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Abstract— A wireless network consisting of a large number of 
small sensors with low-power transceivers can be an effective tool 
for gathering data in a variety of environments. The data 
collected by each sensor is communicated through the network to 
a single processing center that uses all reported data to determine 
characteristics of the environment or detect an event. The 
communication or message passing process must be designed to 
conserve the limited energy resources of the sensors. Clustering 
sensors into groups, so that sensors communicate information 
only to clusterheads and then the clusterheads communicate the 
aggregated information to the processing center, may save 
energy. In this paper, we propose a distributed, randomized 
clustering algorithm to organize the sensors in a wireless sensor 
network into clusters. We then extend this algorithm to generate 
a hierarchy of clusterheads and observe that the energy savings 
increase with the number of levels in the hierarchy.  Results in 
stochastic geometry are used to derive solutions for the values of 
parameters of our algorithm that minimize the total energy spent 
in the network when all sensors report data through the 
clusterheads to the processing center. 

Keywords- Sensor Networks; Clustering Methods; Voronoi 
Tessellations; Algorithms. 

I. INTRODUCTION 
Recent advances in wireless communications and 

microelectro-mechanical systems have motivated the 
development of extremely small, low-cost sensors that possess 
sensing, signal processing and wireless communication 
capabilities. These sensors can be deployed at a cost much 
lower than traditional wired sensor systems. The Smart Dust 
Project at University of California, Berkeley [14, 15, 16] and 
WINS Project at UCLA [1, 17], are two of the research projects 
attempting to build such low-cost and extremely small 
(approximately 1 cubic millimeter) sensors. An ad-hoc wireless 
network of large numbers of such inexpensive but less reliable 
and accurate sensors can be used in a wide variety of 
commercial and military applications. These include target 
tracking, security, environmental monitoring, system control, 
etc.  

To keep the cost and size of these sensors small, they are 
equipped with small batteries that can store at most 1 Joule 
[12]. This puts significant constraints on the power available 
for communications, thus limiting both the transmission range 
and the data rate. A sensor in such a network can therefore 

communicate directly only with other sensors that are within a 
small distance. To enable communication between sensors not 
within each other’s communication range, the sensors form a 
multi-hop communication network. 

Sensors in these multi-hop networks detect events and then 
communicate the collected information to a central location 
where parameters characterizing these events are estimated. 
The cost of transmitting a bit is higher than a computation [1] 
and hence it may be advantageous to organize the sensors into 
clusters. In the clustered environment, the data gathered by the 
sensors is communicated to the data processing center through 
a hierarchy of clusterheads. The processing center determines 
the final estimates of the parameters in question using the 
information communicated by the clusterheads. The data 
processing center can be a specialized device or just one of 
these sensors itself. Since the sensors are now communicating 
data over smaller distances in the clustered environment, the 
energy spent in the network will be much lower than the energy 
spent when every sensor communicates directly to the 
information processing center.  

Many clustering algorithms in various contexts have been 
proposed [2-7, 23-28]. These algorithms are mostly heuristic in 
nature and aim at generating the minimum number of clusters 
such that any node in any cluster is at most d  hops away from 
the clusterhead. Most of these algorithms have a time 
complexity of )(nO , where n  is the total number of nodes. 
Many of them also demand time synchronization among the 
nodes, which makes them suitable only for networks with a 
small number of sensors.  

The Max-Min d-Cluster Algorithm [5] generates d-hop 
clusters with a run-time of )(dO rounds.  But this algorithm 
does not ensure that the energy used in communicating 
information to the information center is minimized. The 
clustering algorithm proposed in [7] aims at maximizing the 
network lifetime, but it assumes that each node is aware of the 
whole network topology, which is usually impossible for 
wireless sensor networks which have a large number of nodes. 
Many of these clustering algorithms [23, 26, 27, 28] are 
specifically designed with an objective of generating stable 
clusters in environments with mobile nodes. But in a typical 
wireless sensor network, the sensors’ locations are fixed and 
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the instability of clusters due to mobility of sensors is not an 
issue. 

