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Abstract— In this paper we present three theoretically
grounded methods: prediction, reconstruction and interpolation,
for measuring cross traffic on the bottleneck link of an end-to-
end path. The objective is to infer cross traffic as accurately
as possible, while not injecting a significant amount of probe
packets into the network. In the prediction-based method, we
take advantage of the LRD characteristic of the cross traffic to
predict the future traffic based on the recent information obtained
by probe packets. In the reconstruction method, we rebuild the
entire cross traffic process with the information obtained by
probe packets. In the interpolation method, we periodically send
closely-spaced probe packet pairs to sample cross traffic of the
bottleneck link, and infer cross traffic between two sampling
points using interpolation. The simulation study indicates that
(i) the prediction-based and reconstruction methods can give
good mean measurement of cross traffic, while the interpolation
method usually captures the instantaneous value of cross traffic
better; and (ii) all three methods are adaptive to the dynamic
change of cross traffic and are quite robust in the presence of
multiple bottleneck links on an end-to-end path.

I. INTRODUCTION

To facilitate design and development of better resource
management protocols, it will be greatly helpful to better
understand the dynamic properties and behavior of end-to-end
paths in the Internet. Moreover, not to overload routers with
traffic measurement and report tasks, it is more desirable for
end hosts to infer these properties on an end-to-end basis. To
this end, several end-host-based or edge-based measurement
infrastructure projects (such as IPMA [12], NIMI [17], Fe-
lix [8], and Surveyor [26]) and academic research projects
(that use the one-packet techniques [13], [25], the packet-
pair techniques [1], [3], [19], a combination thereof [15], or
the multicast-based inference technique [21], [5], [6]) have
been proposed to collect and analyze end-to-end measurements
between a number of hosts.

The common feature of the above mentioned techniques is
to inject one or more unicast/multicast measurement packets
and measure/record the round-trip time (as in the one-packet
techniques), the difference in the arrival times of two consecu-
tive packets (as in the packet-pair techniques), or the pattern of
packets received in a multicast group (as in the multicast-based
inference technique). The measured information is then used

to infer the available bandwidth or the packet loss probability,
over links of interest. The measurement results can then be
utilized for better resource control. For example, the work
in [10] [18] enables rate based congestion control based on the
estimate of the attainable throughput inferred at the network
edge. Cetinkaya et al. [4] and Rubenstein et al. [23] develop
algorithms to perform admission control and detect flows that
are subject to the same congestion points. Most of the above
approaches, perhaps except [2], [5] (which is grounded on a
maximum likelihood estimation approach) and [15] (which is
grounded on rigorous algebraic derivation), are devised based
on some simple heuristics and observation.

A number of recent empirical studies of traffic measure-
ments from a variety of working packet networks have con-
vincingly demonstrated that network traffic is self-similar or
long-range dependent (LRD) in nature [16], [7], [27].This
implies the existence of concentrated periods of high activity
and low activity (i.e., burstiness) at a wide range of time scales.
In the context of end-to-end measurement, this implies, at first
glimpse, a large amount of packets have to be sent in order
to make accurate measurements at both small and large time
scales. A closer investigation actually reveals that the existence
of LRD implies the existence of nontrivial correlation struc-
tures at multiple time scales which can actually be exploited
to better infer traffic properties. To this end, a multi-fractal-
model based cross traffic estimation algorithm, called Delphi
algorithm, was proposed in [22]. Based on the multi-fractal
model, special temporally-spaced probe packets (called ”chirp
packet trains”) were sent and the cross traffic was inferred
based on the information thus obtained. The major advantage
of the Delphi algorithm is that it requires only a small number
of probe packets for end-to-end measurement. However, two
measurement errors were induced: first, as it is impossible to
fit real traffic perfectly into the multi-fractal model without
introducing error; and second, the algorithm proposed in [22]
to infer the amount of cross traffic is heuristic-based (although
with good theoretical reasoning) and also introduces error. The
simulation results reported in [22] shown that the performance
of the Delphi algorithm depends heavily on the bottleneck link
utilization.
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In this paper we proposed three theoretically grounded
methods that are either prediction-based or interpolation-based
to measure cross traffic of the bottleneck link. In the first
method, the future traffic is predicted based on recent traffic
measurements. Only a fixed number of probe packets are sent
at the beginning of every T period and LRD-based prediction
is made to infer the cross traffic for the remaining time of the
period. In the second method, we attempt to reconstruct the
entire cross traffic process based on the information obtained
by probe packets. Specifically, we use the information to
estimate the power spectral density (PSD) of cross traffic,
and use inverse Fourier transform to obtain the estimate of
the entire process under the assumption that the cross traffic
is statistically stationary. In the third method, we periodically
send closely-spaced probe packet pairs to ”sample” cross
traffic of the bottleneck link. Then we interpolate the process
between every two sample points. According to the Nyquist
criterion, the entire process can be “reconstructed” as long as
the sampling rate is at least 2 times larger than the bandwidth
of the signal. By virtue of the existence of LRD, the sampling
rate can be very low. A finite impulse response (FIR) filter
is used to implement the interpolation process under the
minimum mean square error criterion.

To assess the three methods with respect to accuracy,
packet overhead, robustness, and capability to deal with traffic
changes, we conduct ns-2 simulation on both the dumbbell
topology and arbitrary topologies. The simulation study in-
dicates that the prediction-based and reconstruction methods
can give good mean measurement of cross traffic, while the
interpolation method can, with proper design of the FIR
filter, capture both the mean and instantaneous values of
cross-traffic. All three methods perform well under different
bottleneck link utilizations and are adaptive to the dynamic
change of cross traffic and are quite robust in the presence of
multiple bottleneck links on an end-to-end path.

