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Abstract— In this paper we present analytical techniques that
can be used to better understand the behavior of malware,
a generic term that refers to all kinds of malicious software
programs propagating on the Internet, such as e-mail viruses and
worms. We develop a modeling methodology based on Interactive
Markov Chains that is able to capture many aspects of the
problem, especially the impact of the underlying topology on
the spreading characteristics of malware. We propose numerical
methods to obtain useful bounds and approximations in the case
of very large systems, validating our results through simulation.
An analytic methodology represents a fundamentally important
step in the development of effective countermeasures for future
malware activity. Furthermore, we believe our approach can help
to understand a wide range of “dynamic interactions on net-
works”, such as routing protocols and peer-to-peer applications.

I. INTRODUCTION

The easy access and wide usage of the Internet makes it a
prime target for malicious activity. In particular, the Internet
has become a powerful mechanism for propagating mali-
cious software programs designed to annoy (e.g., deface web
pages), spread misinformation (e.g., false news reports or stock
quotes), deny service (e.g., corrupt hard disks), steal financial
information (e.g. credit card numbers), enable remote login
(e.g., Trojan horses), etc. The two most popular ways to spread
such malicious software are commonly referred to as worms
(like the Code Red) and email viruses (like the infamous
Melissa and Love Bug). However it is increasingly difficult
to distinguish malicious software programs using these terms.
For example, the recent Nimda attack was especially vicious
because it combined both attack methods. For this and other
reasons we will refer to all malicious programs propagating
on the Internet as malware.

Although malware has resulted in economic losses, so far
they have been mostly nuisances. However it is expected
that future malware will be more virulent and, thus, result in
significantly greater damage. A recent document from CERT
[12] reports on increasing attempts to compromise routers
along with end-hosts as well as other dangerous trends.

Currently, malware are reverse engineered at some computer
security organizations. Analysis of the malware signature is
then broadcast to system administrators for countermeasure
deployment. However, for the most part, it is not possible to
control the spreading of unknown malware, that can quickly
propagate through the network, infecting many machines be-
fore the severity of the situation is recognized. To date there
appears to be no well defined methodology for predicting the

behavior of malware. For example, one would like to be able
to estimate whether or not the malware is sufficiently potent to
infect the entire Internet in the absence of countermeasures. If
the answer is positive, one would like to determine the required
effectiveness of countermeasures in order to control the spread.
Finally, one would like to compare different network architec-
tures with respect to their vulnerability to malware infection,
in order to prevent major catastrophic events.

The goal of our work is to develop mathematically-based
methodologies that can be used to better understand the be-
havior of malware, including their spreading characteristics. To
this purpose we build a stochastic model based on Interactive
Markov Chains (IMC) that provides a probabilistic analysis of
the system. Although we have focused on the propagation of
e-mail viruses, the approach is general enough to be adapted
to describe other kinds of malware. While the exact solution is
computationally too expensive in the case of a large system,
the exact details of the distributions are not crucial, so that
rough estimates may suffice for prediction purposes. Thus we
develop algorithms to predict gross-level system-wide behav-
ior and obtain useful bounds and satisfactory approximations.

Very little work has appeared so far in the literature on mod-
eling computer viruses. An investigation was carried out in the
early 1990s at IBM Research via both simulation and analysis
by means of standard epidemic models [4]. In this work it
was pointed out the difficulty in extending approaches suitable
to analyze fully connected graphs to arbitrary topologies,
where the propagation of a virus can exhibit characteristics not
easily described by simple system-wide equations. The study
presented in [6] was conducted using simulation experiments
that show the impact of different strategies of immunization on
certain types of networks. Outside of networks, the analogous
problem of spreading of a disease within a population has
been the object of mathematical epidemiology for over a
century. A book of lecture notes that covers the main stochastic
techniques used in the area is [5]. The more general problem
of “dynamic interactions on networks” has been studied in
a number of fields (physics, biology, economics, sociology)
using a variety of techniques, so that it is not possible here
to provide a comprehensive survey of previous approaches.
Interactive Markov Chains have been suggested for modeling
vulnerabilities in power systems [7] and communication net-
works [8]. In this paper we adopt a technique called “influence
model” originally introduced in [9]. Particularly important to
our work is also a methodology drawn from statistical physics
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that has been recently applied to percolation and epidemics on
networks [13], [14].

The rest of the paper is organized as follows: we describe
our modeling approach in Section II. In Section III we show
how the problem of estimating the final size of a malware
infection maps onto a percolation problem, and we present
an algorithm to solve the percolation problem on the small-
world graph. In Section IV we propose our solution to derive
analytically the state evolution of the system. We suggest
directions to extend our work in Section V. Finally, we
conclude the paper in Section VI.

II. MODELING APPROACH AND ASSUMPTIONS

We developed a stochastic model of malware propagation
based on the Interactive Markov Chains (IMC) framework. An
IMC consists of a network of nodes specified by a directed
graph G = (V,E). A node on the graph is also called a site.
Each site has a status that evolves over time. We use instead
the term state to refer to the collection of statuses of all of
the sites at a given time. The status at a site evolves according
to an internal Markov chain, but with transition probabilities
that depend not only on the current status of that site, but also
on the statuses of the neighboring nodes. The overall system
evolves according to a global Markov Chain whose state space
dimension is the product of the number of statuses describing
each site. Because of the exponential growth in the number of
states, large IMCs are extremely difficult to solve numerically,
even for a few tens of nodes, so that it is necessary to resort
to discrete event simulations1.