For wireless sensor networks with a large number of 
energy-constrained sensors, it is very important to design a fast 
algorithm to organize sensors in clusters to minimize the 
energy used to communicate information from all nodes to the 
processing center. In this paper, we propose a fast, randomized, 
distributed algorithm for organizing the sensors in a wireless 
sensor network in a hierarchy of clusters with an objective of 
minimizing the energy spent in communicating the information 
to the information processing center. We have used results in 
stochastic geometry to derive values of parameters for the 
algorithm that minimize the energy spent in the network of 
sensors. 

II. RELATED WORK 
Various issues in the design of wireless sensor networks − 

design of low-power signal processing architectures, low-
power sensing interfaces, energy efficient wireless media 
access control and routing protocols [3, 6, 20], low-power 
security protocols and key management architectures [29-30], 
localization systems [21, 22], etc. − have been areas of 
extensive research in recent years. Gupta and Kumar have 
analyzed the capacity of wireless ad hoc networks [18] and 
derived the critical power at which a node in a wireless ad hoc 
network should communicate to form a connected network 
with probability one [19].  

Many clustering algorithms in various contexts have also 
been proposed in the past [2-7, 23-28], but to our knowledge, 
none of these algorithms aim at minimizing the energy spent in 
the system. Most of these algorithms are heuristic in nature and 
their aim is to generate the minimum number of clusters such 
that a node in any cluster is at the most d hops away from the 
clusterhead. In our context, generating the minimum number of 
clusters might not ensure minimum energy usage.  

In the Linked Cluster Algorithm [2], a node becomes the 
clusterhead if it has the highest identity among all nodes within 
one hop of itself or among all nodes within one hop of one of 
its neighbors. This algorithm was improved by the LCA2 
algorithm [8], which generates a smaller number of clusters. 
The LCA2 algorithm elects as a clusterhead the node with the 
lowest id among all nodes that are neither a clusterhead nor are 
within 1-hop of the already chosen clusterheads. The algorithm 
proposed in [9], chooses the node with highest degree among 
its 1–hop neighbors as a clusterhead.   

In [4], the authors propose a distributed algorithm that is 
similar to the LCA2 algorithm. In [28], the authors propose two 
load balancing heuristics for mobile ad hoc networks. The first 
heuristic, when applied to a node-id based clustering algorithm 
like LCA or LCA2, leads to longer, low-variance clusterhead 
duration. The other heuristic is for degree-based clustering 
algorithms. Degree-based algorithms, in conjunction with the 
proposed load balancing heuristic, produce longer clusterhead 
duration.  

The Weighted Clustering Algorithm (WCA) elects a node 
as a clusterhead based on the number of neighbors, 
transmission power, battery-life and mobility rate of the node 

[27]. The algorithm also restricts the number of nodes in a 
cluster so that the performance of the MAC protocol is not 
degraded.  

The Distributed Clustering Algorithm (DCA) uses weights 
associated with nodes to elect clusterheads [25]. These weights 
are generic and can be defined based on the application. It 
elects the node that has the highest weight among its 1-hop 
neighbors as the clusterhead. The DCA algorithm is suitable for 
networks in which nodes are static or moving at a very low 
speed. The Distributed and Mobility-Adaptive Clustering 
Algorithm (DMAC) modifies the DCA algorithm to allow node 
mobility during or after the cluster set-up phase [26].  

All of the above algorithms generate 1-hop clusters, require 
synchronized clocks and have a complexity of )(nO . This 
makes them suitable only for networks with a small number of 
nodes.  

The Max-Min d-cluster Algorithm proposed in [5] 
generates d-hop clusters with a run-time of )(dO rounds. This 
algorithm achieves better load balancing among the 
clusterheads, generates fewer clusters [5] than the LCA and 
LCA2 algorithms and does not need clock synchronization.  

In [7], the authors have proposed a clustering algorithm that 
aims at maximizing the lifetime of the network by determining 
optimal cluster size and optimal assignment of nodes to 
clusterheads. They assume that the number of clusterheads and 
the location of the clusterheads are known a priori, which is not 
possible in all scenarios. Moreover the algorithm requires each 
node to know the complete topology of the network, which is 
generally not possible in the context of large sensor networks.  
McDonald et al. have proposed a distributed clustering 
algorithm for mobile ad hoc networks that ensures that the 
probability of mutual reachability between any two nodes in a 
cluster is bounded over time [23].  

