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Abstract— Input Queued(IQ) switches have been very well
studied in the recent past. The main problem in the IQ switches
concerns scheduling. The main focus of the research has been the
fixed length packet-known as cells-case. The scheduling decision
becomes relatively easier for cells compared to the variable length
packet case as scheduling needs to be done at a regular interval
of fixed cell time. In real traffic dividing the variable packets into
cells at the input side of the switch and then re-assembling these
cells into packets on the output side achieve it. The disadvantages
of this cell-based approach are the following: (a) bandwidth is
lost as division of a packet may generate incomplete cells, and (b)
additional overhead of segmentation and reassembling cells into
packets. This motivates the packet scheduling: scheduling is done
in units of arriving packet sizes and in non-preemptive fashion.
In [7] the problem of packet scheduling was first considered.
They show that under any admissible Bernoulli i.i.d. arrival
traffic a simple modification of Maximum Weight Matching
(MWM) algorithm is stable, similar to cell-based MWM [1-
4]. In this paper, we study the stability properties of packet
based scheduling algorithm for general admissible arrival traffic
pattern. We first show that the result of [7] extends to general
re-generative traffic model instead of just admissible traffic, that
is, packet based MWM is stable. Next we show that there exists
an admissible traffic pattern under which any work-conserving
(that is maximal type) scheduling algorithm will be unstable.
This suggests that the packet based MWM will be unstable too.
To overcome this difficulty we propose a new class of “waiting”
algorithms. We show that “waiting”-MWM algorithm is stable
for any admissible traffic using fluid limit technique [6].

I. INTRODUCTION

The two important design criteria for switching architectures
are: (a) throughput of the system, and (b) average delay.
Among different switching architectures Input Queued (IQ)
switch architecture has been very attractive due to its low
memory bandwidth requirements compared to other known
architectures. The crossbar constraints of an IQ switch requires
it to schedule packets to be transferred between inputs and
outputs. The throughput and delay in IQ switch are heavily
dependent on this scheduling decision. In past there has been
a lot of research done to design good scheduling algorithms
for IQ switches [1-3],[8]. In these studies there is an implicit
assumption that the switch works with fixed-size cells. In
other words, they all assume that whenever a packet arrives
to the system, it is divided into equal-sized cells, and after
the switching is done, the cells are re-assembled in the form
of the original packet before leaving the system. Contrary to

this common assumption, we consider systems in which the
switch directly works on packets without breaking them into
cells. We call such a switching system a packet-based system
compared to the cell-based systems, which only deal with the
fixed-size cells. Using fixed-size cells in the switch makes
the implementation of the scheduling algorithm of the switch
much easier compared to the variable-length packets, but the
following are the two main disadvantages with fixed-sized
cell approach: (i) Packets arriving at input side need to be
segmented into cells, requiring a special input segmentation
module; and at the output side these cells need to be re-
assembled. This induces significant implementation overhead.
(ii) Packets may generate incomplete cells because a cell
should not contain data belonging to two different packets.
This can result in significant bandwidth loss. For example,
if cell size is 64 bytes and packet size is 40 bytes then the
amount of bandwidth lost is 24/64 ≈ 37%! This motivates
the study of packet scheduling algorithms.

The packet-based algorithms have been studied before in
[7]. It is important to first understand the throughput re-
gion for the case of packet-scheduling algorithms. Naturally
there is some similarity between packet-based and cell-based
scheduling. For cell-based scheduling it is known that Max-
imum Weight Matching (MWM) algorithm is stable [1-6]
for any admissible traffic. In [7] it is shown that canonical
modification of the cell-based MWM for packet-based, which
we denote as PB-MWM, achieves 100% throughput for any
admissible Bernoulli i.i.d. traffic with packet lengths being
bounded (rather probabilistically bounded and independent).
In this paper we first study the PB-MWM algorithm. We
study the throughput properties of the PB-MWM algorithm
under general admissible traffic rather than restricting to the
Bernoulli i.i.d. case. We first show that the PB-MWM is stable
even for any form of re-generative admissible traffic, with the
time of regeneration being finite in mean (note: Bernoulli i.i.d.
traffic is special case of regenerative traffic). We obtain this
result using a different proof technique, which seems to be
somewhat simpler. Next we consider general admissible traffic
with Strong Law of Large Numbers property. We show that
there exists a counter example for which the PB-MWM is
not stable. In general, this counter example shows that any
scheduling algorithm that tries to schedule in work-conserving
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Fig. 1. An input-queued switch.