A special case of IMC called “influence model” has been
recently proposed in [9] that provides a particular but tractable
representation of dynamic interactions on networks. In the
“influence model” it is possible to obtain the marginal status
probabilities of each site by means of a transition matrix whose
dimension is equal only to the sum of the dimensions of
the local chains. Our model is based on the influence model
technique, but we allow state transitions to occur in a more
complicated way than what is described in [9].

The rest of the Section is organized as follows. In Section
II-A we provide a brief background on the influence model
following [9]. In Section II-B we describe how we adapted the
influence model approach to the problem of virus propagation,
including a discussion of the assumptions that we made.

A. The influence model

An influence model is defined as a discrete-time Markov
process. For our application, we can assume that the behavior
of the whole system is ergodic. Let πj [k] be the status
probability row vector of site j at a given time step k. If
the site were isolated (i.e. not connected to the graph) it
would follow a standard Markov chain, so that we could
write πj [k + 1] = πj [k]P, where P is the transition matrix.
The influence model allows an arbitrarily connected structure
of sites defined by a weighted directed graph G = (V,E),
in which wi,j is the weight associated to the edge directed

1A network of 20 nodes, each with a binary status, already leads to a system
with over a million states

from i to j (wi,j is equal to zero if no edge exists from i
to j). Each weight wi,j takes a value in the interval [0, 1],
and represents the amount of influence that i exerts on j
relative to the total amount of influence that j receives,
which is normalized to one:

∑N
i=1 wi,j = 1 (let N = |V |

be the number of sites in the graph). In the influence model
the evolution of each site is constrained to take the multi-
linear form πj [k + 1] =

∑N
i=1 wi,j πi[k]Pi,j which can be

interpreted as follows: at each time step, site j selects with
probability wi,j one of the neighboring sites in the network
(or it selects itself) to be its determining site for the next step.
The transition matrix Pi,j (which has a number of rows equal
to the number of statuses in i and a number of columns equal
to the number of statuses in j) completely specifies the way in
which site i influences site j. If we stack the status probability
vectors πj into a single row vector Π = [ π1 π2 . . . πN ]
it is possible to write more compactly Π[k + 1] = Π[k]H,
where H = W ⊗ Pi,j is called the influence matrix and
can be expressed as the (generalized) Kronecker product of
W = {wi,j}, which is called the network matrix, and the
matrices Pi,j :

H
�
=




w1,1 P1,1 · · · w1,N P1,N

...
...

wn,1 PN,1 · · · wN,N PN,N



 (1)

Doing so we separate out the impact of network topology (W)
from the effect of local interactions (Pi,j). We can recursively
obtain the marginal status probabilities of all sites at any given
time from the simple equation

Π[k] = Π[0]Hk (2)

where Π[0] is the initial sites configuration. The multi-linear
form of the influence model leads to a highly tractable model
with rich mathematical properties, as reported in [9].

B. Virus propagation model

Our stochastic model of malware propagation is based on
the influence model paradigm and focuses on email viruses.
We believe a similar approach can be adopted to study other
forms of malware with different spreading characteristics.

Most email viruses work as follows. An email message con-
taining the virus program as an attachment is sent. A certain
amount of time elapses before the recipient reads the email
message. At this time, he/she has to decide what to do with
the content of the message. Opening the attachment executes
the email virus program, which will use the recipient’s address
book and/or inbox to spread copies of itself to other email
addresses, in addition to performing other malicious activities
on the infected machine.

In order to model the dynamics underlying email virus
propagation, we build a directed graph in which each node
corresponds to an email address and the edges represent social
or business relationships between addresses. Recent research
suggests that social and business networks form a so-called
small world graph [11]. Since email addresses represent a
subset of the human population, it is reasonable to assume
that the graph defined by email address books also forms a
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small world graph. In particular we expect the resulting graph
to exhibit two fundamental properties: a small characteristic
path length and a high clustering coefficient (see [10]).

The influence model requires the assignment of a “weight”
to each edge, such that the sum of all incoming edges into
a node is one. This can be interpreted as follows: the weight
wi,j represents the probability that during a time step a user
checks if any message has been delivered from source address
i to destination address j. This means that we assume the
time interval between two successive emails is a geometri-
cally distributed random variable independent for each source-
destination address pair. A proper time step granularity must
be chosen so that the sum of the weights of all incoming edges
into a node is smaller than or equal to one. If smaller, a self-
loop can be added to the node in order to reach the value of
one. This trick can be used to model the behavior of users
who have a different number of email contacts, in case we
assign an equal probability to each edge.

Note that the weight associated with an edge is just the
probability of reading the message, not yet deciding what to
do with its content. If the email contains a virus, we need to
distinguish the cases in which the user opens the attachment
or not. For this purpose we introduce a ‘click’ probability ci
for each node on the graph (that may be different from node
to node), and we assume that the decision whether to open
or not the attachment occurs only once. In other words, if
a user receives an email message containing the virus, with
probability (1 − ci) he/she decides once and for all not to
open it, and this decision will not occur again in the future in
case new copies of the virus are received.