Heinzelman et al. have proposed a distributed algorithm for 
microsensor networks in which the sensors elect themselves as 
clusterheads with some probability and broadcast their 
decisions [6]. The remaining sensors join the cluster of the 
clusterhead that requires minimum communication energy. 
This algorithm allows only 1-hop clusters to be formed, which 
might lead to a large number of clusters. They have provided 
simulation results showing how the energy spent in the system 
changes with the number of clusters formed and have observed 
that, for a given density of nodes, there is a number of clusters 
that minimizes the energy spent. But they have not discussed 
how to compute this optimal number of clusterheads. The 
algorithm is run periodically, and the probability of becoming a 
clusterhead for each period is chosen to ensure that every node 
becomes a clusterhead at least once within  P/1  rounds, where 
P  is the desired percentage of clusterheads. This ensures that 
none of the sensors are overloaded because of the added 
responsibility of being a clusterhead.  

In [11], the authors have considered a 2-level hierarchical 
telecommunication network in which the nodes at each level 
are distributed according to two independent homogeneous 
Poisson point processes and the nodes of one level are 
connected to the closest node of the next higher level. They 
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have then studied the moments and tail of the distributions of 
characteristics like the number of lower level nodes connected 
to a particular higher level node and the total length of 
segments connecting the lower level nodes to the higher level 
node in the hierarchy. We use the results of this paper to obtain 
the optimal parameters for our algorithm.  

Baccelli and Zuyev have extended the above study to 
hierarchical telecommunication networks with more than two 
levels in [13]. They have considered a network of subscribers 
at the lowest level connected to concentration points at the 
highest level, directly or indirectly through distribution points. 
The subscribers, distribution points and the concentrators form 
the three levels in the hierarchy and are distributed according to 
independent homogeneous Poisson processes. Assuming that a 
node is connected to the closest node of the next higher level, 
they have used point processes and stochastic geometry to 
determine the average cost of connecting nodes in the network 
as a function of the intensity of the Poisson processes 
governing the distribution of nodes at various levels in the 
network. They have then derived the intensity of the Poisson 
process of distribution points (as a function of the intensities of 
the Poisson processes of subscribers and concentration points) 
that minimizes this cost function. They have also extended the 
above results for non-purely hierarchical models and have 
derived the optimal intensity of Poisson process of distribution 
points numerically, given the intensities of other two processes. 
They have then generalized the cost function for networks with 
more than three levels. 

The algorithm proposed in this paper is similar to the 
clustering algorithm in [6]. In [6], the authors have assumed 
that the sensors are equipped with the capability of tuning the 
power at which they transmit and they communicate with 
power enough to achieve acceptable signal-to-noise ratio at the 
receiver. We, on the other hand, assume a network in which the 
sensors are very simple and all the sensors transmit at a fixed 
power level; data between two communicating sensors not 
within each other’s radio range is forwarded by other sensors in 
the network. The authors, in [6], have observed in their 
simulation experiments that in a network with one level of 
clustering, there is an optimal number of clusterheads that 
minimizes the energy used in the network. In this paper, we 
have used the results provided in [11] to obtain the optimal 
number of clusterheads at each level of clustering analytically, 
for a network clustered using our algorithm to generate one or 
more levels of clustering.  

III. A NEW, ENERGY-EFFICIENT,  SINGLE-LEVEL 
CLUSTERING ALGORITHM 

A. Algorithm 
Each sensor in the network becomes a clusterhead (CH) 

with probability p  and advertises itself as a clusterhead to the 
sensors within its radio range. We call these clusterheads the 
volunteer clusterheads. This advertisement is forwarded to all 
the sensors that are no more than k  hops away from the 
clusterhead. Any sensor that receives such advertisements and 
is not itself a clusterhead joins the cluster of the closest 
clusterhead. Any sensor that is neither a clusterhead nor has 

joined any cluster itself becomes a clusterhead; we call these 
clusterheads the forced clusterheads. Because we have limited 
the advertisement forwarding to k  hops, if a sensor does not 
receive a CH advertisement within time duration t  (where t  
units is the time required for data to reach the clusterhead from 
any sensor k  hops away) it can infer that it is not within k  
hops of any volunteer clusterhead and hence become a forced 
clusterhead. Moreover, since all the sensors within a cluster are 
at most k  hops away from the cluster-head, the clusterhead can 
transmit the aggregated information to the processing center 
after every t  units of time.  This limit on the number of hops 
thus allows the cluster-heads to schedule their transmissions.  
Note that this is a distributed algorithm and does not demand 
clock synchronization between the sensors.  

