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Abstract— Scalability concerns of QoS implemen-
tations have stipulated service architectures where
QoS is not provisioned separately to each flow, but
instead to aggregates of flows. This paper determines
stochastic bounds for the service experienced by a sin-
gle flow when resources are managed for aggregates
of flows and when the scheduling algorithms used in
the network are not known. Using a recently devel-
oped statistical network calculus, per-flow bounds can
be calculated for backlog, delay, and the burstiness
of output traffic.

Index Terms— Statistical Multiplexing, Quality-of-
Service, Admission Control, Network Calculus.

I. INTRODUCTION

Concerns about the scalability of Quality-of-
Service architectures which offer service guarantees
to individual network flows have led to the develop-
ment of network services, in which service guaran-
tees are provisioned to collections (‘aggregates’) of
flows and where the network core does not perform
any per-flow operations. The services defined in
the Differentiated Services (DiffServ) architecture
fall into this category. If at all, per-flow operations
are performed only at the network entrance, for
example, by regulating the amount of traffic from
a flow that can enter the network.

Scenarios where core switches do not perform
per-flow operations, and where the switch treats
flows from an aggregate in a uniform fashion are
sometimes referred to as ‘aggregate scheduling’.
Some deterministic bounds for aggregate schedul-
ing at a single node are summarized in [5]. The gen-
eral problem of stability with aggregate scheduling,
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that is, finiteness of delays and backlog, in a net-
work where per-flow regulation is only performed
at the network edge has been studied in [2], [17]
and, under a broader set of assumptions, in [4]. The
authors of [9] derive bounds on the utilization such
that end-to-end delay bounds in a network with
FIFO scheduling are finite, when the total number
of flows in the network is known and when leaky-
bucket regulators control the traffic from each flow
at the network entrance. These bounds are extended
to deadline-based scheduling algorithms in [20].

We are interested in computing statistical lower
bounds on the service given to a flow in a network
with aggregate provisioning, where the scheduling
algorithms at the nodes are unknown. We assume
that traffic is regulated at the network entrance by
per-flow conditioning algorithms, and that there is
no per-flow processing of traffic after it has entered
the network. At network nodes, service is provi-
sioned to aggregates of flows and we assume that
no information is available on how the provisioned
capacity is distributed to the flows. We assume that
each node is workconserving, but do not require
knowledge of the scheduling algorithms at the
nodes. When calculating the service experienced by
a single flow, treat that flow as having lower priority
than any other flow in the network. Then, the
service given to a single flow is computed from the
service allocated to the aggregate that is left unused
by the other flows. In a deterministic worst-case
setting, the unused capacity that is available to a
single flow will be small. However, by considering
statistical multiplexing of flows, we observe that
even under our pessimistic assumptions the lower
bound on the service given to a single flow is
considerable, especially if the number of flows is
large. The statistical service seen by an individual
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flow is much higher than the aggregate service
divided by the number of flows.

The results in this paper can be used for veri-
fication of service level agreements with network
service providers. If a network customer can mea-
sure its aggregate input to the network and the
throughput of only a single flow, the customer can
determine if the network service provider has pro-
visioned the resources specified in the agreement.
If the service seen by the single measured flow is
worse than the statistical lower bound paper, the
network service provider is likely to have under-
provisioned network resources.

We derive our results within the context of
a recently developed statistical network calculus.
Statistically multiplexed arrivals from flows are
presented in terms of effective envelopes [3], which
are bounds on aggregate traffic that hold with high
probability. Service guarantees to the flow aggre-
gate are expressed in terms of service curves, which
provide deterministic lower bounds on service guar-
antees. The service of a single flow is presented in
terms of an effective service curve, which provides
a lower bound on the service received by a single
flow that holds with high probability. Specifically,
we will be able to give a lower bound for the service
experienced by a single flow in terms of an effective
service curve of the form

Sε1+ε2
j =

[
SC − HT ε1 , ε2

C
]
+

where SC is the service provisioned to the flow
aggregate and HT ε1 , ε2

C expresses a (strong) effective
envelope of the statistically multiplexed arrivals
from all flows in the aggregate. The parameters ε1
and ε2 are violation probabilities and are generally
small, e.g., ε1, ε2 = 10−9.

If one is interested in statistical bounds on delay,
backlog, or loss to the aggregate as a whole (as
opposed to bounds for a single flow), we refer to
the rich literature on multiplexed regulated traffic
e.g., [3], [8], [12], [13], [15], [18], [19]. Generally,
these results focus on the analysis of a single node,
and do not consider a multi-node network.

The remaining sections of this paper are struc-
tured as follows. In Section II, we review relevant
results from the statistical network calculus in terms
of effective service curves, as presented in [6].
In Section III we discuss the arrivals and service

provisioning of the flow aggregate. We extend the
notion of effective envelopes from [3] to heteroge-
neous arrivals. In Section IV we present an effective
service curve for a single flow at a node in which
service is allocated to an aggregate of flows. In Sec-
tion V, we discuss numerical examples for single
node and feedforward networks and evaluate the
service guarantees achievable with the constructed
effective service curves.