Our discussion so far implies the necessity of introducing
at least three statuses at each site, that we call susceptible
(S), infected (I) or immune (M). Susceptible means that the
site can be potentially infected by the virus, but no messages
containing the virus program have been yet delivered to it, or
the user has not yet checked for new e-mails; Infected means
that the user has opened the attachment and the virus has
successfully infected the machine sending copies of itself to all
of the neighboring sites. We assume that a site, once infected,
remains in this status forever; Immune means that the site
cannot be infected by the virus. This can be due to several
reasons: i) the virus program cannot execute on the hosting
machine; ii) the site received a copy of the virus, but the user
decided once and for all not to open the attachment; iii) the
machine was initially vulnerable, but was later ‘immunized’
thanks to the effect of countermeasures, such as an anti-virus
upgrade, a patch, or simply because the user has been warned
not to open the attachment. iv) the site will never be reached
by the virus (see Section III for an explanation of why this can
occur); Once immunized, a site remains in this status forever.

The status transitions allowed within a site are shown in
the oval of Figure 1, that shows an example of a network
graph with five sites, expanding the internal structure of the
rightmost site.

Unfortunately, it is not possible to formulate this model in
terms of the influence model described in Section II-A. In
particular, it is not possible to preserve the multi-linear form
that leads to equation (2). In the influence model, the next

I M

S

Fig. 1. Graphical representation of the model

status of a site that gets influenced by a neighbor is determined
only by the current status of that neighbor, without depending
concurrently on its present status. Our application requires
a status-dependent influence model, that differs substantially
from the influence model of [9], which is inherently status-
independent. In our model, sites are influenced by neighbors
only if they are still susceptible. Sites that are infected or im-
mune are not influenced by other sites and do not change their
status. As a consequence, changes in the state of the system
are only due to residual contacts between still susceptible sites
and already infected sites: when there are no more of these
contacts anywhere on the graph, the system stops evolving.

Our stochastic model can be formulated as follows. For each
site j, let PSj

(k), PIj
(k), PMj

(k) be the probabilities that, at
time k, site j is susceptible, infected or immune, respectively.
The status evolution of site j is described by the following
system of recursive equations:






PIj
[k + 1] = PIj

[k] +
∑n

i=1 wi,j cj PIiSj
[k]

PMj
[k + 1] = PMj

[k] +
∑n

i=1 wi,j (1 − cj)PIiSj
[k]

PSj
[k + 1] = 1 − PIj

[k + 1] − PMj
[k + 1]

(3)
where wi,j are the edge weights, cj is the ‘click’ probability

of site j and PIiSj
[k] is the joint probability that at time step

k site i is infected, while site j is still susceptible. One may
now think that using these equations it would be possible
to solve the system numerically, but unfortunately the joint
probabilities PIiSj

are unknown, and there does not appear
to exist an easy way to compute them exactly. One could
simply resort to simulate the global Markov chain resulting
from the model. However, simulations are very expensive in
the case of a large system (millions of nodes), and it is hard
to evaluate how many runs (and how long) are necessary to
obtain a reliable prediction of the system behavior.

In the rest of this paper we will suggest bounds and
approximations that can be used to quickly obtain gross-level
predictions without resorting to simulations. To facilitate the
reader we give some guidelines to follow the remainder of the
paper. There are two main issues regarding the behavior of
a malware infection that starts propagating in a network. The
first one is the computation of the final average number of sites
that will be infected. This is a problem in itself, which does not
depend on the specific way in which we model the evolution
of system. We will consider this problem separately in Section
III. The second one is the derivation of the transient behavior
of the system, that provides also the temporal evolution of
the average number of infected sites. In the long run this
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number tends to the limit resulting from the solution of the
first problem, but the rate of convergence to the limit depends
on how we formulate the dynamic interactions of the sites.
Here is where our influence model comes into play. We will
study the transient behavior in Section IV.

III. PERCOLATION PROBLEM

In this section we explain why the problem of estimating
the final number of infected sites reduces to what is known
in physics as a site percolation problem, provided that the
“click” probability is smaller than one. Then we will study
the percolation problem on a simple case of small-world graph
that illustrates the complexity of the analysis on an example
which is particularly significant for e-mail virus propagation.

A. Reduction to a site percolation problem on a graph

The spreading of a new virus starts at time zero from a state
in which a given set of sites are initially infected. Let I0 be the
initial number of infected sites. The propagation of the virus
ends when there are no more contacts between an infected
site and a susceptible one. Can we predict the final number
of infected sites ? If all of the sites are susceptible and their
‘click’ probabilities are equal to one, it is easy to understand
that as time goes to infinity each site will receive a copy of
the message containing the virus and will get infected. Now
consider the general case in which a subset of the sites are
initially immune, and those that are susceptible have a ‘click’
probability smaller than or equal to one. If the virus managed
to reach every site on the graph, on average we would obtain
a final number of infected sites E[I∞] = I0 +

∑
i∈S ci , where

S is the set of initially susceptible sites. However, not all of
the sites are necessarily reached by the virus. In fact, if the
‘click’ probability is sufficiently small, the virus reaches on
average only a finite number of sites even in the case of an
infinite number of susceptible sites. If we increase the value
of the ‘click’ probability, assuming for simplicity that it is the
same for each node, at a given point the system undergoes a
phase transition that leads to the formation of a giant cluster
of infected sites.