fashion or in maximal-sense every time, will not be stable. This
counterexample suggests a fundamental difference between
packet-based and cell-based scheduling algorithms. Hence in
general to obtain stability we need to design a different type of
packet-based scheduling algorithm. We propose a new class of
algorithms which is called “waiting” algorithms. In particular,
we show that “waiting” modification of PB-MWM is stable for
any admissible traffic with bounded packet lengths using fluid
technique similar to [6] (note: in general mean packet length
should be bounded). The structure of this paper is as follows.
In section II, we describe the input-queued switch architecture,
the cell-based maximum weight matching (MWM) algorithm
and the fluid model for the switch briefly. In Section III, the
packet-based switching algorithms are defined. The canonical
extension of MWM algorithm for the packet-based scenario
is defined. In section IV, we prove the stability of the packet-
based MWM for re-generative admissible traffic extending the
proof of [7]. In section V we present the counter-example that
motivates the classification of packet-based algorithm into two
classes of “waiting” and “non-waiting” groups. In section VI,
we introduce a simple waiting algorithm, which is proved to
be stable using fluid techniques. Finally, in section VII we
conclude the paper.

II. INPUT-QUEUED SWITCH

In this section we describe the model of an Input Queued
(IQ) switch that is the main architecture studied in this paper.

Figure 1 shows the logical structure of an IQ switch.
Although it is not necessary, we assume that the switch has the
same number of input and output ports denoted by N . In fact,
in practical designs, generally one input and output interface
reside on the same “line card”, thus the number of inputs and
outputs is the same. We assume that the time is slotted and
at each time slot, at most one data unit (of known fixed size)
can arrive to each input port. We call this data unit a “cell”.
Cells arriving at input i and destined for output j are stored at
input in a FIFO buffer called “virtual output queue” (VOQ),
denoted here by V OQij . This queue separation avoids the loss
of throughput due to the head-of-line blocking problem. The
cross-bar fabric is assumed to be memory-less. We say that a
switch has speed up S, if at each time slot at most S cells
can be removed from each input and at most S cells can be
transferred to each output.

The “scheduling algorithm” decides which cells should be
transferred between the inputs and outputs of the switch at

every time slot, i.e., it selects a matching between inputs and
outputs in such a way that no input (respectively, output) may
be matched to more than one output (respectively, input).
We say a scheduling algorithm is “work conserving” or
“maximal”, if an input is never left un-matched when it has
a packet for an unmatched output.

We represent a matching by a N × N matrix m = [mij ]
where if input i is connected to output j, we have mij =
1, otherwise mij = 0. The set of all possible matchings is
denoted by M.

Let Aij(n) denote the number of cells that have arrived
at input i destined for output j up to time n. We adopt
the convention that Aij(0) = 0. We assume that the arrival
processes A(n) = [Aij(n)] satisfy the strong law of large
numbers (SLLN), that is for any i, j = 1, . . . , N , almost
surely,

lim
n→∞

Aij(n)
n

= λij . (1)

We call λij the arrival rate at V OQij . This assumption on
the arrival process is very mild.

Definition 1: The arrival process with arrival rate matrix
Λ = [λij ] , defined to be “admissible” iff (1) holds and no
input or output is overloaded, in other words,

N∑

i=1

λij ≤ 1 ∀ j = 1, . . . , N , (2)

N∑

j=1

λij ≤ 1 ∀ i = 1, . . . , N . (3)

Let Dij(n) show the number of departures from V OQij

up to time n. Again let Dij(0) = 0 and D(n) = [Dij(n)].

Definition 2: A switch operating under a matching algo-
rithm is called “stable” (rate stable) if, with probability one,

lim
n→∞

Dij

n
= λij ∀ i, j = 1, . . . , N (4)

for any admissible arrival process A(n) = [Aij(n)] with rate
λij .

We say the traffic is i.i.d. if the arrival process is such that,
(a) the arrivals to different input ports are independent, and
(b) the arrival to the same input port at different time slots
are also independent. We would like to note that, a general
admissible traffic, satisfying SLLN as above, does not need to
have independence.