II. NETWORK CALCULUS WITH STATISTICAL

SERVICE GUARANTEES

Consider the traffic arrivals from a flow to a
network node. The arrivals and departures, respec-
tively, of a flow in the time interval [0, t) are given
in terms of stochastic processes A(t) and D(t)
with non-negative increments, which are defined
over a joint probability space and which satisfy
D(t) ≤ A(t) for all t ≥ 0. We assume a continuous
time model with fluid left-continuous traffic arrival
functions. Packetization delays and other effects of
discrete-sized packets, such as the non-preemption
of packet transmissions, are ignored. The backlog
of a flow at time t, denoted by B(t), is given by
B(t) = A(t) − D(t). The delay at time t, denoted
as W (t), is the delay experienced by an arrival
which departs at time t, given by W (t) = inf{d ≥
0 | A(t − d) ≤ D(t)}. We will use A(x, y) and
D(x, y) to denote the arrivals and departures in the
time interval [x, y), with A(x, y) = A(y) − A(x)
and D(x, y) = D(y)−D(x). Moreover, we assume
that A(t) = D(t) = 0 for t < 0. When analyzing
delays in a network we ignore processing and
propagation delays.

We make the following assumptions on the ar-
rival functions.

(A1) Regulated arrivals. The arrivals A of a flow are
bounded by a function A∗, called the arrival
envelope,1 such that A(t+ τ) −A(t) ≤ A∗(τ)
for all t, τ ≥ 0. We assume that arrival en-
velopes are subadditive, that is, A∗(x + y) ≤
A∗(x) + A∗(y), for all x, y ≥ 0.

The assumption of an arrival envelope translates
into a requirement for per-flow traffic regulation
at the network ingress. For example, a peak-rate

1 A function E is called an envelope for a function f if
f(t + τ) − f(τ) ≤ E(t) for all t, τ ≥ 0.
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constrained leaky bucket regulator enforces that
traffic from a flow adheres to the envelope A∗(t) =
min(Pt, σ+ρt) for a peak rate parameter P , an av-
erage rate parameter ρ, and a burstiness parameter
σ.

Before we discuss the service guarantees we
introduce some operators. The convolution f ∗ g
of two functions f and g, is defined as f ∗
g(t) = infτ∈[0,t] {f(t − τ) + g(τ)} , and the de-
convolution f 
 g is defined as f 
 g(t) =
supτ≥0 {f(t + τ) − g(τ)}.

Service guarantees to a flow at a network node
are given in terms of service curves [10]. A mini-
mum service curve is a function S which specifies
a lower bound on the service given to a flow by
D(t) ≥ A∗S(t),∀t ≥ 0 . A maximum service curve
for a flow is a function S which specifies an upper
bound on the service by D(t) ≤ A ∗ S(t),∀t ≥ 0 .
In this paper, when service is allocated to flow
aggregates we assume that the service curves are
strict [5], in the sense that they guarantee the
minimum deterministic service whenever a flow
is backlogged, that is, D(t1, t2) ≥ S(t2 − t1)
whenever B(x) > 0 for all x ∈ (t1, t2).

To express probabilistic service guarantees, fol-
lowing [6], we define a (minimum) effective service
curve2 for an arrival process A as a nonnegative
function Sε that satisfies for all t > 0,

Pr
{
D(t) ≥ A ∗ Sε(t)

}
≥ 1 − ε . (1)

Given an effective service curve at a node, one can
derive probabilistic bounds on backlog, delay, and
the output process for effective service curves [6].
Specifically, the function A∗ 
Sε is a probabilistic
bound for the departures on [0, t], in the sense that,
for all t, τ > 0,

Pr {D(t, t + τ) ≤ A∗ 
 Sε(τ)} ≥ 1 − ε . (2)

Similarly, Sε provides a backlog bound as

Pr {B(t) ≤ A∗ 
 Sε(0)} ≥ 1 − ε . (3)

Finally,

dmax = inf {d ≥ 0 | ∀t ≥ 0 : A∗(t − d) ≤ Sε(t)}
(4)

2Henceforth, following the literature, the term ‘service
curve’ refers to a minimum service curve, unless stated other-
wise.

is a probabilistic delay bound that is violated with
probability at most ε. By setting ε = 0, the above
bounds correspond to the bounds of the determin-
istic calculus from [1].

If a flow passes through several nodes, each node
guaranteeing an effective service curve, then the
service offered by all nodes as a whole can be
expressed as a convolution of the individual service
curves.