There exist a notion of “epidemic threshold” that is common
to a wide variety of epidemic models regardless of the specific
way in which the problem is formulated mathematically. The
threshold usually refers to a single parameter of the model
that describes the spreading capability of the infection. Below
the threshold the expectation for the final number of infected
sites is finite. Above the threshold, the final average number
of infected sites goes to infinity (provided that there is an
infinite number of susceptible sites). This fact is well known
in the theory of random graphs [3]. The same phenomenon
is known in physics as site or bond percolation, depending
on whether the ‘occupation probability’ refers to the nodes
or the edges of the graph. Our model of malware spreading
maps precisely onto a site percolation problem, where the
site occupation probability corresponds to the ‘click’ proba-
bility. Unfortunately, the exact solution of the site percolation
problem is not feasible on a large graph arbitrarily connected,
where it is necessary to resort to simulation. This is surely a
major obstacle in studying analytically the problem of malware

Fig. 2. Example of a small-world graph with N = 24, k = 3, S = 4

spreading. We could restrict the analysis to the most important
case of a large infection outbreak, assuming that all of the
susceptible sites will receive a copy of the virus. Under this
assumption we should not care about the existence of a phase
transition at all. However, if we want to study analytically
infection processes that are below or close to the epidemic
threshold, we have to solve the percolation problem.

B. Site percolation on the small-world network model of Watts
and Strogatz

As we already mentioned, the graph defined by email
address books is expected to be a small-world graph. Recently,
a simple model of small-world has been proposed by Watts
and Strogatz [11] that has attracted the attention of many
researcher, especially in the physics community, because it
turns out to be amenable to treatment using a variety of
techniques (see [10] for a survey of recent results).

The model consists of a regular lattice, in the simplest case a
one-dimensional lattice with periodic boundary conditions, and
a small number of ‘shortcuts’ bonds added between randomly
chosen pairs of sites. More formally, we consider a graph of
N sites arranged on a ring lattice, where each site is connected
to its nearest neighbors up to some fixed range k, that we call
lattice connectivity. Then, S additional links - the ‘shortcuts’
- are added between randomly selected pairs of sites (not
already connected through the lattice). The shortcut density
φ is defined as the ratio between the number of shortcuts
and the number of links on the underlying lattice, so that
S = φkN . An example with N = 24, k = 3 and S = 4
is shown on Figure 2. In the following we assume that the
‘click’ probability is the same for each node, equal to c, and
that all of the nodes are initially susceptible.

Asymptotic results for the site percolation problem on this
graph have been recently obtained by M. E. J. Newman using
a generating function method [13], [14]. In [15] the same
technique has been extended to the case of a two-dimentional
lattice with shortcuts. These results are very useful, because
they allow to determine exactly not only the epidemic thresh-
old, but also the complete distribution of the sizes of infection
outbreaks below the phase transition, as well as closed-form
expressions for the mean and variance of the distribution. For
example, the mean of the final number of infected sites in the
case of a one-dimensional lattice is given by (see [14])

E[I∞] =
c (1 + q)

1 − q − 2kφc (1 + q)
(4)
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Fig. 3. Injection of virus into an infinite lattice with connectivity k = 3.
The bottom part shows the reaching probability PR(i) as a function of the
node index

where q = 1 − (1 − c)k. Unfortunately, asymptotic results
cannot be directly applied to our problem. Our goal is to
study the temporal evolution of a malware infection that starts
from a given set of initially infected nodes on a given (finite)
topology. Asymptotic results provide only the final size of an
infection originated from any initial node and averaged over
every possible (infinite) realization of the small-world random
graph model with parameters k, φ, c. Thus our problem is
complementary to that considered by Newman.

We will now describe an algorithm that, given a realization
of small-world graph over a one-dimensional lattice and the
position of the initially infected node, addresses the problem
of estimating the final probability (as time tends to infinity)
that each node on the graph is reached by the virus. We call
such a probability PR(i), where i is a progressive index for
all of the nodes on the ring. We assign the index zero to the
initially infected node. Note that PR(i) is just the probability
of receiving a copy of the virus, not necessarily being infected
by it. Using PR(i) the final average number of infected sites
is given by

E[I∞] = 1 +
N−1∑

i=1

cPR(i) (5)

and can differ significantly from what is obtained using eq. (4),
depending also on the position of the initially infected node.

A precise estimate of PR(i) can be obtained only in the
case in which there are no shortcuts. The addition of shortcuts
across the lattice leads to a problem belonging to complexity
class NP, because the solution requires the consideration of
all possible paths on the graph from the initially infected
node to any other node, which increases exponentially with
the number of shortcuts. We will first describe in Section III-
B.1 the solution in the case of a pure lattice. Then in Section
III-B.2 we will present a heuristic algorithm that obtains an
upper bound, a lower bound, and a close approximation for
the reaching probability in the general case.

1) Solution on one-dimensional lattice: The basic problem
is to understand what occurs when a virus is injected into the
lattice. Suppose for now that we have an infinite number of
susceptible nodes arranged on a linear lattice with connectivity
k. An example with k = 3 is shown on Figure 3.

An additional edge connects node 0 to another node (not
represented), located outside the lattice, which we assume to
be already infected. Node 0 will surely receive a copy of the
virus, because it is directly connected to an already infected
node. Hence, its reaching probability is one. If the virus infects
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Fig. 4. Percolation on a ring lattice of N = 100 nodes with different choices
of parameters k, c

node 0, which occurs with probability c, it starts an infection
process within the lattice which reaches all of its neighbors
up to a range k. Nodes at distance k + 1 receive the virus
if, besides node 0, at least one of the previous k nodes gets
infected, leading to a reaching probability b = cq (q has been
already introduced in eq. [4]). As the distance from node
0 increases, it can be shown that the reaching probability
decays geometrically on both sides of the infection origin.
The parameter α of the geometric decay is given by (see [1])

α =
q − c (1 − q) (k + q)
q − kc (1 − q)

(6)

In the case of a finite number of nodes arranged on a ring
lattice, each node can be reached by the virus from both sides
of the infection origin. Letting P 1

R and P 2
R be the probabilities

to be reached from one side or the other, the total reaching
probability can be obtained combining these two probabilities
in the following way:

PR = 1 − (1 − P 1
R) (1 − P 2

R) (7)

A comparison of results obtained from analysis and simulation
in the case of N = 100, and the two combinations of
parameters {k = 3 , c = 0.6} and {k = 5 , c = 0.3} is shown
on Figure 4.