Let Zij(n) show the number of cells in V OQij at time
n, including any arrival at time n, then the matrix Z(n) =
[Zij(n)] shows the queue occupancy at time n. For any
matching m ∈ M the “weight” Wm(n) of the matching at
time n is defined as,

Wm(n) = 〈m,Z(n)〉 , (5)

where 〈A,B〉 =
∑

ij AijBij for two matrices A and B of
the same size.
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A. Maximum Weight Matching (MWM) Algorithm

At each time slot, MWM algorithm will select the matching
with the maximum weight among all matchings in M. If there
are multiple such matchings, one of them is selected arbitrarily.
We denote the maximum weight matching and its correspond-
ing weight at time n by m� and W �(n) respectively. That
is,

m�(n) = arg max
m∈M

Wm(n), (6)

W �(n) = max
m∈M

Wm(n) = Wm�(n). (7)

In [1][3], it was shown that under any admissible Bernoulli
i.i.d. traffic, MWM algorithm is stable. In [6] using the fluid
model analysis it was shown that MWM is stable for any
admissible traffic satisfying (1). The notion of stability (rate
stability) in [6] is weaker than the notion of stability used
in [1]-[3], but in [6] the stability is proved for a larger class
of arrival traffic. In this paper also we adopt notion of rate
stability as in (4).

B. Fluid Model and Switch Dynamics

This section describes the fluid model of a discrete time
switch. For any m ∈ M, let Tm(n) represent the cumulative
amount of time that the matching m has been used up to
time n under the scheduling algorithm used. We assume that
Tm(0) = 0. Note that Tm(n) is a non-decreasing function
with respect to n. For a discrete-time switch the following
three equations govern the dynamics of the switch:

Zij(n) = Aij(n) − Dij(n), (8)

Dij(n) =
∑

m∈M
mij1(Zij>0) (Tm(n) − Tm(n − 1))

+ Dij(n − 1), (9)
∑

m∈M
Tm(n) = n. (10)

The first equation simply states that the number of cells
in V OQij equals the total number of arrivals minus the
total number of departures. The second equation shows how
to obtain the number of departure by considering all the
matchings that can connect the input i to output j. The third
equation simply states that at each time slot, exactly one of
the possible matchings is used.

In [6], the fluid model of a discrete-time switch was
introduced. We will use this fluid model in this paper without
presenting any proofs or justification. An interested reader can
refer to [6] for an elaborate exposition to this topic. From [6],
the continuous equations governing the dynamics of the fluid
model of switch described above are as follows. For every
i, j = 1, . . . , N ,

Z̃ij(t) = λijt − D̃ij(t), (11)

∂D̃ij(t)
∂t

=
∑

m∈M
mij

∂T̃m(t)
∂t

if Z̃ij(t) > 0, (12)

∑

m∈M
T̃m(t) = t, (13)

where the functions Z̃ij(t), D̃ij(t), and T̃m(t) are called
the fluid limits and are obtained from the discrete random
processes Zij(n), Dij(n), and Tm(n). For example Z̃ij(t)
is obtained as follows. First, we create Ẑij(t) which is a
continuous version of the discrete function Zij(n).

Ẑij(t) = Zij(�t
) + [Zij(�t + 1
) − Zij(�t
)] (t − �t
) .
(14)

Then the fluid limit is obtained as follows,

Z̃ij(t) = lim
r→∞

Ẑij(rt)
r

. (15)

All other fluid limit functions are obtained in a similar
manner, i.e., the time is scaled by r and the function is re-
normalized by dividing by r and we let r → ∞.

III. PACKET-BASED SWITCHING

We described the structure of a cell-switch in the previous
section, now we can define how a packet-based switch per-
forms. Packets with different sizes can arrive to the switch.
However we assume that the fabric works on fixed-size data
units (cells). So in each time slot only one cell can be sent
to each output. Thus, the received packets must be segmented
into an integer number of cells. For simplicity, without loss
of generality we will assume that each packet is made up
of an integer number of cells. We constrain the scheduling
algorithm to deliver contiguously all the cells obtained from
the segmentation of the same packet, i.e., at the output they
are not interleaved by the cells from another input port. More
formally we can define a packet-based scheduling algorithm
as follows:

Definition 3: A packet-based scheduling algorithm is a
scheduling algorithm such that once it starts transmitting the
first cell of a packet to an output port, it continues the
transmission until the whole packet is completely received at
the corresponding output port.