The rest of the paper is organized as follows. In Section II,
we succinctly summarize the notion of LRD, state the assump-
tions made and describe the pattern of probe packets used in
this paper. Then we delve into the detailed description of the
three proposed methods in Sections III–IV. Following that,
we present simulation results in Section VI and conclude the
paper with future work in Section VII.

II. PRELIMINARY

A. Assumptions and probing packets pattern

Probing Traffic

Cross Traffic
Bottleneck Link

Fig. 1. Single bottle neck link model.

We consider an end-to-end path with a bottleneck link.
Closely-spaced probe packets are sent along the path, and the
time interval between arrivals of two consecutive packets at

the destination is measured and used to infer the cross traffic
(Fig. 1). The assumptions made in the paper are: (A1) there
exists only one bottleneck link on the end-to-end path; (A2)
packets will not be queued before or after the bottleneck link;
and (A3) the capacity of the bottleneck link is known. Under
these assumptions, the volume of cross traffic entering the
queue between two probe packets can be exactly computed.
This is because under (A2) the time interval between these two
probe packets does not change after they leave the bottleneck
link until they arrive at the destination. Without (A2) (i.e.,
if the two probe packets experience queuing delay at some
queues other than the queue at the bottleneck link), the time
interval between arrivals of the two packets at the destination
may be stretched or squeezed, leading to underestimate or
overestimate of the cross traffic. Although (A3) is reasonable1,
the first two assumptions may not hold true in real networks.
In Section VI, we will study through ns-2 simulation the
robustness of our methods if these two assumptions do not
hold.

   t

L

t

Fig. 2. Two back-to-back probe packets.

The temporal pattern of probe packets is shown in Fig. 2.
At the sender, two closely-spaced probe packets of length L
(called a probe packet pair) are sent. Suppose the interval
between their sending times is t. If there exists no cross traffic
at the bottleneck link, and t < L

C , where C is the bottle-neck
link capacity, then the dispersion of the arrival times of the
two packets t

′
at the destination satisfies:

t
′
=

L

C
(1)

or
C =

L

t′ (2)

Eqs. (1)–(2) are accurate under the condition: t < L
C . Since

with capacity C, at most L traffic can be served in L
C seconds,

before the first packet leaves the queue, the second packet has
been queued, the time interval between the arrivals of the two
probing packets is exactly L

C .
Let the amount of cross traffic that arrive during the time

interval [t0, t0 + t] be denoted as ft(t0), where t0 is the time
instant the first packet of the probe packet pair traverses the
bottleneck link. Then the dispersion of the arrival times of the
probe packet pair at the destination is:

τ =
L + ft(t0)

C
, (3)

or
ft(t0) = Cτ − L. (4)

1One can use traceroute to determine the path on which the packets
traverse and find out the type each link (T-1, T-3, or OC-n) on the path;
alternatively, one may use the end-to-end measurement technique in [15] to
infer the bottleneck bandwidth.
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Since the time interval τ can be measured exactly at the
receiver, with the knowledge of C and L, we can infer the
cross traffic that arrive in interval [t0, t0 + t].

A naive method to obtain the volume of cross traffic at any
time is to send constantly closely-spaced probe packets and
measure the dispersion of arrival times of consecutive probe
packets. However, since C is usually large and L is small
as compared to C, the value of t has to be very small. For
example, if C = 2Mbps, L = 1000 bytes, then t < 4ms. That
is, a large amount of probe packets have to be sent and the
bandwidth of the bottleneck link will be consumed mainly by
probe packets. In this paper, we will devise three methods to
accurately infer the amount of cross traffic without sending a
large amount of probe packets.

B. Long Range Dependency

Let f(t), t ∈ Z+, be a time series representing the instan-
taneous cross traffic rate (in units of Mbps) measured at some
fixed time granularity. By the above definition, ft(t0) is the
amount of cross traffic that arrives in time interval [t0, t0 + t],
and ft(t0)

t in the rate of cross traffic at time t0. Suppose we
take m samples of f(t) in a time interval of t, then ft(t0)

t can
be represented as

ft(t0)
t

=
1
m

km∑
i=(k−1)m+1

f(i), (5)

where k is used to index the measurement intervals. We call
ft(t0)

t the aggregated cross traffic at time scale t and denote it
as fa(t). Notice that the average (aggregation) in Eq. (5) can
be taken at any time scale, and hence we can further aggregate
fa(t) to obtain aggregation at some larger time scale.

Let R(k) and Rm(k) denote the autocorrelation functions
of f(t) and fa(t), respectively. The time series f(t) is (asymp-
totically second-order) self-similar, if the following conditions
hold:

Rm(k) ∼ R(k), (6)

R(k) ∼ const · k−β, (7)

(8)

for large values of k and m, where 0 < β < 1. That is,
f(t) is self-similar in the sense that the correlation structure
is preserved with respect to time aggregation (Eq. (6)) and
R(k) behaves hyperbolically with

∑∞
k=0 R(k) = ∞ (Eq. (7)).

The former property (Eq. (6)) is also referred to as long range
dependency (LRD). The proposed methods take advantage of
this LRD characteristic to infer cross traffic without incurring
excessive probing overhead. Succinctly, if we can obtain the
estimate of the autocorrelation structure of cross traffic at some
time scale, we can obtain the autocorrelation structure (and
infer cross traffic) at any time scale.

III. THE PREDICTION-BASED METHOD

In the prediction-based method, the sender sends n + 1
closely-spaced probe packets (with the temporal distance be-
tween the sending times of two consecutive packets being t).

n 5 10 15 20 30 40 50
err(%) 14.2 11.5 9.3 7.8 7.7 7.7 7.6

TABLE I

RELATIVE PREDICTION ERROR FOR DIFFERENT VALUES OF n.