The energy used in the network for the information 
gathered by the sensors to reach the processing center will 
depend on the parameters p and k  of our algorithm. Since the 
objective of our work is to organize the sensors in clusters to 
minimize this energy consumption, we need to find the values 
of the parameters p and k  of our algorithm that would ensure 
minimization of energy consumption. We derive expressions 
for optimal values of p and k  in the next subsection. 

B. Optimal parameters for the algorithm 
To determine the optimal parameters for the algorithm 

described above, we make the following assumptions:  

a) The sensors in the wireless sensor network are 
distributed as per a homogeneous spatial Poisson 
process of intensity λ  in 2-dimensional space. 

b) All sensors transmit at the same power level and hence 
have the same radio range r . 

c) Data exchanged between two communicating sensors 
not within each others’ radio range is forwarded by 
other sensors. 

d) A distance of d  between any sensor and its 
clusterhead is equivalent to  rd /  hops. 

e) Each sensor uses 1 unit of energy to transmit or receive 
1 unit of data. 

f) A routing infrastructure is in place; hence, when a 
sensor communicates data to another sensor, only the 
sensors on the routing path forward the data. 

g) The communication environment is contention- and 
error-free; hence, sensors do not have to retransmit any 
data.  

The basic idea of the derivation of the optimal parameter 
values is to define a function for the energy used in the network 
to communicate information to the information-processing 
center and then find the values of parameters that would 
minimize it. 
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1) Computation of the optimal probability of becoming a 
clusterhead: 

As per our assumptions, the sensors are distributed 
according a homogeneous spatial Poisson process and hence, 
the number of sensors in a square area of side a2  is a Poisson 
random variable, N  with mean Aλ , where 24aA = . Let us 
assume that for a particular realization of the process there are 
n  sensors in this area. Also assume that the processing center 
is at the center of the square. The probability of becoming a 
clusterhead is p ; hence, on average, np sensors will become 

clusterheads. Let iD  be a random variable that denotes the 
length of the segment from a sensor located at 

niiyix ,...,2,1),,( =  to the processing center. Without loss of 
generality, we assume that the processing center is located at 
the center of the square area. Then,  

adA
a

yxnNDE
A

iii 765.0
4

1
]|[ 2

22 == ∫ 





+= . (1) 

Since there are on an average np  CHs and the location of 
any CH is independent of the locations of other CHs, the total 
length of the segments from all these CHs to the processing 
center is npa765.0 . 

Now, since a sensor becomes a clusterhead with 
probability p , the clusterheads and the non-clusterheads are 
distributed as per independent homogeneous spatial Poisson 
processes PP1 and PP0 of intensity λλ p=1  and 

λλ )1(0 p−=  respectively.  

For now, let us assume that we are not limiting the 
maximum number of hops in the clusters. Each non-cluster-
head joins the cluster of the closest clusterhead to form a 
Voronoi tessellation [10]. The plane is thus divided into zones 
called the Voronoi cells, each cell corresponding to a PP1 
process point, called its nucleus. If vN  is the random variable 
denoting the number of PP0 process points in each Voronoi 
cell and vL  is the total length of all segments connecting the 
PP0 process points to the nucleus in a Voronoi cell, then 
according to results in [11],  

1
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Define 1C  to be the total energy used by the sensors in a 
Voronoi cell to communicate one unit of data to the 
clusterhead. Then,  

r

nNLE
nNCE v ]|[

]|[ 1
=

== . (4)
 

Define 2C to be the total energy spent by all the sensors 
communicating 1 unit of data to their respective clusterheads. 
Because, there are np  cells, the expected value of 2C  
conditioned on N , is given by 

]|[]|[ 12 nNCnpEnNCE === . (5) 

If the total energy spent by the clusterheads to communicate 
the aggregated information to the processing center is denoted 
by 3C , then, 
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Define C  to be the total energy spent in the system. Then,  

.
765.0

2

)1(

]|[]|[]|[

2/3

32

r

npa

p

p

r

np

nNCEnNCEnNCE

+
−

=

=+===

λ

        (7) 

Removing the conditioning on N  yields: 
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][CE  is minimized by a value of p  that is a solution of  

012/3 =−− pcp .       (9) 

The above equation has three roots, two of which are 
imaginary. The second derivative of the above function is 
positive for the only real root of (9) and hence it minimizes the 
energy spent.  