Theorem 1: Effective Network Service Curve
[6]. Consider a flow that passes through H network
nodes in series. Let Ah and Dh denote the arrivals
and departures at the h-th node, with A1 = A,
Ah = Dh−1 for h = 2, . . . , H and DH = D.
Assume that effective service curves are given by
nondecreasing functions Sh,ε at each node (h =
1, . . . , H). Further, assume that there exists a num-
ber T ≥ 0 such that for all t ≥ 0,

Pr

{
Dh(t) ≥ inf

x∈[0,T ]

{
Ah(t − x) + Sh,ε(x)

}}

≥ 1 − ε . (5)

for h = 1, . . . , H . Then, for any choice of a > 0,3

Snet,ε′
= S1,ε ∗ . . . ∗ SH,ε ∗ δ(H−1)a (6)

is an effective network service curve, with violation
probability bounded by

ε′ ≤ Hε

(
1 + (H−1)

T + a

2a

)
. (7)

Note that the theorem depends on a time scale T .
The time scale can be established from a (deter-
ministic or probabilistic) bound on the length of
a busy period at a node, or from a priori backlog
or delay bounds. Also note that the given effective
network service curve deteriorates with the number
of nodes H . We refer to [6] (cf. Theorem 5), which
discusses when the assumption on the time scale T
can be relaxed, and what the implications are of
such a relaxation.

III. STATISTICAL MULTIPLEXING OF FLOWS

The fact that bursty or variable-rate traffic
sources require less resources per flow when multi-
ple flows are multiplexed is widely exploited for ca-
pacity provisioning of network traffic. In this paper,

3δτ is the impulse function with δτ (t) = ∞ if t > τ , and
δτ (t) = 0 if t ≤ τ .
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we express statistical multiplexing of flows using
the notion of effective envelopes from [3]. Effective
envelopes are functions that express probabilistic
upper bounds for the traffic from an aggregate of
flows. A desirable feature of effective envelopes as
compared with other methods that express statistical
multiplexing gain, e.g., effective bandwidth [7],
[14], is that effective envelopes are easily related
to the envelope functions used in the deterministic
network calculus.

A. Effective Envelopes for a Flow Aggregate

Let us now consider a set C of flows at a node,
and let Aj and Dj , respectively, denote the arrival
and departure processes for each flow j ∈ C.
We will refer to the set of flows as an aggregate
of flows. Let AC and DC denote the aggregate
arrivals and departures from the set C at a network
node, that is, AC(t) =

∑
j∈C Aj(t) and DC(t) =∑

j∈C Dj(t).
A deterministic arrival envelope for the aggregate

is simply given by A∗
C(t) =

∑
j∈C A∗

j (t). However,
such an envelope is pessimistic, and generally over-
estimates the bandwidth requirements of the aggre-
gate. Therefore, we describe the traffic arrivals from
an aggregate with a probabilistic bound, namely the
effective envelope [3].

Given a set C of flows with arrival process AC ,
an effective envelope for AC is a function Gε

C such
that for all t, τ ≥ 0,

Pr
{
AC(t, t + τ) ≤ Gε

C(τ)
}

≥ 1 − ε . (8)

A strong effective envelope for AC for intervals of
length � is a subadditive function H�, ε

C such that for
each interval I� of length �,

Pr
{

∀[t, t + τ ] ⊆ I� : AC(t, t + τ) ≤ H�, ε
C (τ)

}

≥ 1 − ε . (9)

Thus, an effective envelope provides a stationary
bound for arrivals, which is violated with proba-
bility at most ε. A strong effective envelope is, in
addition, a uniform bound for all subintervals in a
larger interval.4 Strong effective envelopes are used

4In [3], the effective envelope is called local effective enve-
lope and the strong effective envelope is called global effective
envelope.

in our construction of effective service curves for
a single flow with aggregate provisioning, and are
constructed from an effective envelope.

B. Constructing Effective Envelopes for Heteroge-
neous Traffic

To construct effective envelopes for an aggregate
of flows we consider an adversarial traffic model
[12], where arrivals of flows to the network can
individually exhibit a worst-case arrival pattern as
allowed by assumption (A1), but sources do not
conspire to construct a joint worst-case. In addition
to assumption (A1) from Section II, we assume that
the following hold for the arrival processes.

(A2) Stationarity.5 For all t ≥ 0, t′ ≥ 0 and for any
τ > 0 and any x ≥ 0, Pr{Ai(t, t+τ) ≤ x} =
Pr{Ai(t′, t′ + τ) ≤ x}.

(A3) Independence. The arrivals from two flows
i, j ∈ C, Ai and Aj , are stochastically inde-
pendent.

Since buffering and scheduling distort traffic and in-
troduce correlations between flows, we only require
assumptions (A2)–(A3) to hold for the arrivals at
the first node of a flow’s route through the network.