The destination measures the inter-arrival times of the n + 1
probe packets, and obtains n samples of τ . The time series
ft(t) with length n can then be constructed using Eq. (4), and
furthermore the aggregated time series fa(k), k = 1, 2, ...n
can be obtained by dividing ft(t) by t.

Based on these aggregate series samples, we predict
the future cross traffic using the Linear Minimum Mean
Square Error (LMMSE) estimator. Specifically, given the series
fa(k), k = 1, . . . , n, the aggregate cross traffic series in the
next time interval t, fa(n+1), can be expressed as a weighted
linear combination of the past n samples, where the weights
are determined to minimize the mean square error. That is, the
estimate (written as f̂a(n + 1)) of fa(n + 1) is expressed as

f̂a(n + 1) =
[
a1 a2 ... an

]



fa(1)
fa(2)
...

fa(n)


 , (9)

where a1, a2, ..., an are the LMMSE coefficients and can be
expressed as[

a1 a2 ... an

]
=

[
R(n) R(n − 1) ... R(1)

]

×




R(0) R(1) ... R(n − 1)
R(1) R(0) ... R(n − 2)
... ... ... ...

R(n − 1) R(n − 2) ... R(0)




−1

,(10)

where R(n) is the covariance function of the time series, and
can be estimated in practice as

R(i) ∼= R(m)(i) =
1
n

n∑
t=i+1

fa(t)fa(t − i), (11)

Sang et al. [24] has shown that the above estimator can
make very good prediction of f̂a(n + 1). After f̂a(n + 1) is
predicted, f̂a(n + 2) can be predicted by using fa(k), k =
1, 2, ..., n and f̂a(n+ 1), f̂a(n+ 3) can be predicted by using
fa(k), k = 1, 2, ..., n, f̂a(n+1) and f̂a(n+2), and so on. The
process continues until N predictions are made.

Determination of tunable parameters:: There are two
tunable parameters that we need to determine: one is the
number, n, of closely-spaced packets that are sent at the
beginning, and the other is the number, N , of predictions that
can be made before prediction accuracy is impaired as a result
of accumulated prediction errors in each step.

To determine the value of n, we have conducted ns-2
simulation in which traffic traces are generated on a dumbbell
topology and on arbitrary network topologies and the above
LMMSE-based approach is used to predict the future traffic.
Table I gives the relative prediction error for different values
of n under the dumbbell topology given in Fig. 8, where

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



N n 2n 3n 4n 5n 6n 8n
err(%) 7.8 8.5 9.1 10.2 11.8 15.4 19.8

TABLE II

RELATIVE PREDICTION ERROR FOR DIFFERENT VALUES OF N .

the number of TCP connections varies from 10 to 100, and
the relative error is defined as |f̂(t)−f(t)|

f(t) . (The result under
arbitrary topologies are similar and hence omitted.) As shown
in Table I, the larger the value of n, the smaller the relative
error (i.e., the more accurate the prediction result). However,
the performance improvement levels off as n exceeds 20.
This is due to the fact that R(τ) decreases quite dramatically,
and hence adding more history information can not further
improve the prediction accuracy. The interested reader is
referred to [11] for a detailed account of experiment setups
and discussion on the findings. In the simulation study we set
n = 20.

To determine the value of N , we also conduct the same set
of experiments (with n set to 20) to study the effect of varying
the value of N on the prediction accuracy. The experiment
results are shown in Table II. When N grows beyond 5n
the relative prediction error is more than 15%. Hence, in the
simulation study, we set N = 5n, i.e., the sender sends n+ 1
closely-spaced probe packets at the beginning and infers the
amount of cross-traffic in the next 5n × t period. After that,
the sender sends another n + 1 probe packets, and the entire
process repeats.

IV. THE RECONSTRUCTION METHOD

Similar to the traffic prediction method, the sender sends
n + 1 closely-spaced probe packets, and obtains the time
series fa(k), k = 1, 2, ..., n. The time series is then used to
reconstruct the entire process under the assumption that the
amount of cross traffic is statistically stationary. Conceptually,
we obtain the autocorrelation function Rm(k) of fa(k) using
Eq. (11), and estimate the power spectral density, p(s), of
fa(k), i.e., the Fourier transform of Rm(k). Since the power
spectral density is the square of the Fourier transform of the
original time series, fa(k) can be obtained in principle using
the inverse Fourier transform of the square root of p(s).

To practically implement this method, we consider two
issues: (i) how to get the estimate of the autocorrelation
function R(k); and (ii) how to reconstruct the process fa(k).
We leverage the method by Davis et al. [14]. Succinctly,
given a Gaussian, zero-mean time series of length n with
autocorrelation function γ(i), i = 0, 1, ..., n− 1,2, we perform
the following operations:

1) Define the finite Fourier transform gk of the sequence
γ(0), γ(1), ..., γ(n − 2), γ(n − 1), γ(n − 2), ..., γ(1) as

2Under the stationary assumption, one can transform an arbitrary process
into a process with zero mean by subtracting the mean from the process, and
adding the mean back at the end of this algorithm.

follows. Let

λk
�
=

2π(k − 1)
(2n − 2)

, (12)

for k = 1, 2, ..., 2n− 2, and

R(i)
�
=

{
γ(i), i = 0, 1, ..., n− 1,
γ(2n − 2 − i), i = n, n + 1, ..., 2n− 3.

(13)
Note that for any real WSS (wide sense stationary)
random process, its autocorrelation function is even, and
we use the one sided autocorrelation function γ(i) to
generate R(i). Then, the finite Fourier transform gk is
defined as

gk =
2n−3∑
j=0

R(j) · eijλk , k = 1, 2, ..., 2n− 2. (14)

2) Generate two independent series of zero mean normal
random variables, U1, U2, ..., Un and V2, ..., Vn−1, such
that var(U1) = var(Un) = 2 and for k 	= 1, n,
var(Uk) = var(Vk) = 1. Let V1 = Vn = 0 and define
complex random variables Zk as:

Zk =
{

Uk + iVk, k = 1, 2, ..., n
U2n−k − iV2n−k, k = n + 1, ..., 2n− 2.