2) Bounds and approximations adding shortcuts: Now con-
sider the case in which a given number of shortcuts are added
to the ring lattice. The analysis is divided into two steps. In
the first step we consider only the subset U of the nodes
that includes the initially infected one and the vertices of
the shortcuts. After having obtained the reaching probabilities
of the nodes in U , the second step derives the reaching
probabilities of all of the other nodes.

The first step works as follow: starting from the initially
infected node we build a tree of the paths that can be followed
by the virus during its propagation through the graph. Each
path is an ordered list of edges whose vertices belong to U .
Each edge e can be associated with a probability Pe that the
virus traverses successfully that edge. While building the tree,
we can compute for each path j the probability Pj

i that the
virus arrives at node i by multiplying the probabilities of the
edges that have been traversed. The probability Pe depends
on the type of edge. If it is a shortcut, the virus can use it
to propagate across the network if both vertices get infected,
which occurs with probability c2. If the edge is a portion of
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Fig. 5. Binary tree of the paths followed by the virus in the case of two
shortcuts

the ring lattice, say from vertex A to vertex B, Pe depends
not only on the distance d between A and B but also on way
in which the infection arrives at A: if the virus arrives at A
moving along the ring, we have Pe = αd. If the virus follows
a shortcut to arrive at A, from what we said in Section III-B.1
we have Pe = qα(d−k−1), if d > k, while Pe = 1 if d ≤ k.

When a path encounters the vertex of a shortcut, it splits
into two different paths, so that the resulting tree is binary.
However a path cannot touch again an already visited vertex.
An example for the case of two shortcuts in shown in Figure 5.
The number of paths increases exponentially with the number
of shortcuts, so that it is possible to consider all of them only
with a limited number of shortcuts. Unfortunately, even if we
are able to consider all of the paths, it is not possible to obtain
the exact value of reaching probability of an arbitrary vertex.

Upper bound. We could combine the probabilities of all of
the paths arriving at a vertex i as if they were independent:

PR(i) = 1 −
∑

j∈Wi

(1 − Pj
i) (8)

where Wi is the set of distinct paths arriving at vertex i. This
provides an upper bound to the reaching probability of node
i, because two paths arriving at a vertex node may have in
common some of the vertices that have already been visited,
so that the probabilities Pj

i are actually correlated.

Lower bound. It is possible to obtain a lower bound by
applying the following method: we first consider the effect
of the path arriving at i with the highest probability. Then
we cancel this path from the tree, discarding all paths that
share at least one edge with the removed path. We proceed
considering the path with the highest probability among the
surviving paths arriving at i, and so on, until there are no more
paths from the origin of the infection to node i.

Improved bounds. It is possible to improve both the
upper bound and the lower bound accounting for part of
the correlations among the paths, in the following way. We
compute the h most important edges in the tree followed by
the paths arriving at vertex i 2. Then we study separately
all configurations of these h edges considered as a set of
indipendent binary random variables (2h combinations). Doing
so we remove part of the correlations that were neglected
before at the cost of a higher computational complexity for
increasing values of h.

2One way to do this is to compute for each edge a sum of the probabilities
Pj

i of all of the paths arriving at i, and then sorting the edges on the basis
of such sum

BA
x

Fig. 6. Computation of the reaching probabilities of the nodes located
between two vertices
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Once we have obtained the reaching probability of the
shortcut vertices, we can compute the reaching probabilities
of the nodes located between two vertices. For each node X
we consider all of the paths arriving at the nearest vertices A
and B (see Figure 6) and combine their effect on X , which
depends on the distance between A (or B) and X as well
as on the type of path arriving at a vertex (either through a
shortcut or along the ring). A comparison of results in the
case of N = 1000, k = 5, S = 10, C = 0.5 is shown
on Figure 7, which reports the reaching probability obtained
averaging the results of 10000 simulations, the lower bound
and the upper bound neglecting all path correlations (h = 0),
and their improved versions using h = 8. These are indeed
bounds because we were able to consider all of the paths in
the tree. A good approximation is the mean between the lower
and upper bounds obtained with h = 8, and it is reported on
the plot. Note the peaks caused by virus injections into the
lattice due to the shortcuts.

Unfortunately, if the number of shortcuts exceeds a few tens
it is not possible to consider all of the paths in the tree, and
different strategies could be adopted to face the computational
complexity of the analysis 3: one could make a “breadth first”
search into the tree limiting the total number of paths to be
computed, or a “depth first” exploration cutting the subtrees
whose probability drops below a given threshold t. However,
while it is still possible with this method to obtain lower
bounds for the reaching probability (if we cut the tree we
underestimate the spreading capability of the infection), it is
not possible to derive a rigorous upper bound. After several
experiments, we found that the best way to obtain a quick,

3it becomes quite expensive also to obtain accurate results by simulation,
because each simulation run represents only one of a wide variety of
realizations of the same infection process on the graph
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rough approximation of the reaching probability (but not a
bound) is to use the algorithm to compute the upper bound
making a depth first analysis up to a suitable threshold t. An
example of results in the case of N = 10000, k = 10, S =
100, C = 0.4 is shown on Figure 8, that reports the average
of 1000 simulation experiments (that took about six hours on
our machine), together with analytical results obtained using
three different cutting thresholds (the entire analysis took less
than one minute). The approximation obtained using t = 10−3

is quite accurate, however it is unclear whether it is possible
to choose a priori a suitable value of the threshold, based on
the system parameters, in order to obtain a reliable estimate.