The following construction extends the deriva-
tions in [3] to an aggregate of flows with heteroge-
neous arrival envelopes, and is based on an applica-
tion of the Chernoff bound [16]. By heterogeneity,
we mean that the arrival envelopes A∗

i of flows
can be different for each flow. The construction of
effective envelopes Gε

C for a set C of flows uses
the moment generating function of Aj , denoted
as Mj(s, t) = E[eAj(τ,τ+t)s]. As shown in [3], if
assumptions (A1)–(A3) hold, we obtain Mj(s, t) ≤
M j(s, t), where

M j(s, t) = 1 +
ρj t

A∗
j (t)

(
esA∗

j (t) − 1
)

. (10)

With assumption (A3) and with the bound in
Eqn. (10), we obtain from the Chernoff bound that

Pr{AC(t) ≥ x} ≤ e−xs
∏

j∈C
M j(s, t) . (11)

5We only need the stationary bound E[Aj(t, t + τ)] ≤ ρjτ
where ρj := limτ→∞ A∗

j (τ)/τ . This bound follows from (A1)
and (A2).
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Setting the right hand side equal to ε and solving
for x gives

x =
1
s

(∑

j∈C
logM j(s, t) − log ε

)
. (12)

For any choice of s > 0, Eqn. (12) is an effective
envelope for the arrivals from C. We select the value
of the effective envelope at t to be

Gε
C(t) = inf

s>0

1
s

(∑

j∈C
logM j(s, t) − log ε

)
. (13)

With this choice, Gε
C(t) ≤ A∗

C(t) is always satisfied.
Since the derivative of the right hand side of
Eqn. (13) is increasing in s, there is at most one
minimum, which can be found by searching for
the zero of the derivative. Note the similarity of
Eqn. (13) to the effective bandwidth in [7], [14].

Given an effective envelope Gε
C for a set C, we

can construct a strong effective envelope H�, ε
C .

Lemma 1: Given an effective envelope Gε
C for

a set C of heterogeneous flows satisfying (A1) −
−(A3). There exists a strong effective envelope for
the arrivals in C satisfying

H�,ε′

C (t) ≤ Gε
C

(
γt + a

)
, 0 ≤ t ≤ � ,

where γ > 1 and a ∈ (0, �) are arbitrary parame-
ters, and

ε′ ≤ ε · �
a

√
γ + 1

√
γ − 1

.

The quality of the bound in the lemma for a given
value of t depends on the selection of the two
parameters a and γ. To get a close-to-optimal bound
for a time scale near t∗, one should choose a ≈√
γ(γ−1)t∗. The largest subadditive function below

Gε
C

(
γt + a

)
is a strong effective envelope.

Proof: Fix a0 ∈ (0, �) and γ0 > 1, and set

τi = a0
γi

0 − 1
γ0 − 1

xi = τi+1 − τi = a0γ
i
0

where i = 1, 2, . . . , n and n is the smallest number
with τn ≥ �. Consider the intervals Iij = [jxi, jxi+
τi+1] for j = 0, 1, . . . , � �−τi+1

xi
�. If τ ≤ τi, then

every interval Iτ ⊆ [0, �] of length τ is contained
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Fig. 1. Comparison of effective envelopes (dash-dotted lines)
and strong effective envelopes (solid lines) for Type-1 flow
from Section V for t ≤ 100 ms, ε = 10−9, and for number of
flows N = 100, 1000, 10000. The curves show the normalized
curves Gε

C/|C| and H�, ε
C /|C| (|C| = N ). For constructing H�, ε

C ,
we use � = 2 sec, γ = 1.01 and t∗ = 10 ms.

in one of the Iij . The total number N of intervals
Iij is bounded by

N ≤
n∑

i=1

⌈� − τi+1

xi

⌉
+ 1 (14)

≤
∞∑

i=1

�

a0

1
γi

0
=

�

a0(γ0 − 1)
. (15)

It follows that

Pr{∃[x, x + τ ] ⊆ [0, �] :

A(x, x + τ) > Gε(γ2
0 + (1 + γ0)a0)}

≤ Pr{∃i, j : A(jxi, jxi + τi+1) > Gε(τi+1)}(16)

≤ Nε . (17)

Eqn. (16) holds since τi−1 < τ ≤ τi implies

τi+1 = γ2
0τi−1 + (γ0 + 1)ao (18)

≤ γ2
0τ + (γ0 + 1)a0 . (19)

Setting γ0 =
√
γ and a0 = a√

γ+1 completes the
proof. ✷

In Figure 1 we illustrate the multiplexing gain
captured by effective and strong effective en-
velopes. We plot the effective envelope for N iden-
tical flows with parameters as given in Section V,
normalized by the number N of flows. The results
show that, as N grows large, the effective envelope
is close to the average traffic rate.
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C. Service Provisioning and Busy Period Estimate

We assume that the service allocated to the
aggregate arrivals is given by deterministic service
curves. A lower bound of the service given to
the aggregate is expressed in terms of a strict
minimum service curve SC and an upper bound for
the service is given by a maximum service curve
SC . We do not make assumptions on a specific
scheduling algorithm at the node, as long as it can
guarantee a strict minimum service curve. For ex-
ample, any work-conserving scheduling algorithm
that allocates a constant rate to the aggregate of
flows delivers a strict minimum service guarantee.
Generally, scheduling algorithms do not specify an
explicit maximum service curve. In these cases, a
maximum service curve of the aggregate can be
given as SC(t) = Ct, where C is the output link
capacity of the node.