(15)
3) For t = 1, 2, ..., n, define

Xt =
1

2
√
n − 1

2n−2∑
k=1

√
gke

i(t−1)λkZk. (16)

Xt corresponds to the time series, fa(k), we would like to re-
construct. The rationale behind constructing a complex random
variables Zk is as follows. For any real WSS random process,
its autocorrelation function is a deterministic function of time
lag, τ , and the corresponding Fourier transform function gk

is also deterministic (due to the fact that R(τ) is even). The
process is not reversible, i.e., after taking the square root of
gk, we obtain a deterministic signal, whose inverse Fourier
transform is also deterministic (i.e., the recovered signal is no
longer random). To reconstruct a random variable we have to
rely on another random variable with the uniform distribution.
Here, Zk plays this role. Multiplying

√
gk with Zk with is

equivalent to convoluting r(τ) with a constant (due to the fact
that Zk is white). In this way, we introduce randomness to
the reconstructed process while keeping the autocorrelation
structure unchanged.

Note that in step 3 a n-point inverse Fourier transform
is performed to reconstruct the original process. Since the
original process exhibits self similarity, its autocorrelation
structure is asymptotically the same at different time scales
(Eqs. (7)–(6)) and we can envision the reconstructed process
as the amount of aggregated cross traffic at any time scale.
For example, if we envision the reconstructed process as an
aggregated process at the time scale of 2t, we can get the
estimate in the period of 2nt. In theory as long as the process is
self similar, the sender needs only to send n+1 probe packets
and can obtain estimates in the entire time domain. However,
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N n 2n 3n 4n 5n 6n 8n
err(%) 8.7 9.2 9.7 10.6 11.3 13.4 15.1

TABLE III

RELATIVE RECONSTRUCTION ERROR FOR DIFFERENT VALUES OF N .

in reality since the process is not strictly self-similar, and the
autocorrelation structure Estimated based on the n + 1 probe
packets may introduce estimate error, the amount of cross-
traffic can not be estimated at arbitrarily large time scales. In
other words, n + 1 probe packets have to be sent every Nt
period, and similar to the traffic prediction method, the values
of both n and N have to be determined.

Determination of tunable parameters:: We have con-
ducted the same set of ns-2 simulation runs as in Section III to
study the effect of varying the value of n on the reconstruction
error. The result is similar to that obtained in the traffic
prediction method, i.e., as n goes beyond 20, the reduction in
the reconstruction error levels off. This is not a coincidence, as
both methods depend heavily on the autocorrelation structure
of the time series. Henceforth, in the simulation study we set
n = 20.

To determine the value of N , we have to consider two is-
sues: accuracy and computation complexity. Again we conduct
the same set of experiments as in Section III. As shown in
Table III, the larger the value of N , the more pronounced the
reconstruction error but the lower the computation complexity
(n + 1 probe packets per Nt time units). In the simulation
study we set N = 4n, partially due to the facts that the
reconstruction error is ≤ 10% and that the factor 4 = 22

facilitates application of fast Fourier transform algorithm.

V. THE INTERPOLATION-BASED METHOD

Both the traffic prediction and reconstruction methods re-
quire periodic sending of n+ 1 closely-spaced probe packets.
The computational complexity in the traffic reconstruction
method is also non-negligible, although fast Fourier transform
algorithm can be used. In addition, both methods can only
capture the mean value of the time series of interest. In
this section, we propose an interpolation-based method that
requires a smaller number of probe packets and yet gives better
estimates. In what follows, we first give an overview of this
method, and then delve into the discussion of implementation
details.

A. Overview

According to the Nyquist criterion, a signal can be recon-
structed as long as the rate at which the signal is sampled
is at least twice as large as the bandwidth of the signal.
As the cross traffic exhibits long-range dependency, we have∑∞

k=0 R(k) = ∞, and hence the power spectral density
p(s) → ∞ as s → 0. In other words, the power spectrum
of the cross-traffic has the 1

f property, i.e., the cross traffic
has a much narrower bandwidth (and hence requires a much
smaller sampling rate) as compared to traditional Gaussian
white noise.

 t0 t1 t2 t3 t4

Fig. 3. Use of the cross traffic information obtained at t0 and t4 to interpolate
the cross traffic at the three middle points t1, t2, and t3.

0                            1T                            2T                           3T                            4T

1 2 3...

M interpolations

Fig. 4. The input signal to the FIR filter with m interpolated points.

By Eq. (7), the power spectral density satisfies

p(s) ∼ const · sβ−1, (17)

where 0 < β < 1 is some constant and is related to the Hurst
parameter through H = 1− β

2 . As the typical value of the Hurst
parameter for Internet traffic is H = 0.8, we have β = 0.4.
Since p(s) goes to infinity at s = 0, we can not calculate the
3dB bandwidth as usual. Instead, we calculate the bandwidth
when p(s) drops to 1

2 · const (denoted as B), where const is
the constant defined in Eq. (17). Note that B is much larger
than 3dB bandwidth. By Eq. (17), we have B = 3.2, i.e., if we
sample the original signal at the rate r ≥ 6.4 or the sampling
interval T ≤ 156ms, we can reconstruct the original signal
without incurring error. (We will demonstrate later that T can
be even larger, due to the self-similarity of the signal.)