With this constraint of scheduling algorithm being non-
preemptive on packets avoids the problem of segmentation
at input ports and reassembly of cells at output ports in a
switch. In any cell-based switching system, different cells of
the same packet may observe different delay values before
leaving the system. It is reasonable to assume that the delay
seen by the user is same as the delay observed by the last cell
of any packet. Therefore a scheduling algorithm that transfers
the last cell of a packet with larger delay performs poorly, even
if it performs well on all other cells of the packet. Most of the
known cell-based scheduling are not aware of the existence of
packets, and therefore there is a chance that a packet-based
scheduling algorithm which is aware of the entity of a packet
can use this information to do a better scheduling (in the sense
of the waiting delay observed by the users). Similar reasoning
was given in [7] by authors in the favor of packet scheduling.

It is easy to convert a known cell-based algorithm into a
packet-based one. Let us consider any cell-based scheduling
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algorithm X (e.g., MWM, maximal matching, etc.). We can
easily convert X into a packet-based algorithm as follows:

At each time slot, we divide the input-output ports into two
disjoint sets:

1) Busy ports: the set of input-output ports which have been
matched to each other in the previous time slot and are
still in the middle of sending a packet.

2) Free ports: the set of input-output ports which either
have no packets to send, or just finished sending a
packet.

The scheduling algorithm PB-X keeps the matching
already used by busy ports and finds a new (sub-)matching
for free ports using the cell-based scheduling algorithm X .
Initially all the ports are assumed to be free.

In [7] Marsan et al. considered packet-based scheduling
algorithms in the way defined as above. They described the
model of a packet-based scheduling algorithm, and highlighted
the effect of considering packet entity in designing the schedul-
ing algorithms. They proved that the PB-MWM is stable
for any admissible Bernoulli i.i.d. traffic. With the help of
simulation results, they showed that packet-based scheduling
algorithms could outperform a cell-based algorithm for certain
cases. In the next section we give a different proof for stability
of PB-MWM using the fluid model technique. This proof
shows the stability of PB-MWM for a more general class of
arrival process.

IV. PB-MWM STABILITY

In this section we provide a proof for stability of the packet-
based MWM algorithm.

Definition 4: A matching m(n) used at time n is called
“k-imperfect” if

m(n) = m�(n − k). (16)

In other words, m is k-imperfect if it is equal to the
maximum weight matching at k time slots ago.

Obviously, any maximum weight matching is a 0-imperfect
matching at the time it is chosen by the scheduler. The
following Lemma states a very simple but important property
of k-imperfect matchings.

Lemma 1: The weight of a k-imperfect matching is at most
2kN different from the weight of the maximum weighted (0-
imperfect) matching at any time slot, i.e., if m(n) is a k-
imperfect matching with weight Wm(n), used at time slot n,
then;

Wm(n) ≥ W �(n) − 2kN. (17)
Proof: For any matching m′ ∈ M, note that Wm′(n −

k) shows its weight at time n − k and Wm′(n) shows its
weight at time n. Then the following inequalities hold under
any scheduling algorithm:

Wm′(n − k) − kN ≤ Wm′(n) ≤ Wm′(n − k) + kN. (18)

This is true because of the following simple reason: during
k time slots, at most k cells can arrive (depart) at an input

port, which in turn can increase (decrease) queue size at any
input port by at most k. There are N input ports, and hence
the net weight can increase (decrease) by at most kN .

We know that m(n) is k-imperfect, thus, m(n) = m�(n−
k), i.e., at time n − k, m has the largest weight among all
possible matchings;

∀m′′ ∈ M Wm(n)(n − k) ≥ Wm′′(n − k). (19)

Thus if we select m′′ = m�(n) we get;

Wm(n)(n − k) ≥ Wm�(n)(n − k). (20)

Rewriting (18) for m′ = m(n) and m′ = m�(n), we get;

Wm(n)(n) + kN ≥ Wm(n)(n − k). (21)

Wm�(n − k) ≥ Wm�(n) − kN. (22)

Combining (20), (21), and (22) we obtain the result stated
in lemma 1.