With the traffic characterization A∗
C and the min-

imum service guarantee SC we can derive bounds
on the busy period at a node. We define the busy
period for a given time t as the maximal time
interval containing t during which the backlog from
the flows in C remains positive. The beginning of
the busy period for a time t is denoted by t with
t = sup{τ ≤ t : B(τ) = 0}. For a strict service
curve SC , the deterministic network calculus yields
that the number

T0 = inf {τ > 0 | A∗
C(τ) ≤ SC(τ)} (20)

provides an upper bound for the length of any busy
period [5], i.e., for all t ≥ 0,

t − t ≤ T0. (21)

Therefore, in any interval [t − T0, t], the backlog
must be zero at least once. Since the bound T0 can
be conservative, the following lemma can be used
to find a less conservative estimate.

Lemma 2: Consider an aggregate C of flows with
given arrival and departure processes AC(t) and
DC(t), a strict service curve SC(t), and T0 as given
in Eqn. (20), for all t ≥ 0. Let HT0,ε

C be a strong
effective envelope for the arrivals in time intervals
of length T0, for some ε < 1. If there exists a
number T ε < T0 such that

HT0,ε
C (T ε) ≤ SC(T ε) , (22)

then T ε is a probabilistic bound on the busy period,
in the sense that for all t ≥ 0,

Pr
{
t − t ≤ T ε

}
≥ 1 − ε . (23)

Proof: Fix t > 0. By Eqn. (20) we have t−t ≤ T0.
We compute

Pr{t − t > T ε}
≤ Pr

{
BC(t + T ε) > 0 and

DC(t, t + T ε) ≥ SC(T ε)
}

(24)

≤ Pr
{
AC(t, t + T ε) > HT0,ε

C (T ε)
}

(25)

≤ ε . (26)

Eqn. (24) uses that the backlog is positive in the
entire interval (t, t), and the definition of the strict
service curve SC . Eqn. (25) uses that BC(t+T ε) >
0 implies AC(t, t + T ε) > DC(t, t + T ε), and the
assumption that SC(T ε) ≥ HT0,ε

C (T ε). Eqn. (26)
follows by applying the definition of HT0,ε

C to the
interval IT0 = [t−T0, t], which contains the interval
[t, t+T ε) by assumption. This proves the claim. ✷

The lemma allows us to replace a deterministic
bound on the busy period by a (possibly less pes-
simistic) probabilistic bound. A similar argument
can be used to improve a given probabilistic bound.
If, in all assumptions of the lemma, the determin-
istic bound T0 is replaced by a probabilistic bound
T1, which satisfies Pr

{
t − t ≤ T1

}
≥ 1 − ε1 ,

then we can construct another probabilistic bound
T2, with Pr

{
t−t ≤ T2

}
≥ 1−(ε1 +ε2) . We can

thus recursively define a sequence of probabilistic
bounds Tn on the busy period satisfying Pr

{
t−t ≤

Tn

}
≥ 1−nε . Since the bound Tn decreases with

n while the violation probability nε increases, one
needs to pick a ‘good’ value for n.

In Figure 2, we illustrate the busy period esti-
mates for a link with capacity C = 100 Mbps
with Type-1 traffic as described in Section V. The
figure shows the deterministic bound T0 according
to Eqn. (20) and the probabilistic bound T1 = T ε

from Lemma 2 with ε = 10−9. The figure also
includes a bound T2 with probability 1−2ε obtained
by a repeated application of Lemma 2. The busy
periods are evaluated for N = 250 − 500 flows.
The graph indicates that a single application of
Lemma 2 significantly reduces the estimate on the
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Fig. 2. Busy period estimates with Type-1 flow traffic from
Section V for a link with C = 100 Mbps. The number Tn is
a bound for the busy period with probability 1 − nε.

busy period, whereas successive iterations of the
lemma do not result in noticeable improvements.

The busy period bound can be applied in Theo-
rem 1 to give a bound on the range of the infimum
in Eqn. (5). Note, however, that the above busy pe-
riod bounds assume deterministic arrival envelopes,
which are generally only available for the first node
in the network.

For strict service curves SC , we can directly pro-
vide busy period bounds when a priori bounds on
backlog or delays are available [6]. Given a backlog
bound b∗ that satisfies Pr {B(t) > b∗} ≤ ε1 and T
such that Gε2

C (T ) + b∗ ≤ SC(T ), or given a delay
bound d∗ that satisfies Pr {D(t) > AC(t − d∗)} ≤
ε1 and T such that Gε2

C (T +d∗) ≤ SC(T ), then one
can obtain from the definition of the strict service
curve that Pr {t − t > T} ≤ ε1 + ε2.