In the end-to-end measurement problem considered, the
signal (the amount of cross traffic on the bottleneck link) is
sampled by having the sender send a pair of closely-spaced
probe packets every T seconds. Each pair of such packets
gives one sample of aggregated cross traffic fa(t) at time t.
Then we employ the interpolation-based method to rebuild
the time series. Consider, for example, Fig. 3: the sender
sends a pair of probe packets at time instants t0 and t4
(T = t4 − t0). Then the information obtained at t0 and t4 is
used to interpolate the cross traffic at the middle point between
t0 and t4. Similarly, after the information at t2 is obtained,
it is used (along with information obtained at t0 and t4) to
interpolate the cross traffic at time instants t1 and t3. This
process repeats recursively until a desirable time granularity
is reached.

There are two issues that must be considered in order to im-
plement the interpolation-based method: (i) how to determine
the value of the sampling cycle T ; and (ii) how to interpolate
the amount of cross traffic with the cross traffic information
available at the two endpoints. We will elaborate on the second
issue in the next subsection, and defer the discussion of the
first issue to Section VI.

B. Implementation of the Interpolation-based Method

Fig. 3 demonstrates that one can interpolate, with the use of
the cross traffic information obtained at the two endpoints, the
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f(k) f(k)
 h(n)

Fig. 5. The FIR filter.

amount of cross traffic at the middle point of an interval T .
As a matter of fact, by designing an appropriate finite impulse
response (FIR) filter one can interpolate the amount of cross
traffic at M points that are evenly distributed in an interval T .
Specifically, let fa(k) be the cross traffic in the discrete time
domain as defined before. With the sampled values of fa(k)
at time T , 2T , . . ., we would like to interpolate the amount of
cross traffic at the M evenly-spaced points between any two
sampled values.

The interpolation procedure with the use of FIR filters is as
follows. As shown in Fig. 4, we first set the values at the M
points in each interval T to be 0, and pass the sequence, fa(k),
with M zero values inserted, to the FIR filter. The output of
the FIR filter, f̂a(k), is the interpolated signal (Fig. 5). The
impulse response of the filter h(n) is designed to have the
following properties:

1) h(n) is a time series of length 2M + 1.
2) h(−i) = h(i) = ai, 1 ≤ i ≤ M , and h(0) = 1.

Since f̂a(k) = fa(k) * h(k), where * is the convolution op-
eration, it is straightforward to see that f̂a(iT ) = fa(iT ), i =
0, 1, 2, .... This is desirable, because the output should be the
same as the input at sampling points. The symmetric design
of h(n), on the other hand, guarantees that the FIR filter
has the linear phase and hence a constant time delay can be
guaranteed.

Next we need to determine the values of ai’s in order to
achieve the minimum mean square error. By the definition of
convolution, the i-th interpolated value can be represented as:

f̂a(k + i) = aM−i+1f(k) + aif(M + k + 1), i = 1, 2, ...,M.
(18)

To fulfill the minimum mean square error criterion, we have

E((fa(k + i) − f̂a(k + i)) · f̂a(k + i)) = 0. (19)

After some algebraic operations, Eq. (19) gives

a2
M−i+1R(0) + a2

i R(0) + 2aiaM−i+1R(M + 1)
−aM−i+1R(i) − aiR(M + 1 − i) = 0, i = 1, 2, ..., M,(20)

where R(k) is the autocorrelation function of fa(k). To deter-
mine the values of ai’s, we have to estimate the autocorrelation
structure R(k) of the cross traffic fa(k). To this end, in the
interpolation-based method we enable the sender to send n+1
closely-spaced probe packets to get n samples initially, so
that we can estimate R(k) using Eq. (11). Since only R(k),
0 ≤ k ≤ M , are needed, and M is usually small (≤ 5), we
can get accurate estimates of R(k), even if n is not large. In
contrast to the prediction-based and reconstruction methods,
the interpolation-based method does not require that the sender
sends periodically n+1 probe packets. After the sender sends

n+1 probe packets initially, it needs only to send one pair of
probe packets every T seconds.

Note that Eq. (20) contains M equations with M unknowns.
However, because the coefficients are symmetric, the M
equations are not independent, and the M coefficients cannot
be uniquely determined. In order to determine the values of
the M coefficients, we have to introduce some other relation
among the coefficients. (We will discuss this further below.)
Next we consider two special cases: M = 1 and M = 2.

M = 1:: The impulse response of the filter h(n) has
the following property: (i) h(n) is a time series of length 3;
and (ii) h(−1) = h(1) = α, and h(0) = 1. What is left to
determine is α = h(1). By Eq. (18), we have

f̂a(k) = αfa(k − 1) + αfa(k + 1)
= αfa(k − 1) + αfa(k + 1). (21)

Also, to achieve minimum mean square error, fa(k) − f̂a(k)
should be perpendicular to f̂a(k), i.e.,

E((fa(k) − f̂a(k)) · f̂a(k)) = 0, (22)

or,
α2R(0) + α2R(2) − αR(1) = 0. (23)

Hence,

α =
R(1)

R(0) + R(2)
. (24)

M = 2:: The impulse response of the filter h(n) is a
time series of length 5 and with two unknown coefficients.
Let a = h(2) = h(−2) and b = h(1) = h(−1) denote the two
coefficients of the FIR filter yet to be determined. Using the
similar technique as above we obtain

a2R(0) + b2R(0) + 2abR(3) − aR(2) − bR(1) = 0. (25)

Due to the fact that coefficients are symmetric, the other equa-
tion is the same as Eq. (25). Hence, we have to add another
condition. To enforce a linear decrease in the coefficients, we
set b = 1+a

2 . Other relations between a and b are also possible.
For example, we may enforce the coefficients to decrease
exponentially from 1 to a. We have conducted simulations
to investigate the impact of the additional condition on the
performance, and found that in all the simulation runs the
performance is rather insensitive to the condition as long as
b is larger than a. Thus, we choose b = 1+a

2 so as to obtain
closed form results:

a =
−c2 +

√
c22 − 4c1c3

2c1
, (26)

Where c1 = 5R(0) + 4R(3), c2 = 2R(0) + 4R(3) − 4R(2) −
2R(1), and c3 = R(0) − 2R(1).

