kFRR−1.50−4
kFRR−2.00−1
kFRR−2.00−2
kFRR−2.00−4

Fig. 7. Average transit time vs. load of kFRR with g = 1, k = 2
and different number of iterations under Bernoulli arrivals.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

3.5

4

4.5

5

Load

A
ve

ra
ge

 tr
an

si
t t

im
e

(c
el

l s
lo

ts
)

kFRR−1−1
kFRR−1−2
kFRR−2−2
kFRR−2−4
kFRR−4−4
kFRR−4−8
kFRR−8−8
kFRR−8−16

Fig. 8. Average transit time vs. load of one-iteration kFRR with
different group factors and different port connection factors under
uniform Bernoulli arrivals.

Figure 7 shows the performance of kFRR with 1, 2, and 4
iterations, g = 1, k = 2 and q = 1.00, 1.50, and 2.00, for a
32 × 32 SDMG CIOQ switch under Bernoulli arrivals. kFRR
achieves 100% throughput with all polarization factors. The
performance of kFRR improves when the polarization factor
increases. We observe that the difference in the number of
iterations does not affect much of the performance of kFRR
under Bernoulli arrivals.

Figure 8 compares the performance of one-iteration kFRR
with k = g (solid line) and k = 2g (dotted line) for g =
1, 2, and 4, for a 32× 32 SDMG CIOQ switch under uniform
Bernoulli arrivals. Clearly, kFRR with k = 2g improves the
performance of kFRR with k = g dramatically. And the larger
the group factor, the better performance kFRR can achieve.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Load

A
ve

ra
ge

 tr
an

si
t t

im
e

(c
el

l s
lo

ts
)

kFRR, g=1, P=2
FIRM, g=1, S=2
kFRR, g=2, P=2
FIRM, g=2, S=2
kFRR, g=4, P=2
FIRM, g=4, S=2

Fig. 9. Average transit time vs. load of one-iteration kFRR with
P = 2 and one-iteration FIRM with S = 2 under uniform Bernoulli
arrivals.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

20

Load

A
ve

ra
ge

 tr
an

si
t t

im
e

(c
el

l s
lo

ts
)

kFRR−2−16−1
kFRR−2−16−2
kFRR−2−16−4
kFRR−2−32−1
kFRR−2−32−2
kFRR−2−32−4
kFRR−2−64−1
kFRR−2−64−2
kFRR−2−64−4

Fig. 10. Average transit time vs. load of kFRR with k = 2, g = 1
and different number of iterations under bursty arrivals.

Figure 9 compares the performance of one-iteration kFRR
with P = 2 (solid line) and one-iteration FIRM with S =
2 (dotted line) for g = 1, 2, and 4, for a 32 × 32 SDMG
CIOQ switch under uniform Bernoulli arrivals. As we can see,
under uniform Bernoulli arrivals, the performance of kFRR
with expansion factor 2 is better than FIRM with speedup
factor 2 when g = 1 and 2.

C. With Bursty Arrivals

We then study the performance of kFRR under bursty traffic
using 2-state markov-chain modulated on-off arrival processes
[2]. Each input source alternately generates a burst of full cells
(all with the same destination) followed by an idle period of
empty cells. The number of cells in each burst or idle period is
geometrically distributed. Let E(B) and E(I) be the average
burst length and the average idle length in term of number of
cells respectively. E(I) = E(B)(1−ρ)/ρ, where ρ is the load
of each input source. We assume the destination of each burst
is uniformly distributed.

Figure 10 illustrates the performance of kFRR with 1, 2, and

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

3.5

4

4.5

5

Load

A
ve

ra
ge

 tr
an

si
t t

im
e

(c
el

l s
lo

ts
)

kFRR−1−1
kFRR−1−2
kFRR−2−2
kFRR−2−4
kFRR−4−4
kFRR−4−8
kFRR−8−8
kFRR−8−16

Fig. 11. Average transit time vs. load of one-iteration kFRR with
different group factors and different port connection factors under
bursty arrivals.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

8

Load

A
ve

ra
ge

 tr
an

si
t t

im
e

(c
el

l s
lo

ts
)

kFRR, g=1, P=2
FIRM, g=1, S=2
kFRR, g=2, P=2
FIRM, g=2, S=2
kFRR, g=4, P=2
FIRM, g=4, S=2

Fig. 12. Average transit time vs. load of one-iteration kFRR with
P = 2 and one-iteration FIRM with S = 2 under bursty arrivals.