Let us consider the following scheduling algorithm, which
we denote as S:

1) Let s(n) be the schedule used by S at time n.
2) At time n + 1

a) if all ports are free then use s(n+1) = m�(n+1).
b) else set s(n + 1) = s(n).

Let T be the time between two successive occurrences of the
event that all ports are free. Note that the matching obtained
by algorithm S is at worst T -imperfect, by definition, and T
is a random variable which depends on the arrival process
and the packet lengths. We assume that the packet lengths are
bounded and the arrival process is stationary. Let pT (t) denote
stationary probability of event {T = t} and WS(n) show the
weight of matching obtained by scheduling algorithm S at
time n. Then,

E{WS(n)|Z(n)} ≥
∞∑

t=0

pT (t) [W �(n) − 2tN ]

= W �(n) − 2N
∞∑

t=0

tpT (t). (23)

Thus,

E{WS(n)|Z(n)} ≥ W �(n) − 2NE(T ). (24)

If E(T ) is finite we say that the traffic pattern is “regen-
erative”. In other words, it has property that on average it
requires a finite amount of time to reach the state where all
the input and output ports are free. Note that this property is
related to the traffic pattern and not to the scheduling algorithm
S. It is already shown in [7] that if the traffic is formed by
variable length packets with independent random size (with
finite average and variance), and if it is admissible Bernoulli
i.i.d. traffic, then the average value of T is bounded. In general,
it is not required that the traffic be Bernoulli i.i.d. so that
the regenerative property holds true. There is a much larger
class of distributions under which we get this property. For all
regenerative traffic patterns, we prove the stability of algorithm
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S . The following is a key lemma, which states a general result
about stability.

Lemma 2: A scheduling algorithm is rate-stable for any
admissible traffic which satisfies (1), if the average value of
the weight of the matching it uses at each time slot, is at most
away from the maximum weight by a bounded constant value,
i.e., if

E{W (n)|Z(n)} ≥ W �(n) − B, (25)

then the algorithm is stable.
Proof: Let Z̃(t) =

[
Z̃ij(t)

]
and D̃(t) =

[
D̃ij(t)

]
, then

consider the Lyapunov function L(t) defined as,

L(t) =
〈
Z̃(t), Z̃(t)

〉
=

∑

i,j

Z̃2
ij(t). (26)

It was shown in [6] that for MWM, L̇(t) < 0 if any Z̃ij > 0.
This in turn implies that if Z̃(0) = 0 then Z̃(t) = 0 for all t.
This proves the rate-stability of the switch. Hence, if we show
that L̇(t) < 0 if any Z̃ij > 0 for any scheduling algorithm
in consideration with property that the expected weight of the
matching used is at most a bounded constant away from the
weight of MWM, the rest of the proof for the rate-stability
follows from [6].

Consider all t such that the fluid quantities are differentiable
and hence L̇(t) is well defined. By definition,

∂L(t)
∂t

= 2

〈
∂Z̃(t)
∂t

, Z̃(t)

〉

= 2

〈
Λ − ∂D̃(t)

∂t
, Z̃(t)

〉

= 2
〈
Λ, Z̃(t)

〉
− 2

〈
Z̃(t),

∂D̃(t)
∂t

〉
. (27)

Substituting (12) we obtain;
〈

Z̃(t),
∂D̃(t)

∂t

〉
=

∑

m∈M

〈
Z̃(t),m

〉 ∂T̃m

∂t

=
∑

m∈M
W̃m(t)

∂T̃m

∂t
, (28)

where W̃m(t) =
〈
Z̃(t),m

〉
.