The only real root of (9) is given by  
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where λac 06.3= . 

2) Computation of the maximum number of hops allowed 
from a sensor to its clusterhead:  

Till now we have not put any limit on the number of hops 
( k ) allowed between a sensor and its clusterhead. Our main 
reason for limiting k  was to be able to fix a periodicity for the 
clusterheads at which they should communicate to the 
processing center. So, if we can find the maximum possible 
distance (call it maxR ) at which a PP0 process point can be 
from its nucleus in a Voronoi cell, we can find the value of k  
by assuming that a distance maxR  from the nucleus is 

equivalent to rR /max  hops.  Setting rRk /max=  will also 
ensure that there will be very few forced clusterheads in the 
network.  

Since it is not possible to get a value of maxR  such that we 
can say with certainty that any point of PP0 process will be at 
the most maxR distance away from its nucleus in the Voronoi 

Tessellation, we take a probabilistic approach; we set maxR to a 
value such that the probability of any point of PP0 process 
being more than maxR distance away from all points of PP1 

process is very small. Using this value of maxR , we can get the 
value of parameter k  that would make the probability of any 
sensor being more than k  hops away from all volunteer 
clusterheads very small.  

Let Mρ be the radius of the minimal ball centered at the 
nucleus of a Voronoi cell, which contains the Voronoi cell. We 
define Rp to be the probability that Mρ  is greater than a certain 

value R , i.e. )( RPp MR >= ρ . Then, it can be proved 

that )09.1exp(7 2
11RpR λ−≤  [11]. If αR is the value of R 

such that Rp  is less than α , then, 
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α
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This means that the expected number of sensors that will 
not join any cluster is αn  if we set  









= −

λ
α

1
1

)7/ln(917.01

pr
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To ensure minimum energy consumption, we will use a 
very small value for α , which implies that the probability of 
all sensors being within k  hops from at least one volunteer 
clusterhead is very high. 

For 001.0=α and values of p  and k  computed according 
to (10) and (12), for a network of 1000 sensors, on an average 1 
sensor will not join any volunteer clusterheads and will become 
a forced clusterhead. The optimal value of p  for a network 
with 1000 nodes in an area of 100 sq. units is 0.08, which 
means 80 nodes will become volunteer clusterheads on an 
average. Hence, for a network of 1000 nodes in an area of 100 
sq. units, only 1.23 % of all clusterheads are forced 
clusterheads. 

C. Simulation Experiments and Results 
We simulated the algorithm described in Section III for 

networks with varying sensor density ( d ) and different values 
of the parameters p  and k . In all these experiments, the 
communication range of each sensor was assumed to be 1 unit.  
Fig. 1 shows the output of one of these simulations of our 
algorithm with parameters p and k set to 0.1 and 2 on a 
network of 500 sensors distributed uniformly in a square area 
of 100 square units.  

To verify that the optimal values of the parameters p  and 
k  of our algorithms computed according to (10) and (12) do 
minimize the energy spent in the system, we simulated our 
clustering algorithm on sensor networks with 500, 1000 and 
2000 sensors distributed uniformly in a square area of 100 sq. 
units. Without loss of generality, it is assumed that the cost of 
transmitting 1 unit of data is 1 unit of energy. The processing 
center is assumed to be located at the center of the square area.  