IV. EFFECTIVE SERVICE FOR A FLOW WITH

AGGREGATE SERVICE

Given the aggregate of flows and given the ser-
vice provisioned to the aggregate as described in the
previous section, we now address the problem of
determining an effective service curve for a single
flow from the aggregate. The effective service curve
that we construct expresses the service as seen by
a single flow in terms of a probabilistic bound.
The basic idea is to construct the effective service
curve for an individual flow from the leftover
capacity that is not used by the aggregate. Roughly
speaking, the main result is that a probabilistic
lower bound for the service of a single flow from

the aggregate can be given by the effective service
curve Sε1+ε2

j =
[
SC − HT ε1 , ε2

C
]
+ , where ε1 + ε2

is the probability that the effective service curve is
violated, SC is the service curve for the aggregate,
HT ε1 , ε2

C is a strong effective envelope for the aggre-
gate, and T ε1 is a probabilistic busy period bound.
This effective service curve will be obtained from
the following theorem.

Theorem 2: Effective service curve for a single
flow in an aggregate of flows. Given a set C
of flows with a strict deterministic service curve
SC . Assume that the set C − {j} is allocated a
deterministic maximum service curve S−j . Assume
a probabilistic bound T ε1 on the busy period as
given in Lemma 2 and let HT ε1 , ε2

−j denote a strong
effective envelope for the arrivals from C − {j}
for time intervals of length T ε1 . Then the function
defined on the interval [0, T ε1 ] by

Sε1+ε2
j =

[
SC − HT ε1 , ε2

−j ∗ S−j

]
+ (27)

is an effective service curve for flow j ∈ C, with
violation probability ε1 + ε2. 6 More precisely,

Pr

{
Dj(t) ≥ inf

x≤T ε1

{
Aj(t − x) + Sε1+ε2

j (x)
}}

≥ 1 − (ε1 + ε2) . (28)

Thus, a probabilistic service allocation for a sin-
gle flow can be obtained from the service allocation
of an aggregate by subtracting a probabilistic upper
bound on the departures from all other flows.

The function Sε1+ε2
j as defined in Eqn. (27)

need not be monotonic in t. However, one can
make Sε1+ε2

j monotonic by replacing it with the
largest nondecreasing function below Sε1+ε2

j . If SC

is convex and HT ε
1 , ε2

−j is concave, then Sε1+ε2
j is

always convex and nondecreasing.

Proof: Fix t ≥ 0. Then

Dj(t, t) = DC(t, t) − D−j(t, t) (29)

≥ SC(t − t) − A−j ∗ S−j(t) + A−j(t) (30)

≥ SC(t − t)

− inf
x≤t−t

{
A−j(t, t − x) + S−j(x)

}
.(31)

In Eqn. (30), we have used the definition of the ser-
vice curves SC and S−j , and the fact that D−j(t) =

6We use “[f ]+(t) = max{f(t), 0}”.
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A−j(t) by definition of t. In Eqn. (31), we have
expanded the convolution operator, restricted the
range of the infimum, and taken A−j under the
infimum. Since Dj(t) = Aj(t) and Dj(t, t) ≥ 0,
this implies

Dj(t) ≥ Aj(t) +
[
SC(t − t)

− inf
x≤t−t

{
A−j(t, t − x) + S−j(x)

}]
+ .(32)

Let Sε1+ε2
j =

[
SC − (HT ε1 ,ε2

−j ∗ S−j)
]
+ be the

function defined in the statement of the theorem.
Then

Pr
{
Dj(t) ≥ inf

x≤T ε1
{Aj(t − x) + Sε1+ε2

j (x)}
}
(33)

≥ Pr

{
Dj(t) ≥ Aj(t) + Sε1+ε2

j (t − t)
and t − t ≤ T ε1

}
(34)

≥ Pr






∀t0 ∈ [t − T ε1 , t] :
A−j(t0, t) ≤ HT ε1 ,ε2

−j (t − t0)
and t − t ≤ T ε1




 (35)

≥ 1 − (ε1 + ε2) , (36)

as claimed. ✷

Since the given effective service curve for the ag-
gregate applies to all (workconserving) scheduling
algorithms, it is pessimistic for most, particularly,
FIFO. It is least conservative if flows in the set
C − {j} are transmitted with higher priority than
flow j.

There is a corresponding formulation of a per-
flow service curve in the deterministic calculus,
which can be found in [5], [11]. With the same
notation as in Theorem 2, we can write a determin-
istic per-flow service guarantee as

Sj =
[
SC − A∗

−j ∗ S−j

]

+
(37)

However, since A∗
−j =

∑
k∈C,k 
=j A

∗
k is large and

does not exploit statistical multiplexing, the bounds
with such a service curve may not have practical
relevance.