Discussion:: Note that the choice of M represents a
trade-off between the ability to interpolate the signal at more
points between the two given samples, the accuracy of the
interpolation results, and the complexity of the resulting FIR
filter. As shown in Fig. 6, if the interpolation is performed at
one point (M = 1), 4 pairs of probe packets are needed; on
the other hand, if the amount of cross traffic is interpolated at
two points between the two given samples (M = 2), only 3
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Fig. 6. An example that shows the difference between interpolating the signal
at 1 or 2 points between the two given samples.
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Fig. 7. The mean interpolation error in the cases of M = 1 and M = 2.

pairs of probe packets need to be sent. However, the saving
in the number of probe packets does not come without a cost.
The FIR filter for M = 2 is more complex.

We have conducted the same set of ns-2 simulation runs as
in Section III to study the effect of varying the value of M
on the interpolation error. We have also implemented the FIR
filter in Matlab for both M = 1 and M = 2. Fig. 7 gives the
relative mean interpolation error. Contrary to our intuition, the
interpolation error is smaller under the case of M = 2. This
can be explained as follows. In the case of M = 2, the first
interpolated value(and so is the second interpolated value), I ,
is 2T

3 time units away from the right sample A, and T
3 time

units away from the left sample B, and I is calculated as
I = a ·A+ b ·B, where a < b, a and b are the parameters of
the FIR filter in Eq. (25). As B is temporally closer to I , the
estimate of I is more accurate by giving more weight to B. In
contrast, in the case of M = 1, equal weights are assigned to
both the two samples, A and B, that are T

2 time units away.
One should, however, not generalize on this result, i.e., it may
not be true that the larger the value of M , the more accurate the
interpolation results will be. This is because as M increases,
the design of the FIR filter becomes more difficult, and the
interpolation results will be very sensitive to the coefficients.
In the simulation study, we implement FIR filters with M = 1

2Mbps, 20ms

2Mbps, 20ms

2Mbps, 20ms2Mbps, 20ms

2Mbps, 20ms

Fig. 8. The single-bottleneck dumbbell topology used in the simulation.

and M = 2.

VI. SIMULATION RESULTS

We have implemented the prediction-based, reconstruction,
and interpolation-based methods in ns-2 and conducted a
simulation study to validate the proposed design and compare
the performance. The performance metrics of interest are (i)
relative mean error err = f̂(t)−f(t)

f(t) , (ii) standard deviation of
the error std, (iii) ability of adapting to the changes of traffic
load on the bottleneck link, and (iv) robustness in the case that
some of the assumptions (A2) are relaxed.

We examine the behavior of these methods under a vari-
ety of network topologies and traffic sources. In particular,
we have considered the network topologies with a single
bottleneck link, with multiple bottleneck links, as well as
arbitrary topologies. The maximum buffer size of each router
is set to 100 packets (each of size 1000 bytes). The interval
between two consecutive, back-to-back probe packets is set to
be 0.005s. We have used an assortment of traffic sources (e.g.,
TCP sources that generate packets according to the on-off
model or real traffic traces down-loaded from the Internet, and
constant bit rate UDP sources) as the sources of cross traffic.
Each data point is the result averaged over 10 simulation
runs, and each simulation run lasts for 50 seconds. Due to
the space limitation, we only report on a small set of the
simulations which we believe is the most representative. In
spite of numerous system parameters involved, the results are
found to be quite robust in the sense that the conclusion
drawn from the performance curves for a representative set of
parameter values (reported below) is valid over a wide range
of parameter values.

A. Experiment 1: Performance under Different Link Utiliza-
tions

In the first set of experiments, we evaluate the performance
of the three methods under different link utilizations. We also
study the effect of varying the value of T (the interval between
two samples) on the performance of the interpolation-based
method.

The network topology used (along with all the relevant
network parameters) is shown in Fig. 8. The cross traffic on
the bottleneck link is made up of 30-100 UDP/TCP connec-
tions, with the left-hand-side (right-hand-side) hosts being the
sources (destinations), and with Pareto on-off models (with
the shape parameter α = 1.5) being the traffic generation
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Fig. 9. The Hurst parameter of the cross traffic in Experiment 1.

models. The end-to-end measurement is performed by another
source-destination pair that send probe packets in compliance
with the method under consideration. As shown in Fig. 9,
the Hurst parameter H of the cross traffic ranges from 0.65
to 0.81, as the number of connections increases from 30 to
100, indicating that the cross traffic does exhibit the LRD
characteristics. If there were no cross traffic, the interval t
should satisfy: t ≤ L

C = 8000
2000000 = 0.004s. In the presence of

cross traffic, t can be set to be a little larger. We keep track
of the cross traffic and its estimate.

In the prediction-based method, 21 back-to-back probe
packets are sent at the beginning of each interval of length
0.6 second (120 times t). Since it takes 20 × 0.005 = 0.1s
to send 21 back-to-back probe packets, the prediction-based
method estimates the amount of cross traffic for the remaining
0.5 second. As mentioned in Section III, this amount of time is
equal 5nt = 100 × 0.005. In the reconstruction method, again
21 back-to-back probe packets are sent at the beginning of
each interval of length 0.5 second. An 80-point inverse Fourier
transform is performed to reconstruct the original cross traffic
process in an time interval of of length 4nT = 0.4s. In the
interpolation-based method, 21 back-to-back probe packets are
sent initially. Following that, in every T seconds 2 back-to-
back probe packets are sent. The amount of cross traffic in the
T interval is estimated by interpolation. Note that the choice of
T will have an impact on the performance of the interpolation-
based method, as there exists a trade-off: the smaller the value
of T , the smaller the relative mean error; however, as more
probe packets have to be sent, the larger the standard deviation
of the error. We have experimented with different values of T ,
and will show below the results in the cases of T = 0.05 s
and T = 0.5 s.