Let us define ∆(n) as the difference between the weight of
the MWM and weight of the matching obtained by scheduling
algorithm at time n. We know that E(∆(n)) is bounded by
some constant B which does not depend on n, and ∆(n) is
a positive random variable. Hence ∆(n) is bounded almost
surely. Thus, on the fluid limit scale we obtain that,

∆̃(t) = lim
r→∞

∆̂(rt)
r

≤ lim
r→∞

B̂

r
= 0. (29)

Thus, in the fluid scale the weight of the MWM and the
weight of the matching used by scheduler will be the same,
i.e.,

W̃m(t) = W̃ �(t). (30)

Therefore the algorithm will only use the matchings that
have the same weight as the maximum weight matching. If we
denote the set of matchings used by the scheduling algorithm
by M′, we get

〈
Z̃(t),

∂D̃
∂t

〉
=

∑

m∈M′
W̃ �(t)

∂T̃m(t)
∂t

= W̃ �(t)
∑

m∈M′

∂T̃m(t)
∂t

. (31)

Note that although M′ ⊆ M but since M′ is the set of
matchings used by the scheduler, we can modify (13) to

∑

m∈M′
T̃m(t) = t, (32)

changing m ∈ M to m ∈ M′. Now combining this result
with (31) we obtain

〈
Z̃(t),

∂D̃
∂t

〉
= W̃ �(t). (33)

Hence, from (27) the derivative of L(t) will be

∂L(t)
∂t

= 2
〈
Λ, Z̃(t)

〉
− 2W̃ �(t). (34)

From Birkoff-von Neumann’s theorem we know that any
doubly sub-stochastic (admissible) traffic matrix Λ can be
majorized by a weighted sum of finite permutation (matching)
matrices, i.e., we can find γk > 0 and mk ∈ M for
k = 1, . . . ,K such that

Λ �
K∑

k=1

γkmk,

K∑

k=1

γk < 1, (35)

where A � B iff ∀i, j aij ≤ bij (A = [aij ] and B = [bij ]).
By definition of the maximum weight matching, we get

〈
Z̃(t),mk

〉
≤ W̃ �(t). (36)

Combining (35), (34), (36), we obtain;

∂L(t)
∂t

≤ 2

〈
Z̃(t),

K∑

k=1

γkmk

〉
− 2W̃ �(t)

= 2
K∑

k=1

γk

〈
Z̃(t),mk

〉
− 2W̃ �(t)

≤ 2

(
K∑

k=1

γk − 1

)
W̃ �(t)

≤ 0. (37)

Hence, if any Z̃ij > 0 then W̃ �(t) �= 0 and therefore L̇(t) <
0, and this completes the proof.

Now combining this lemma with (24), we conclude that the
algorithm S is stable as long as E(T ) < ∞. Note that, the
proof does not require the bounded packet lengths condition,
but requires only independent packet lengths with bounded
mean. Hence,
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Theorem 1: Algorithm S is stable under regenerative ad-
missible input traffic.

We would like to note that, under PB-MWM algorithm
the time between successive occurrences of event when all
ports become free will also have the required property, i.e.,
under Bernoulli i.i.d. traffic for independent packet lengths
with bounded mean, again E(T ) < ∞. Hence the stability for
PB-MWM will again follow from Lemma 2, and . This shows
that as proved for S, the PB-MWM algorithm is also stable
under regenerative admissible traffic, which is more general
than the Bernoulli i.i.d. traffic.

Theorem 2: PB-MWM Algorithm is stable under regener-
ative admissible input traffic.

In the next section we show that there are still admissible
traffic patterns for which the PB-MWM algorithm is unstable.

V. PACKET-BASED ALGORITHM CLASSIFICATION

It is proved in [6] that cell-based MWM algorithm has
strong stability property that it is stable as long as the input
traffic is admissible and property (1) holds. It does not require
any other condition on distribution. In previous section we
proved the stability for PB-MWM (and S) for admissible
traffic with additional condition that it should be regenerative.
The question that arises is: whether the PB-MWM (or S)
is stable for all admissible input traffics which only satisfy
(1). We show that the answer is no, using a simple counter-
example.