Finally, it is interesting to observe in Figure 8 that, away
from the origin of the infection, the reaching probability is
almost the same for a large fraction of the nodes (about 0.5).
This behavior suggests that the critical phase of the spreading
of a virus is the very beginning of the infection: if the virus
manages to conquer a few strategic points around the origin
(the vertices of the nearest shortcuts) then it is likely to reach
all of the other nodes on the graph.

IV. TRANSIENT ANALYSIS

Our primary concern in modeling malware spreading dy-
namics is to understand the temporal evolution of a new
infection as it starts propagating in a network. So far in
the literature this kind of analysis has been carried out only
neglecting the impact of the underlying topology, or resorting
to simulation. A simplification that has been adopted is to
assume that each node is equally likely to be infected by any
other node on the graph (this is usually called “homogeneous”
assumption), but this is clearly a rough approach, perhaps
acceptable only for certain kinds of malware, such as worms
that propagates performing a random scanning of the IP
address space, like Code Red.

Although the exact analysis in the case of an arbitrary topol-
ogy appears to be unfeasible, using our stochastic model based
on Interactive Markov Chains it is possible to obtain at least
some useful bounds, as well as satisfactory approximations,
as we will show in this Section.

To avoid the additional complexity introduced by the per-
colation phenomenon, we will first consider in Section IV-
A the case in which the ‘click’ probability is equal to one.

This implies that, after the transient phase corresponding to
the spreading of the virus, the system settles down to a final
configuration in which all of the nodes are infected. The main
goal of the analysis, in this case, is to determine how long
does it take to the virus to infect all of the nodes starting from
an arbitrary point. We will observe that the topology of the
graph plays a crucial role that can be predicted analytically,
getting interesting insights into the behavior of malware on a
network. The transient analysis will be extended to the case
of ‘click’ probability smaller than one in Section IV-B.

A. The case of ‘click’ probability equal to one

We already described in Section II-B the recursive equations
(3) that allow one to solve numerically the state evolution
of the system. The major problem is that we do not know
how to compute the joint probabilities PIiSj

[k] of pairs of
neighboring nodes. We introduce PRi

[k] = PIi
[k] + PMi

[k],
the probability that site i has been already reached by the virus
at time k. To simplify the notation we drop the dependence of
status probabilities on the same time index [k]. We have that
PIi

= ci PRi
and PMi

= (1 − ci)PRi
. The same holds for

the conditional probability PIi|Rj
= ci PRi|Rj

. Thus we can
show that PIiSj

can be reduced to the computation of PRiRj
:

PIiSj
= PIi

− PIiRj
= PIi

− ci PRiRj
(9)

Now, PRiRj
, the joint probabilities that pairs of (neighboring)

nodes are both reached by the virus at a given time, can be
easily bounded as follows.

Lower bound. From the properties of joint probabilities:

PRiRj
≤ min (PRi

, PRj
) (10)

This represents a lower bound for the joint probabilities PIiSj

because of the minus sign in equation (9). According to
equations (3), this leads to a lower bound for the infection
probability of node i, which is an increasing function of each
joint probability PIiSj

. Using this bound on any node at any
time, we obtain a lower bound for the entire infection process
on the graph.

Upper bound. A lower bound for PRiRj
, which corre-

sponds to an upper bound of PIiSj
, can be obtained as follows.

We introduce again the dependence of status probabilities on
the time step [k]. Let Ri[k] be a binary random variable equal
to 1 if node i at time k has already been reached by the virus,
being infected or immune respectively with probability ci and
1 − ci. Ri[k] is instead equal to 0 if node i has not yet been
reached by the virus. We can easily prove that Ri[k] and Rj [k]
(where nodes i and j are neighbors) are associated random
variables in the sense of [2] (see [1] for further details). We
conclude that

PRiRj
[k] ≥ PRi

[k] · PRj
[k] (11)

which provides an upper bound to the joint probabilities
PIiSj

[k]. In words, if we assume that the probabilities to
be reached by the virus at any given time are independent
from node to node, we overestimate the spreading rate of
the infection. The statuses of neighboring nodes are instead
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positively correlated, and this correlation has an important
impact on the state evolution described by equations (3).

The amount of correlation that arises in the statuses of
neighboring nodes strongly depends on the underlying struc-
ture of the graph. The impact of topology can be easily
shown in the simple case of the infinite one-dimensional
lattice already considered in Section III-B.1. Figure 9 shows
examples of possible states of the lattice at a certain time
instant, for two different values of connectivity k. Black
circles represents infected nodes, while white circles represents
susceptible nodes not already reached by the virus. The initial
infected node is at index 0, and the lattice extends indefinitely
to the right for increasing values of the index. As time goes
on, the virus propagates to the right infecting all of the nodes.
If we consider the pair of neighboring nodes i and j, we can
easily prove that the lower bound (10) is exact in the case of
k = 1, that is to say PRiRj

[k] = min (PRi
[k], PRj

[k]). This
comes from the fact that the farthest node, i , can be infected
only if the nearest node, j , has already been infected, so
that the conditional probability PRj |Ri

[k] is equal to one. We
observe that this holds if and only if there is a unique path
from the origin of the infection to any other node. Therefore,
the infection process can be solved exactly on all graphs that
exhibit a tree structure. However, as soon as we increase the
connectivity of the graph, the above equality does not hold
anymore. The lower part of Figure 9 shows an example with
k = 2 in which we have a ‘hole’ at position j, so that
PRj |Ri

[k] < 1. Correlations become weaker as we increase
the connectivity of the lattice.