4 iterations, g = 1, k = 2, for a 32× 32 SDMG CIOQ switch
under bursty arrivals with E(B) = 16, 32, and 64 respectively.
kFRR achieves 100% throughput with all average burst length
settings. As we can see, the increased number of iterations
leads to lower average transit time while the increased average
burst length increases the average transit time.

Figure 11 compares the performance of one iteration kFRR
with k = g (solid line) and k = 2g (dotted line) for g = 1, 2,
and 4, for a 32×32 SDMG CIOQ switch under bursty arrivals
with E(B) = 16. As shown in Figure 11, kFRR with k = 2g
improves the performance of kFRR with k = g dramatically.
And the performance of kFRR improves with the group factor
increasing.

Figure 12 compares the performance of one iteration kFRR
with P = 2 (solid line) and one-iteration FIRM with S = 2
(dotted line) for g = 1, 2, and 4, for a 32 × 32 SDMG CIOQ
switch under bursty arrivals with E(B) = 16. As we can see,
under bursty arrivals, the performance of kFRR with expansion
factor 2 is better than the performance of FIRM with speedup
factor 2 when g = 1 and 2.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

V. HARDWARE IMPLEMENTATION OF kFRR ALGORITHM

An important property of an efficient scheduling algorithm
is simple to implement. In this section, we show that kFRR
is easy to be implemented in hardware. Figure 13 shows a
possible design of a kFRR scheduler for an N × N SDMG
CIOQ switch. It consists of 2N/g port arbitration components,
a state update logic and a state memory. Each port arbitration
component is responsible for making k selections out of Nk/g
requests in a round-robin manner. We use a programmable k-
selector [18] to construct a port arbitration component. The
timing performance of such a design is independent of k
and much better than the design using programmable priority
encoders [23], [18].

For an N×N SDMG CIOQ switch, at the start of each cell
slot, the scheduler receives an (N/g× log k)-bit request vector
from each input port. Taking the example of one-iteration
kFRR scheduler, it works as follows:

Step 1: Each grant arbitration component selects up to
k unresolved requests. The grants are sent to N/g accept
arbitration components.

Step 2: Each accept arbitration component selects up to
k grants and send them to the decision register, and the
state memory and update logic, where the grant pointers are
updated.

1

2

.

.

.

N /g

1

2

N /g

.

.

.

...

...

...

...

...

...

...

...

...

S
ta

te
 m

em
or

y
an

d
up

da
te

 lo
gi

c

R
eq

ue
st

s
fr

om
 V

oQ
s

...

...

...

D
ec

is
io

n
R

eg
is

te
rs

Grant
arbitration

Accept
arbitration

k

Fig. 13. Block diagram of a one-iteration kFRR scheduler for an
N × N SDMG CIOQ switch.

VI. SUMMARY

The major contributions of this paper include: (1) We
introduced the SDMG CIOQ switch, which combines space-
division multiplexing expansion and grouped inputs/outputs
to improve switching performance. (2) We modelled the cell
scheduling problem on the SDMG CIOQ switch as a maxi-
mum bipartite k-matching problem. (3) Using fluid model, we
proved that any maximal size k-matching algorithm for the
SDMG CIOQ switch with an expansion factor 2 can achieve
100% throughput so long as input arrivals satisfy SLLN and no
inputs/outputs are oversubscribed. (4) We proposed an efficient
and starvation-free distributed scheduling algorithm for the
SDMG CIOQ switch, kFRR, for finding maximal size k-
matchings. (5) Through simulations, we showed that kFRR
with an expansion factor 2 achieves 100% throughput for two
SLLN traffic arrivals: uniform traffic and polarized traffic.
(6) An efficient hardware implementation scheme of kFRR

based on our programmable k-selectors [18] was proposed. In
conclusion, the SDMG CIOQ switch is a promising alternative
to the CIOQ switch with speedup and kFRR is an efficient
scheduling algorithm for the SDMG CIOQ switch.

REFERENCES

[1] M. J. Karol, M. G. Hluchyj and S. P. Morgan, “Input vs. output
queueing on a space-division packet switch”, IEEE Transaction on
Communications, Vol. 35, No. 12, pp. 1347-1356, 1987.