The following corollary states the previously
mentioned simpler bound on the minimum effective
service to flow j. This bound does not assume that
a maximum service curve is available and estimates
HT ε1 , ε2

−j by HT ε1 , ε2

C .
Corollary 1: The conclusions of Theorem 2 hold

without change for

Sε1+ε2
j =

[
SC − HT ε1 , ε2

C
]
+ .

Proof. The claim holds since HT ε1 , ε2

C is a strong
effective envelope for the flows in C − {j}, and
since f ≥ f ∗ g follows by the definition of the
convolution operator. ✷

Thus, we have derived a lower bound on the
effective service to a flow even when information
is available only about the aggregate of flows. In
the next section, we will see that even with the
pessimistic lower bound of this section, we are able
to extract a significant amount of multiplexing gain.

V. EVALUATION

We now present numerical examples for the
effective service curve. We assume that individual
flows are regulated at the entrance to the network by
using a peak rate limited leaky bucket with arrival
envelope A∗

j (τ) = min {Pjτ, σj + ρjτ} for flow j,
where Pj is the peak rate, ρj ≤ Pj is the average
rate, and σj is a burst size parameter. We consider
two types of flows with parameters as given in the
following table:

Type Peak Rate Mean Rate Burst Size
Pj (Mbps) ρj (Mbps) σj (bits)

Type 1 1.5 0.15 95400
Type 2 6.0 0.15 10345

In the following we use A∗
1 and A∗

2 to denote the
arrival envelope of a Type-1 and a Type-2 flow,
respectively. We assume that the arrivals satisfy
assumptions (A1)–(A3), and we construct effective
envelopes as shown in Subsection III-B.

Service curves for the aggregate have a constant-
rate form. We set SC(t) = Nc t, where c > 0 is
referred to as ‘per-flow capacity’ and N = |C| is
the number of flows. We assume that the maximum
service curve is given by SC(t) = C t, where C is
the link capacity.

For the calculation of strong effective envelopes
and effective service curves we use the busy period
bounds from Subsection III-C. We use a busy
period bound of T = 2 sec, which satisfies the
deterministic busy period bound in the sense of
Eqn. (21). By Lemma 1, we set γ = 1.01 and
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Fig. 3. Example 1: Number of flows admitted on a link
with capacity C to satisfy a delay bound of d = 10 ms with
probability 1 − ε.

t∗ = 10 ms.7 For the construction of effective
service curves Sε

j we apply the simpler and more
conservative bound from Corollary 1, rather than
the bound from Theorem 2.

We compare the results obtained with effective
service curves with the deterministic bound from
Eqn. (37), as well as to the following non-statistical
per-flow service provisioning schemes.

• A peak rate allocation, where each flow j has
a service curve of Sj(t) = Pjt.

• An average rate allocation, where each flow
j has a service curve of Sj(t) = ρjt.

• A deterministic per-flow allocation which de-

7In our examples, the numerical computations for effective
envelopes are done in discrete intervals of length ∆ = 0.2 ms,
and not in continuous time. This may introduce discretization
errors.

livers worst-case delay guarantees to each
flow. The resources allocated to a flow
are determined by the smallest (determin-
istic) constant-rate service curve Sj(t) =
ĉj t that satisfies the delay bound d, i.e.,

ĉj = inf
{
c ≥ 0 | ∀t ≥ 0 : A∗

j (t − d) ≤ c t
}

.
This allocation method assumes that the net-
work nodes perform per-flow scheduling oper-
ations.

A. Example 1: Effective Service Curves at a Single
Node

We consider an aggregate of N flows, where
flows are either all Type-1 or all Type-2 flows. We
use the effective service curve from Corollary 1
to determine how many flows can be provisioned
on a link to meet a required service guarantee.
Specifically, we determine how many flows can
be put on a link with capacity C such that the
probabilistic delay bound in Eqn. (4) does not
exceed d = 10 ms. To do this, we find the largest
N such that Sε

j (t) = [C t − HT,ε
C (t)]+ assures via

Eqn. (4) a delay bound d with probability 1 − ε.
In Figures 3(a) and 3(b), we show the number of

flows that can receive the probabilistic delay bound
of d = 10 ms as a function of the network capacity.
The figures include plots using effective service
curves with ε = 10−3, 10−6, 10−9. We also include
results for an average rate allocation (which does
not satisfy the delay bound), the results for a peak
rate allocation, and the results for a deterministic
per flow allocation, which is Sj(t) ≈ 1.3140 t
for Type-1 flows and Sj(t) ≈ 0.9016 t for Type-
2 flows.