Figs. 10–12 give the simulation results under the prediction-
based, reconstruction, and interpolation-based methods, re-
spectively, in the existence of 30 and 50 sources of cross
traffic. Tables IV–VI give err and std under the three methods.
Several observations are in order:

• As shown in Figs. 10–11, both the prediction-based and
reconstruction methods capture the mean value of the
cross traffic very well. On the other hand, the estimates
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Fig. 10. Cross traffic estimated using the prediction-based method versus
actual traffic in the existence of 30 and 50 sources of cross traffic.
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Fig. 11. Cross traffic estimated using the reconstruction method versus actual
traffic in the existence of 30 and 50 sources of cross traffic.

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time in seconds

C
ro

ss
 tr

af
fic

 in
 M

bp
s

Real traffic
Estimated traffic

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time in seconds

C
ro

ss
 tr

af
fic

 in
 M

bp
s

Real traffic
Estimated traffic

(a) 30 sources (b) 50 sources

Fig. 12. Cross traffic estimated using the interpolation-based method (with
T = 0.05) versus actual traffic in the existence of 30 and 50 sources.
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Fig. 13. Cross traffic estimated using the Interpolation-based method (with
T = 0.5) versus actual traffic in the cases that 30 and 50 sources of cross
traffic are present.
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# sources 30 40 50 60 70 80 90
Link util. 0.39 0.56 0.78 0.87 0.89 0.90 0.91
err 0.06 0.02 0.04 0.08 0.06 0.05 0.05
std 0.17 0.21 0.24 0.22 0.21 0.19 0.18

TABLE IV

RELATIVE MEAN ERROR AND THE STANDARD DEVIATION OF ERRORS

UNDER THE PREDICTION-BASED METHOD.

# sources 30 40 50 60 70 80 90
Link util. 0.39 0.56 0.78 0.87 0.89 0.90 0.91
err 0.02 0.04 0.03 0.06 0.09 0.08 0.07
std 0.13 0.19 0.22 0.20 0.19 0.18 0.17

TABLE V

RELATIVE MEAN ERROR AND THE STANDARD DEVIATION OF ERRORS

UNDER THE RECONSTRUCTION METHOD.

obtained using the interpolation method oscillate around
the actual values. This is because the interpolation-based
method depends heavily on the instantaneous sampled
values of cross traffic, as the interpolated values are linear
combinations of sampled values. As a result, in addition
to keeping track of the mean value of the actual amount of
cross traffic, the interpolation-based method also attempts
to capture the instantaneous value of the actual traffic.
This is especially true for small values of T .

• As shown in Figs. 12–13, the interpolation result oscil-
lates much less significantly when T is large (e.g.,T =
0.5) than when T is small (T = 0.05). This is because
when T is large, the FIR filter filters out detailed infor-
mation within the interval of length T and gives much
smoother results.

• All three methods perform well under different utiliza-
tions in terms of relative mean error.

B. Experiment 2: Adaptability to Traffic Load Changes on the
Bottleneck Link

Recall that In the first set of experiments all the connec-
tions that comprise the cross traffic last for 50 seconds, i.e.,
the amount of cross traffic does not change throughout the
simulation. To evaluate the three methods in terms of their

# sources 30 40 50 60 70 80 90
Link util. 0.39 0.56 0.78 0.87 0.89 0.90 0.91
errT=0.05 0.07 0.05 0.01 0.05 0.04 0.01 0.02
stdT=0.05 0.24 0.27 0.25 0.19 0.16 0.12 0.11
errT=0.5 0.09 0.08 0.04 0.07 0.09 0.08 0.07
stdT=0.5 0.18 0.18 0.17 0.14 0.12 0.09 0.08

TABLE VI

RELATIVE MEAN ERROR AND THE STANDARD DEVIATION OF ERRORS

UNDER THE INTERPOLATION-BASED METHOD WITH T = 0.05 AND

T = 0.5.
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Fig. 14. Cross traffic estimated using the prediction-based method versus
actual traffic in the case that the amount of cross traffic dynamically changes.
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Fig. 15. Cross traffic estimated using the reconstruction method versus actual
traffic in the case that the amount of cross traffic dynamically changes.

adaptability to the changes in the amount of cross traffic, we
repeat the same experiments but vary the number of effective
connections that comprise the cross traffic as follows. At time
0, N

2 cross-traffic connections commence, at time 10 s, another
N
2 connections commence, and at time 30 s, N

2 connections
terminate, where N varies from 30 to 100. All simulation runs
last for 50 s. Figs. 14–16 give the corresponding simulation
results. As shown in Figs. 14–16, all the three methods perform
well and capture the changes in the amount of cross traffic
almost immediately.