For the first set of simulation experiments, we considered a 
range of values for the probability ( p ) of becoming a 
clusterhead in the algorithm proposed in Section III. For each 
of these probability values, we computed the maximum number 
of hops ( k ) allowed in a cluster using (12) and used these 
values for the maximum number of hops allowed in a cluster in 
the simulations. The results of these simulations are provided in 
Fig. 2. Each data point in Fig. 2 corresponds to the average 
energy consumption over 1000 experiments. It is evident from 
Fig. 2 that the energy spent in the network is indeed minimum 
at the theoretically optimal values of the parameter p  

computed using (10) (let us call this optimal value optp ), 
which are given in Table I for 500, 1000 and 2000 sensors in 
the network. 
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Figure 1.  Output of simulation of the single level clustering algorithm 

Most of the clustering algorithms in the literature (LCA [2], 
LCA2 [8] and the Highest Degree [9, 24] algorithms) have time 
complexity of )(nO , which makes them less suitable for 
sensor networks that have large number of sensors. The Max-
Min d-Cluster Algorithm [5] has a time-complexity of )(dO , 
which may be acceptable for large networks. Hence, we have 
compared the performance of our proposed algorithm (with 
optimal parameter values) and the Max-Min d-cluster 
algorithm (for 4,3,2,1=d ) in terms of the energy spent in the 
system using simulation. 

The experiments were conducted for networks of different 
densities. For each network density we used our algorithm 
(described in Section III) to cluster the sensors, with the 
probability of becoming a clusterhead set to the optimal value 
( optp ) calculated using (10) and maximum number of hops 
( k ) allowed between any sensor and its clusterhead equal to 
the value calculated using optp  in (12). 

TABLE I.  ENERGY MINIMIZING PARAMETERS FOR THE ALGORITHM 

Number of 
Sensors ( n ) 

Density ( d ) Probability  

( optp ) 

Maximum 
Number of Hops 

( k ) 
500 5 0.1012 5 

1000 10 0.0792 4 
1500 15 0.0688 3 
2000 20 0.0622 3 
2500 25 0.0576 3 
3000 30 0.0541 3 

 

The computed values of optp  and the corresponding values 
of maximum number of hops ( k ) in a cluster for networks of 
various densities are provided in Table I.  The results of the 
simulation experiments are provided in Fig. 3.  We observe that 
the proposed algorithm leads to significant energy savings. The 
savings in energy increases as the density of sensors in the 
network increases. 
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Figure 2.  Total Energy Spent vs. probability of becoming a clusterhead in 
algorithm in Section III. 
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Figure 3.  Comparison of Our Algorithm and the Max-Min D-Cluster 
Algorithms . 

IV. A NEW, ENERGY-EFFICIENT, HIERARCHICAL 
CLUSTERING ALGORTHM 

In Section III, we have allowed only one level of clustering; 
we now extend the algorithm to allow more than one level of 
clustering. Assume that there are h  levels in the clustering 
hierarchy with level 1 being the lowest level and level h  being 
the highest. In this clustered environment, the sensors 
communicate the gathered data to level-1 clusterheads (CHs). 
The level-1 CHs aggregate this data and communicate the 
aggregated data or estimates based on the aggregated data to 
level-2 CHs and so on. Finally, the level-h CHs communicate 
the aggregated data or estimates based on this aggregated data 
to the processing center. The cost of communicating the 
information from the sensors to the processing center is the 
energy spent by the sensors to communicate the information to 
level-1 clusterheads (CHs), plus the energy spent by the level-1 
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CHs to communicate the aggregated information to level-2 
CHs, …, plus the energy spent by the level-h CHs to 
communicate the aggregated information to the information 
processing center.  

A. Algorithm 
The algorithm works in a bottom-up fashion. The algorithm 

first elects the level-1 clusterheads, then level-2 clusterheads, 
and so on. The level-1 clusterheads are chosen as follows. Each 
sensor decides to become a level-1 CH with certain probability 

1p  and advertises itself as a clusterhead to the sensors within 
its radio range. This advertisement is forwarded to all the 
sensors within 1k  hops of the advertising CH. Each sensor that 
receives an advertisement joins the cluster of the closest level-1 
CH; the remaining sensors become forced level-1 CHs.  

Level-1 CHs then elect themselves as level-2 CHs with a 
certain probability 2p  and broadcast their decision of 
becoming a level-2 CH. This decision is forwarded to all the 
sensors within 2k  hops. The level-1 CHs that receive the 
advertisements from level-2 CHs joins the cluster of the closest 
level-2 CH. All other level-1 CHs  become forced level-2 CHs. 
Clusterheads at level h...,,4,3  are chosen in similar fashion, 
with probabilities hppp ,...,, 43  respectively, to generate a 
hierarchy of CHs, in which any level-i CH is also a CH of level 
(i-1), (i-2),…, 1.  