[2] N. McKeown, “The iSLIP scheduling algorithm for input-queued
switches”, IEEE/ACM Transactions on Networking, Vol. 7, No. 2, pp.
188-201, April 1999.

[3] J. E. Hopcroft and R. M. Karp, “An n2.5 algorithm for maximum
matching in bipartite graphs”, Soc. Ind. Appl. Math. J., vol. 2, pp. 225-
231, 1973.

[4] R. E. Tarjan, Data Structures and Network Algorithms, Bell laboratories,
1983.

[5] N. Mckeown, A. Mekkittikul, V. Anantharam, J. Walrand., “Achieveing
100% throughput in an input-queued switch”, IEEE Transactions on
Communications, Vol. 47, No. 8, pp. 1260-1267, August 1999 .

[6] T. Anderson, S. Owicki, J. Saxie, and C. Thacker, “High speed switch
scheduling for local area networks”, ACM Trans. Comput. Syst., vol. 11,
no. 4, pp. 319-352, Nov. 1993.

[7] J. Chao, “Saturn: a terabit packet switch using dual round-robin”, IEEE
Communications Magazine, Dec. 2000.

[8] D. N. Serpanos and P. I. Antoniadis, “FIRM: A class of distributed
scheduling algorithms for high-speed ATM switches with multiple input
queues”, Proc. of IEEE Infocom2000, pp. 548-555, 2000.

[9] Y. Jiang and M. Hamdi, “A fully desynchronized round-robin matching
scheduler for a VOQ packet switch architecture”, 2001 IEEE workshop
on high performance switching and routing, pp. 407-412, June 2001.

[10] H. J. Chao, C. H. Lam, and X. L. Guo, “A fast arbitration scheme for
terabit packet switches”, Globecom’99, pp. 1236-1243, 1999.

[11] B. Prabhakar, N. Mckeown, “On the speedup required for combined
input and output queued switching”, Automatica, Vol. 35, 1999.

[12] S. T. Chuang, A. Goel, N. Mckeown, B. Prabhakar, “Matching output
queueing with a combined input output queued switch”, IEEE Journal
on Selected Areas in Communications, Vol. 17, No. 6, pp. 1030-1039,
June 1999.

[13] I. Stoica and H. Zhang, “Exact emulation of an output queueing switch
by a combined input output queueing switch”, Proc. 6th IEEE/IFIP
IWQoS’98, Napa Valley, CA, pp. 218-224, May 1998.

[14] D. Gale, and L. S. Shapley, “College admissions and the stability of
marriage,” American Mathematical Monthly, vol. 69, pp. 9-15, 1962.

[15] J. Dai and B. Prabhakar, “The throughput of data switches with and
without speedup”, Proc. of IEEE Infocom2000, pp. 556-564, May, 2000.

[16] Vitesse, Switch fabric products [Online], available at
http://www.vitesse.com/products, 2002.

[17] C. Minkenberg, “On packet switch design”, Ph.D. dissertation, Eind-
hoven University of Technology, 2001.

[18] S. Q. Zheng, M. Yang and F. Masetti, “Hardware switch scheduling for
high speed, high capacity IP routers”, submitted for publication.

[19] A. Pattavina, “Multichannel bandwidth allocation in broadband packet
switch”, IEEE Journal on Selected Aread in Communications, vol. 6,
no. 9, pp. 1489-1499, Dec. 1988.

[20] H. Obara, S. Okamoto and Y. Hamazumi, “Input and output queueing
ATM switch architecture with spatial and temporal slot reservation
control”, Electronics Letters, Vol. 28, No. 1, pp. 22-24, Jan. 1992.

[21] W. J. Cook,W. R. Pulleyblank, A. S., and W. H. Cunningham, Combi-
natorial Optimization, Wiley John & Sons Inc., Nov. 1997.

[22] J. Blanton, H. Badt, G. Damm, and P. Golla, “Impact of polarized traffic
on scheduling algorithms for high speed optical switches”, ITCom2001,
Denver, August 2001.

[23] P. Gupta, N. Mckeown, “Designing and implementing a fast crossbar
scheduler”, IEEE Microelectronics, Vol. 19, pp. 20-29, No. 1, 1999.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

	INFOCOM 2003
	Return to Main Menu