Consider a switch operating under PB-MWM (or S) with
input traffic pattern as shown in Figure 2. Aij (i, j = 1, 2)
shows the arrival to V OQij . The traffic pattern is periodic with
period equal to 10. Note that no input or output is overloaded.
In fact λ1,1 = 0.8, λ1,2 = 0.1, λ2,1 = 0.1,and λ2,2 = 0.8. The
switch can use one of the two possible matchings, namely
m1 which is called the parallel matching and m2 the cross
matching, i.e.,

m1 =
[

1 0
0 1

]
, m2 =

[
0 1
1 0

]
. (38)

When the first packet arrives to the switch, the PB-MWM
uses parallel matching (m1), and then the scheduler is forced
to keep the same matching for 3 time slots till the packet
finishes. Before this packet is finished, a packet of length
2 comes to input 1 and it is scheduled for output 1 under
scheduling algorithm. In this way, under this traffic pattern, it
is easy to see that whenever one input port is free, the other
input port is busy serving a packet. Hence both input ports
are never free together. This forces the scheduling algorithm
to use the parallel schedule all the time. Therefore none of
the packets arriving at V OQ12 and V OQ21 will ever get the
chance to depart. Thus, the switch is unstable. Note that cell-
based MWM will be able to handle this traffic.

The counter-example described above also shows that any
work-conserving or maximal algorithm is not stable for that
particular traffic pattern. This motivates us to classify the
packet-scheduling algorithm in the following two classes:

Time

A22

A11

A12

A21

Fig. 2. Traffic pattern.

1) Work-conserving (non-waiting) algorithms : under these
algorithms an input is never left un-matched when it has
a packet for any of unmatched output.

2) Waiting algorithms : these algorithms are not always
work-conserving, that is, they wait (do not start sending
the packet although both input and output ports are free)
for an infinite number of time slots.

The above counter-example suggests the following general
result about the work-conserving (maximal) algorithms.

Theorem 3: There is no work-conserving packet-based
scheduling algorithm that is stable under any admissible traffic
(satisfying condition (1)).

Note that even if an algorithm waits for finite number of
time slots it becomes work-conserving after some time and
hence applying a traffic similar to Figure 2 after that time,
will make it unstable.

VI. A GENERALLY STABLE WAITING PACKET-BASED

ALGORITHM

In this section we describe a waiting algorithm. We will
show that the waiting-MWM algorithm will achieve 100%
throughput for any admissible traffic pattern and in particular,
it will be stable for the traffic pattern described in previ-
ous section for which PB-MWM or any packet-based work-
conserving scheduling policy was unstable.

The waiting algorithms are motivated from the counter-
example described in previous section for work-conserving
algorithms. The main problem is that the work-conserving
algorithm greedily matches the ports whenever possible, forc-
ing it to always keep the parallel matching in the counter-
example of Figure 2. One way to overcome this problem is
the following: when a packet gets served do not schedule the
freed ports till all ports become free and schedule according to
a full MWM schedule. The waiting, synchronizes the weight
of schedule to the weight of MWM schedule. Hence if waiting
is done frequently enough then the weight of schedule is
always not more than a bounded constant away from MWM,
by reasoning similar to Lemma 1. However note that waiting
means that during the waiting period some ports are losing
bandwidth. Hence if waiting is done too aggressively then the
algorithm can not utilize full bandwidth. These observations
lead to the following waiting algorithm which we denote as
PB-wMWM.

A. PB-wMWM

The switch runs at speedup (1 + ε) for arbitrarily small
positive constant ε > 0.
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Let the maximum length of any packet be L (this assump-
tion can be relaxed to mean packet length being finite which
will be described later). Divide the time into period of length
L
ε units. Thus time is considered as [0, L

ε ], [L
ε + 1, 2L

ε ] ,
and so on. Scheduling decisions are made only when any
of scheduled packets finishes its service and corresponding
ports get empty. Let one or more packets get served at time
n ∈ [kL

ε + 1, (k + 1)L
ε ]. Consider the following cases:

1) If n ∈ [kL
ε + 1, (k + 1)L

ε − L
1+ε ] use usual PB-MWM

to match the free ports as before.
2) Otherwise wait on all the packets till all scheduled

packets get over and all ports are free. After that, use
full MWM to re-schedule all the ports and serve.

Note that the above algorithm at most loses bandwidth of L
per every L

ε time slots. That is, it loses bandwidth of ε per time
slot at most. The algorithm runs at speedup (1 + ε) in order
to make up for this lost bandwidth. We state the following
theorem about stability of PB-wMWM.

Theorem 4: The PB-wMWM algorithm is stable (rate sta-
ble) under any admissible traffic (with property (1)) at at
speedup (1 + ε) for any ε > 0.