B. Optimal parameters for the algorithm 
The energy required to communicate the data gathered by 

the sensors to the information processing center through the 
hierarchy of clusterheads will depend on the probabilities of 
becoming a clusterhead at each level in the hierarchy and the 
maximum number of hops allowed between a member of a 
cluster and its clusterhead. In this section, we obtain optimal 
values for the parameters of the algorithm described in Section 
IV-A that would minimize this energy consumption.  

To do so, we make the same assumptions as in Section III-
B. Since we have assumed that the sensors are points of a 
homogeneous Poisson process of intensity λ , the number of 
sensors in a square area of side a2  is a Poisson random 
variable (let’s call this N ) with mean Aλ , where 24aA =  is 
the area of the square. Let us assume that for a particular 
realization of the process, there are n  sensors in this area. Let 
us also define: 

iN : the number of members in a level-i cluster, 

iL : the sum of distances between the members of a level-i 
cluster and their level-i CH, 

iH : the number of hops from a member to its CH in a 
typical level-i cluster,  

iTCH : the total number of level-i CHs, 

iC : the total cost of communicating information from all 
level-i CHs to the level-(i+1) CHs, and 

C : the total cost of communicating information from the 
sensors to the data processing center through the hierarchy of 
clusterheads generated by the clustering algorithms. 

In the proposed algorithm, the sensors elect themselves as 
level-1 CH with probabilities 1p  and the level-i CHs elect 
themselves as level-(i+1) CHs with 
probability )1(,...,2,1,1 −=+ hipi . Hence, by properties of the 
Poisson process, level-i CHs, hi ,...,2,1=  are governed by 

homogeneous Poisson processes of intensities, ∏=
=

i

j
ji p

1
1 λλ . 

By arguments similar to those in Section III-B.1, the sum of 
distance of level-(i-1) CHs from a level-i CH, hi ,...,3,2=  in a 
typical level-i cluster or the sum of distance of sensors from a 
level-1 CH is given by 
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The expected number of level-(i-1) CHs in a typical level-i  
cluster is given by 

i

i
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p
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−
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1
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Therefore, the expected number of hops between a level-(i-
1) CH and its level-i CH in a typical level-i cluster is given by 
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The expected number of level-i CHs is given by 
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Hence, the expected total cost of communicating 
information from all the level-(i-1) CHs to their respective 
level-i CHs, hhi ),1(,...,2 −=  is given by  

 

]|[ 1 nNCE i =−  

]|[]|[]|[ nNHEnNNEnNTCHE iii ==== . 

  (17) 

The expected value of the total cost of communicating 
information from all the sensors to their level-1 CHs is given 
by 

 

]|[ 0 nNCE =  

]|[]|[]|[ 111 nNHEnNNEnNTCHE ==== .    (18)                                                                

 

Hence, the expected total cost of communicating 
information from sensors to the processing center in the 
clustered environment is given by: 
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By un-conditioning on N , we find: 

( ) .
2

1
)1(

765.0

]]|[[][

1

1

1

1

1

∑
∏

∏−+

∏=

==

=

=

−

=

=

























h

i i

j
j

i

j
ji

h

i
i

pr
ppA

r

a
pA

nNCEECE

λ
λ

λ  

  (20) 

As apparent from Fig. 6 and Fig. 7, the function in (20) has 
a very complex form with many local minima. Even if the 
ceiling of an expression is approximated by just the expression 
in (20), closed-form solutions for probabilities hipi ,...,2,1, =  
that minimize the resulting cost of communication ][CE  have 
not been obtained, but can be found numerically. Once the 
optimal probabilities are obtained, following the same 
arguments as in section III-B.2, hiki ,...,2,1, =  can be 
calculated according to the equation, 
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In the above equation, α  denotes the probability that the 
number of hops between a member and the clusterhead in a 
level-i cluster is more than hiki ,...,2,1, = . 