C. Experiment 3: Effect of Varying the Number of Interpolated
Values on Performance

In this set of experiments, we study the effect of varying the
number, M , of interpolated values between two samples in the
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Fig. 16. Cross traffic estimated using the interpolation-based method (with
T = 0.05 s) versus actual traffic in the case that the amount of cross traffic
dynamically changes.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time in seconds

C
ro

ss
 tr

af
fic

 in
 M

bp
s

Real traffic
Estimated traffic

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time in seconds

C
ro

ss
 tr

af
fic

 in
 M

bp
s

Real traffic
Estimated traffic

(a) 30 sources (b) 50 sources

Fig. 17. Cross traffic estimated using the interpolation-based method (with
T = 0.05 and M = 2 versus actual traffic in the existence of 30 and 50
traffic sources.
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Fig. 18. Cross traffic estimated using the interpolation-based method (with
T = 0.05 s and M = 2) versus actual traffic in the case that the amount of
cross traffic dynamically changes.

interpolation-based method. We repeat the same experiments
as in Sections VI-A–VI-B but use the interpolation-based
method with M = 2 for inferring the amount of cross
traffic (set T = 0.05s). Figs. 17–18 give the corresponding
simulation results. It turns out that the Interpolation-based
method with M = 2 can capture not only the real mean value,
but also the instantaneous value very well. Also, it incurs
smaller values of err and std. To better illustrate this, we
depict err and std under the prediction-based method, the
reconstruction method, and the interpolation-based methods
with M = 1 and M = 2 in Fig. 19. From the figure we can
draw a conclusion: if we want to keep track of both the mean
and the instantaneous value of the cross traffic while achieve
smaller err and std, interpolation with M = 2,T = 0.05s is
the choice.

D. Experiment 4: Performance with Respect to Robustness

As mentioned in Section II-A, we assume that probe pack-
ets only experience queuing at the bottleneck link. In real
networks, this may not be true. In this set of experiments,
we study the robustness of the three methods by relaxing the
first two assumptions ((A1) and (A2)) in Section II-A. The
simulation scenario is depicted in Fig. 20: link R1 − R2 is
the bottleneck link, but probe packets may also experience
queuing at links S −R1 and R2 −D. The bandwidths of the
links are, respectively, BR1−R2 = 2Mbps, BS−R1 = 5Mbps,
BR2−D = 3Mbps, and 5Mbps for all the other links. Cross
traffic is generated by the left-hand-side hosts (labeled as
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Fig. 19. The relative mean error and standard deviation of the error under
the prediction-based method, the reconstruction method, and the interpolation-
based methods with M = 1 and M = 2.
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Fig. 20. The topology with multiple bottleneck links.

senders), and traverses links S −R1, R1 −R2, and R2 −D.
In addition, another additional 2-10 cross traffic connections
are generated by hosts attached to R1 (labeled as cross-traffic
senders) and traverse link R1 − R2.

As probe packets may get queued before or after link R1−
R2, the inter-arrival time τ between two back-to-back probe
packets at the destination will be stretched/squeezed so that
Eq. (3) does not hold. Specifically, if the second probe packet
is queued before it arrives at link R1 − R2, when it arrives
at link R1 −R2 the first probe packet may have already left.
As a result, τ may be stretched, and the three methods will
underestimate the amount of cross traffic that traverse link
R1 −R2. Conversely, if the first probe packet is queued after
it leaves link R1 − R2, τ may be squeezed, and the three
methods will overestimate the amount of cross traffic.

Table VII gives the mean error err and std under the
three methods in the case that probe packets may be queued
before/after the bottleneck link. As compared to Talbes IV–
VI, the relative mean error in this scenario is only slightly
larger (about 5%) than that in the idealistic case, while std
is almost the same under both cases. This suggests that the
three methods are pretty robust in the case that (A2) does not
hold. In the figure to be presented below, we will see that the
increase in err results from the effect of underestimating or
overestimating the amount of cross traffic on the bottleneck
link.

Fig. 21 gives the estimated and real mean values of cross
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Fig. 21. Estimated and real mean values of cross traffic under the prediction-
based, reconstruction, and interpolation-based methods.

# sources 30 40 50 60 70 80 90
link util. 0.41 0.62 0.82 0.88 0.92 0.93 0.93
Pred.:err 0.12 0.08 0.08 0.07 0.09 0.08 0.09
Pred.:std 0.19 0.23 0.20 0.21 0.21 0.20 0.18
Recon.:err 0.08 0.10 0.09 0.08 0.07 0.09 0.10
Recon.:std 0.14 0.18 0.22 0.18 0.19 0.17 0.18
Inter.:err 0.15 0.10 0.09 0.12 0.08 0.12 0.13
Inter.:std 0.21 0.23 0.20 0.17 0.15 0.14 0.11

TABLE VII

ESTIMATION MEAN ERROR err AND std FOR DIFFERENT METHODS

traffic under different link utilizations. As shown in Fig. 21, the
estimated mean value of cross traffic is smaller than the real
traffic under the prediction-based and reconstruction methods.
In the interpolation-based method, when the link utilization is
very high (≥ 0.95), the estimated mean value of cross traffic
is higher than that of real traffic.

VII. CONCLUSION

In this paper, we demonstrate that the self similarity prop-
erty of cross-traffic can be exploited to infer on an end-to-
end basis the amount of cross traffic on the bottleneck link,
and investigate three such theoretically-grounded methods:
prediction, reconstruction, and interpolation. The simulation
study indicates that the prediction-based and reconstruction
methods can give good mean measurement of cross traffic,
while the interpolation method can, with proper design of the
FIR filter, capture both the mean and instantaneous values of
cross-traffic. All three methods are adaptive to the dynamic
change of cross traffic and are quite robust in the presence of
multiple bottleneck links on an end-to-end path.

While the work lays a theoretical foundation for exploiting
LRD characteristics in measuring cross traffic, there remain
several practical issues that should be considered in deploying
the proposed methods in real networks. For example, if the
bandwidth of the bottleneck is large, the dispersion, t, of the
sending times of two back-to-back packets has to be extremely
small (Eqs. (1)–(2)). Sending extremely closely-spaced packets
is subject to the limitation of the OS at end hosts and may not
be feasible. We will study how to resolve this issue. We will
also further improve the robustness of the proposed methods in
the cases that probe packets may be queued before/after the

bottleneck link (violation of assumption (A2)) and that the
bottleneck itself may change as a result of dynamic network
traffic changes.
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