For small C, the number of flows is too small
to extract multiplexing gain, and, consequently, the
effective service curve constructed from Corollary 1
is inferior to a per-flow deterministic service curve
allocation. On the other hand, when C grows large,
the number of flows that can be admitted with
the effective service curves are close to that of an
average rate allocation.

B. Example 2: Multiple Nodes with Cross Traffic

We consider a network with two nodes, as shown
in Figure 4, and determine the network service
curve for a flow in this network. There are N1 flows
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Fig. 4. Example 2: A network with two nodes and with cross
traffic. The cross-traffic consists of N2 Type-2 flows at the first
node and at the second node.
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from Type-1 flows that pass through both nodes.
We refer to these flows as ‘through flows’. At each
node there are N2 cross flows from Type-2. We set
the number of through and cross flows to be equal
at each node (N1 = N2).

We assume that the service guarantee for the
aggregate of N1 + N2 flows at the first node is
SC(t) = (N1ĉ1 + N2ĉ) t, where ĉ1 = 1.3140 and
ĉ2 = 0.9016. These service curves guarantee a
deterministic delay bound of d = 10 ms for each

Type-1 or Type-2 flow, if each flow receives a rate
allocation of ĉ1 or ĉ2, respectively.

With this aggregate allocation we now construct
effective service curves for different values of N1,
N2, and for ε = 10−9. The effective service curves
for a Type-1 through flow at the first node and
second node, respectively, are denoted by S1,ε

1 and
S2,ε

1 , and are given by Sh,ε(t) = [(N1ĉ1 +N2ĉ) t−
Hh,T,ε

C (t)]+ (h = 1, 2) according to Corollary 1,
where Hh,T,ε

C is the strong effective envelope of
the aggregate of all flows at the h-th node. In the
effective service curve, since T is a deterministic
bound, the violation probability of the busy period
is zero. Once we have the effective service curve
for each node, we can calculate the network service
curve Snet,ε

1 = S1,ε
1 ∗ S2,ε

1 ∗ δ(H−1)a, according
to Theorem 1 with H = 2 and a = 1 ms, and
determine probabilistic delay bounds from Eqn. (4).

The calculation of H1,T,ε
C is straightforward as

described in Subsection III-B. The calculation of
H2,T,ε

C at the second node, however, requires some
thought. Note that, for the through flows, we cannot
assume that the arrivals at the second node are
independent. Therefore, we need to consider the
entire set of N1 through flows as a group. At the
first node, the group of N1 Type-1 flows obtains
an effective service curve of S1, ε

N1
(t) = [(N1ĉ1 +

N2ĉ) t − H1,T, ε
N2

(t)]+, where the subscripts (in a
slight abuse of notation) indicate the set of flows,
and where H1,T, ε

N2
is a strong effective envelope

for the Type-2 flows at the first node, which is
constructed as described in Subsection III-B. With
the statistical bound in Eqn. (2) we can construct
an effective envelope for the Type-1 departures
from the first node by A∗

N1

 S1, ε

N1
. This effective

envelope can be turned into a strong envelope via
Lemma 1. Let us call this envelope H2,T,ε

N1
. The

strong effective envelope for the Type-2 flows at
the second node, denoted by H2,T, ε

N2
, is same as

H1,T, ε
N2

. Finally, the sum H2,T,2ε
C = H2,T, ε

N1
+H2,T, ε

N2

gives us a strong effective envelope for all arrivals
at the second node. As a last issue, we need to
ensure that T is selected so that it is greater than the
busy period at each node. Here, we use a worst-case
estimate (using the deterministic network calculus)
to provide us with such a bound.

In Figure 5, we plot the resulting effective net-
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work service curves for N1, N2 = 100, 1000, 10000
flows. A comparison shows that for N1 > 100, the
statistical lower bound of the service to a single
through flow offers more service than a determin-
istic per-flow allocation. Thus, when the number
of flows is large, the aggregate provisioning will
result in lower, albeit statistical, delay bounds. This
point is emphasized in Figure 6, where we plot the
statistical delay bounds achieved with the network
service curve by applying Eqn. (4) as a function of
the number of flows N1. If N1 > 100, the delay
bounds offered by our statistical lower bound on
the service are better than a deterministic per-flow
allocation.

VI. CONCLUSION

We have presented a method to compute statis-
tical lower bounds on the service given to a single
flow in a network in which service is provisioned to
aggregates of flows. The lower bounds assume that
the service allocated to the aggregate workconserv-
ing, but does not assume that the scheduling algo-
rithms in the network are known. The derivations
were done in the context of a statistical network
calculus that expresses the lower bound of the
service given to a flow in terms of an effective
service curve. By describing the service at each
node with an effective service curve, the service
given by the network as a whole is simply expressed
as a concatenation of the per-node service curves.
Thus, we were able to derive probabilistic end-to-
end guarantees. The calculus requires that bounds
on the busy period, or a priori bounds on backlog
or delay are available. We have shown how such
bounds can be derived.
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