C. Numerical Results and Simulations 
We simulated the algorithm described in Section IV-A on 

networks of sensors distributed uniformly with various spatial 
densities. In all cases, we assumed that 1 unit of energy spent in 
communicating 1 unit of data. We use the algorithm to generate 
a clustering hierarchy with different number of levels in it to 
see how the energy spent in the network reduces with the 
increase in number of levels of clusters. In these simulations, 
we have used the numerically computed set of optimal 
probabilities (that minimizes ][CE  given by (20)) of becoming 
clusterheads at each level in the clustering hierarchy. Fig. 4. 
and Fig. 5 show how the energy consumption decreases as the 
number of levels in the hierarchy increases. 
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Figure 4.  Total Energy Spent vs. number of levels in the clustering hierarchy 
in a network of 25000 sensors with communication radii r distributed in a 

square area of 5000 sq. units. 
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Figure 5.  Total Energy Spent vs. number of levels in the clustering hierarchy 
in a network of 25000 sensors of communication radius 2 distributed with 

spatial density λ. 

In Fig. 4, we observe that the energy savings are higher for 
networks of sensors with lower communication radius. These 
results can be explained as follows. In networks of sensors with 
higher communication radius, the distance between a sensor 
and the processing center in terms of number of hops is smaller 
than the distance in networks of sensors with lower 
communication radius and hence there is lesser scope of energy 
savings. The energy savings with increase in the number of 
levels in the hierarchy are also observed to be more significant 
for lower density networks. This can be attributed to the fact 
that among networks of same number of sensors, the networks 
with lower density has the sensors distributed over a larger 
area. Hence, in a lower density network, the average distance 
between a sensor and the processing center is larger as 
compared to the distance in a higher density network. This 
means that there is more scope of reducing the distance 
traveled by the data from any sensor in a non-clustered 
network, thereby reducing the overall energy consumption. 

Since data from each sensor has to travel at least one hop, 
the minimum possible energy consumption in a network with 
n  sensors is n , assuming each sensor transmits 1 unit of data 
and the cost of doing so is 1 unit of energy. From Fig. 4 and 
Fig. 5, it is apparent that the energy consumption is very close 
to this value when the number of levels in the hierarchy is 5, 
irrespective of the density of sensors and their communication 
radius. Hence, if one chooses to store the numerically 
computed values of optimal probability in the sensor memory, 
only a small amount of memory would be needed. 

V. ADDITIONAL CONSIDERATIONS 
The sensors which become the clusterhead in the proposed 

architecture spend relatively more energy than other sensors 
because they have to receive information from all the sensors 
within their cluster, aggregate this information and then 
communicate to the higher level clusterheads or the 
information processing center. 

Hence, they may run out of their energy faster than other 
sensors. As proposed in [6], the clustering algorithm can be run 
periodically for load balancing. Instead of running the 
algorithm periodically, another possibility is that clusterheads 
trigger the clustering algorithm when their energy levels fall 
below a certain threshold.  Among many other issues, the 
behavior of the proposed clustering algorithm and the hierarchy 
generated by it in event of sensor failures is worth 
investigating.   

VI. CONCLUSIONS AND FUTURE WORK 
We have proposed a distributed algorithm for organizing 

sensors into a hierarchy of clusters with an objective of 
minimizing the total energy spent in the system to 
communicate the information gathered by these sensors to the 
information-processing center. We have found the optimal 
parameter values for these algorithms that minimize the energy 
spent in the network. In a contention-free environment, the 
algorithm has a time complexity of )...( 21 hkkkO +++ , a 
significant improvement over the many )(nO  clustering 
algorithms in the literature [2,3,4,8,9]. This makes the new 
algorithm suitable for networks of large number of nodes. 

In this paper, we have assumed that the communication 
environment is contention and error free; in future we intend to 
consider an underlying medium access protocol and investigate 
how that would affect the optimal probabilities of becoming a 
clusterhead and the run-time of the algorithm. 

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



Figure 6.  Plot of the energy function in (20) when there are two levels of clusterheads in a network of 10000 sensors of communication range of 4 units 
distributed in an area of 2500 sq. units. 

 

Figure 7.  Contour plot of the energy function in (20) when there are two levels of clusterheads in a network of 10000 sensors of communication range of 4 units 
distributed in an area of 2500 sq. units.
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