Proof: Note that the way algorithm is defined, every L
ε

time the weight of matching is same as weight of maximum
weight matching. Thus any time the algorithm is at worst L

ε -
imperfect. Hence by Lemma 1, the weight of the matching is
at most Bε = 2N L

ε away from MWM. The fraction of time
the algorithm idles on any of the ports is bounded above by

L
1+ε
L
ε

=
ε

1 + ε
. (39)

Under speedup (1 + ε) assuming the algorithm is scheduling
all the time, the equation (13) changes to

∑

m∈M
T̃m(t) = (1 + ε)t. (40)

But in our algorithm, since it is waiting, the above equation
may not be true. From above discussion, at worst ε fraction
of the bandwidth is lost in waiting. That is, at least

(1 + ε)
(

1 − ε

1 + ε

)
= 1, (41)

is the effective speedup obtained. Thus, the equation (13)of
the fluid model changes to

∑

m∈M
T̃m(t) ≥ t. (42)

In other words,

∑

m∈M

∂T̃m(t)
∂t

≥ 1. (43)

Now the arguments similar to ones used in proof of Lemma
2, yield the desired result that PB-wMWM is stable.

The above algorithm PB-wMWM, assumes the packet
lengths to be bounded and bound is known. But in reality
the might not be known. Further we do not require the packet

lengths to be bounded, but only mean packet length should
be bounded. To address this issue we modify the PB-wMWM
algorithm as follows.

B. Modified PB-WMWM (PB�-WMWM)

1) Initially start with the MWM algorithm and start waiting
immediately.

2) Compute the maximum amount of idling done by any
port. When the waiting starts, there are some unfinished
packets. Note that the maximum waiting done by any
port is at most the maximum length of any packet that
was under schedule. Let Le(1) represent the maximum
length of packets under schedule.

3) Set M(1) = Le(1)
ε and do the PB-MWM for M(1) time

slots and then start waiting after that.
4) Now let Le(2) be the maximum length of the packets

under schedule when the waiting starts at the end of
M(1) time slots.

5) Similarly define M(2) = Le(2)
ε .

6) Continue this process recursively over time. In general
we obtain the following recursive expression,

M(l) =
Le(l)

ε
. (44)

The two main properties required in the proof of Theorem
5 are: (a) The effective speed is at least 1, and (b) the weight
of schedule used by algorithm is at most bounded constant
away from the weight of MWM. In the above algorithm, let’s
compute these two quantities as follows:

(a) The effective bandwidth lost: In the lth period the total
idling per port is at most for time Le(l)

ε while the length of
period is

P (l) = M(l) +
Le(l)
1 + ε

=
Le(l)

ε
+ +

Le(l)
1 + ε

. (45)

Thus the fraction of bandwidth lost is at most

Le(l)
1+ε

P (l)
=

1
1+ε

1
ε + 1

1+ε

≤ ε

1 + ε
. (46)

Note that this bandwidth loss is same as the loss in PB-
wMWM computed in proof of Theorem 4.

(b) The difference between the weight of MWM and the
schedule will be at most M(l)(1 + ε) that is,

Le(l)(1 + ε)
ε

. (47)

Given that Le(l) has bounded mean and packet lengths are
independent we will obtain that the above quantity is bounded
almost surely as required in Lemma 2.

From above discussion we obtain the following Theorem.
Theorem 5: The PB�-wMWM is rate-stable for any admis-

sible traffic with property (1) and independent packet lengths
with bounded mean.
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VII. CONCLUSION

In this paper we considered the packet-scheduling algo-
rithms for IQ switch architecture. The result of [7] showed
that modification of cell-based MWM for packet scheduling
yields 100% throughput for any admissible Bernoulli i.i.d.
traffic with independent packet lengths of bounded mean. We
generalized this result for some what broader class of arrival
traffic pattern. We showed that there exists admissible traffic
pattern for which no work-conserving or maximal algorithm
is stable. To overcome this problem we proposed a new
class of waiting algorithms. Under the waiting algorithm the
switch becomes stable for any admissible traffic. This was
proved using fluid limit technique. It is interesting to note
that the work-conservation for packet scheduling is not always
beneficial in this sense, unlike cell-based scheduling. This
suggests that scheduling packet-based is quite different from
the cell-based scheduling.
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