A comparison of results obtained from simulation and
analysis (upper bound and lower bound) is shown on Figure
10 for three different values of connectivity k. The graph
reports the evolution of the average number of infected sites
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Fig. 11. Mixing coefficients obtained from simulation as a function of
k (horizontal axis) and s (parameter), and empirical curves used to fit the
simulation points

in the infinite lattice, as a function of time. Note that for k = 1
the lower bound provides the exact result, while for k = 100
the simulation curve is much closer to the upper bound.

Approximation. Besides the bounds, that hold on any type
of graph, we found that it is possible to compute an accurate
approximation of the state evolution on the one-dimensional
lattice by means of a simple mixture of the upper and lower
bounds:

PRiRj
= (M)(PRi

· PRj
) + (1 −M)min(PRi

, PRj
) (12)

whereM is a suitable mixing coefficient, that depends not only
on k, but also on the probability s that a node gets influenced
by itself. In fact the larger the weight associated with the self-
loop of a site, the more independent is the status of that site
from the statuses of its neighbors. On a one-dimensional lattice
of 10000 nodes, we explored by simulation a wide range of
values of k and four values of s (0 , 1/3 , 2/3 , 0.9) and we
derived the mixing coefficientM that yields the most accurate
approximation for the evolution of the number of infected
nodes. We obtained the points shown on Figure 11, and we
found that they are well fit by the following empirical function:

M(k, s) =
1

1 + a1+a2s
ln[(a2s+a3)k+a5]

(13)

where a1 · · · a5 are parameters computed by a fitting proce-
dure based on a non-linear least-squares algorithm. From our
results it seems that the independence assumption (M = 1)
holds only in the limit as k→ ∞, and M increases roughly
linearly only with the logarithm of k. The dependence on s
is weaker, but still significant. On a regular lattice, M is the
same for all pairs of neighboring nodes. Our proposed solution
to deal with a general topology is to use the same formula
(13) derived on the one-dimensional lattice, but substituting
the local connectivity and the self-influence of the node that
gets influenced. That means that we compute a coefficient
M(kj , sj) for each node on the graph. More precisely, in
order to approximate PRiRj

[k] to be used in equation (9) to
obtain the joint probability PIiSj

necessary to compute the
status evolution of node j (equations [3]), we use formula (13)
plugging in the local connectivity kj and the self-influence sj
of node j. To be consistent with the meaning of connectivity
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Fig. 12. Comparison of results obtained by simulation and approximate
analysis on a network of 2000 nodes

on the regular lattice, we define kj ≡ nj/2, where nj is
the number of neighbors of node j. We found that this
approximation produces satisfactory results also on irregular
topologies. Figure 12 plots the evolution of the average number
of infected nodes on a ring lattice of 2000 nodes in five
different cases that, besides validating our approximation,
provide also interesting insights into the dynamics of virus
propagation:

• A - regular lattice, k = 10, s = 0.8, homogeneous
weights w = 0.01

• B - same lattice as A, adding two shortcuts between nodes
50 − 1600 and 500 − 900

• C - lattice with variable kj taken from a geometric distri-
bution with a mean of 10, truncated at 50, homogeneous
weights w = 0.01

• D - same lattice as A, adding 20 shortcuts
• E - fully connected graph, s = 0.8, homogeneous weights

Comparing A with B, we observe the impact of the two
shortcuts, and the accuracy of the model in predicting the
points in which the spreading rate changes 4. C shows that
the model is accurate also in the case of an irregular lattice.
Moreover, comparing C with A, we draw the interesting
conclusion (confirmed by other experiments not shown here)
that an increase in the variance of the local connectivity
(while maintaining the same average) significantly raises the
spreading rate of the infection. D shows again the dramatic
effect of the shortcuts, since the addition of just 40 edges (20
bidirectional shortcuts) on a graph with 40000 edges (2000
nodes, each with 20 incoming edges) alters the shape of the
curve making it much more similar to an exponential growth
than the linear growth exhibited by A. Finally, E shows how
faster is the propagation of the virus on a fully connected
graph with respect to the other cases.

The approximate analysis proves to be accurate also on
topologies much different from the small-world model of
Watts and Strogatz. We used the BRITE topology generator5 to
build power-law graphs of 10000 nodes employing the GLP

4It would be possible to explain the shape of the curve by means of a few
observations based on the position of the shortcuts and the linear propagation
of the virus on the ring lattice

5BRITE is available at http://cs-pub.bu.edu/brite/
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Fig. 13. Comparison of results obtained by simulation and approximate
analysis on power law graphs generated with the GLP algorithm

algorithm described in [16]. A power-law graph is defined
as a graph in which the ccdf of the node degree d satisfies
F (d) ∝ dα, α < 0. We adopted the GLP algorithm, that
was designed to match the power low exponent and the
clustering behavior of the AS-level Internet topology, just in
order to generate topologies very different from a ring lattice.
The graphs were generated using a constant value 0.45 for
the parameter p of GLP algoritm (see [16]), while trying
different values of m, which is the initial connectivity of the
nodes as they are added to the graph during the generation
process. Figure 13 plots on a log-log scale the evolution
of the average number of infected nodes in four different
cases, comparing results obtained from both simulation and
approximate analysis:

• A - α = −1.14, m = 1, infection origin on the node with
the highest degree (d = 510)

• B - same graph as A, infection origin on a node with
degree d = 10

• C - α = −1.6, m = 1, infection origin on the node with
the highest degree (d = 354)

• D - α = −1.14, m = 2, infection origin on the node with
the highest degree (d = 586)

To obtain a meaningful comparison, all of the weights
associated with the edges are identical across all four cases,
equal to 0.017. The distance between A with B, that were
obtained exactly on the same graph, shows that the position
of the infection origin indeed plays a significant role. When the
virus originates from a low degree node, we observe a delay in
the start-up of the infection that is due to the fact that the virus
needs some time before reaching the core of the network. C
was obtained on a different graph with the same number of
edges but with a node degree distribution less heavy-tailed than
that relative to A. The infection was again started on the node
with the highest degree. We observe again the effect already
shown on Figure 12, that is to say the higher the variance of the
node degree, the faster the spreading of the virus. Finally, D
refers to a graph with the same power law exponent of A, but
with double the number of edges. Increasing the connectivity
of the graph always accelerates the spreading of the virus. In
fact it is possible to show easily (see [1]) that the addition of
any edge to a given graph (without changing the probabilities
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associated with the other edges) makes the infection spread
faster. The same property does not hold if, adding the edge, we
repartition the weights associated with the pre-existing edges,
as can be shown with a simple counter-example.

The results from the approximate analysis follows closely
the curve derived from simulations in all four cases. We have
not shown the bounds (10) and (11). It is worth noting that on
this kind of random graphs the upper bound is much closer
to simulation than the lower bound, so that we conclude that
correlations between adjacent nodes are rather weak.

B. The case of ‘click’ probability smaller than one

In this Section we extend the transient analysis to the case
of ‘click’ probability smaller than one. This requires us to first
solve the percolation problem described in Section III, in case
we want to analyze a system below the epidemic threshold.
Otherwise, we can assume that as time tends to infinity all of
the nodes will be reached by the virus. We assume for now that
we have an estimate of the reaching probability of the nodes,
PR(i), for every node on the graph. Our proposed solution
to derive the state evolution of the system is quite simple,
although not rigorously correct. We simply use equations (3)
letting Si[0] = PR(i) and Mi[0] = 1 − PR(i). In words, a
node with a reaching probability PR(i) is considered already
immune at time 0 with probability equal to the probability
that it is not reached by the virus, which is the complement
of PR(i). This way, only the reaching probability, assigned
to the probability to be initially susceptible, is going to be
partitioned into the final probability to be infected - equal to
ciPR(i) - and an additional probability to become immune
because the user does not click on the attachment containing
the virus - equal to (1 − ci)PR(i). Using this approach the
average final number of infected nodes is correct. However, we
overestimate the spreading rate of the infection, as will be seen
on an experiment performed on the small-world graph. We
consider 1000 nodes on a ring lattice of connectivity k = 6,
and we add 4 shortcuts (precisely those connecting the pairs
of nodes 198-760, 525-94, 276-211, 542-997). We compute
an upper bound of PR(i) using the algorithm described in
Section III-B.2 with h = 12, that is quite close to the exact
reaching probability derived from simulation, and we perform
the transient analysis as described in Section IV-A with the
position Mi[0] = 1 − PR(i). Varying the ‘click’ probability
from 1 to 0.3, we obtained the results shown on Figure 14.
The approximate analysis, which is very accurate in the case
of c = 1, tends to overestimate the spreading rate of the
virus especially near the percolation transition, which occurs
for a ‘click’ probability between 0.7 and 0.6. This error can
be interpreted as follows: letting Si[0] = PR(i), we make
all of the ‘reachability’ of a node already available at time
0, while this is not correct, because PR(i) is the result of
the superposition of infection processes that follows different
paths over the graph, arriving at node i at different time
instants. Actually, PR(i) should be an increasing function
of time. Our simple solution thus overestimates the average
number of nodes that can be infected at a given time. Note
that a rigorous upper bound is obtained only by combining
the initial condition Si[0] = PR(i), where PR(i) is itself an
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Fig. 14. Transient analysis on a small-world graph of 1000 nodes for different
values of ‘click’ probability

upper bound of the final reaching probability, with the upper
bound for joint probabilities (11). On the other end, a lower
bound seems to be more complicated to be obtained.

We considered also the case of a ‘click’ probability smaller
than one on more general topologies than the small-world
graph. On the same power-law graph built in Section IV-
A (more precisely the one used to derive the case A of
figure 13) we started an infection process on the node with
the highest degree, obtaining the curves shown on Figure 15
for different values of c (constant on the graph). The plot
compares simulation results with two types of analysis: ‘model
approx’ solves equations (3) from the initial condition in which
we let Si[0] = 1. We observe that, according to this model,
all of the nodes on the graph tend to be reached by the virus,
since the final number of infected nodes approaches cN . The
model ‘approx + bound perc’, instead, accounts in a simple
way for the percolation phenomenon that arises on the graph.
As already mentioned before, the solution of the percolation
problem is tough on an arbitrary topology, but a very simple
upper bound of the reaching probability of any node i can be
obtained assuming that the node is not reached by the virus
only if all of its neighbors do not ‘click’:

PR(i) = 1 −
∑

j∈ni

(1 − cj) (14)

where ni is the number of neighbors of node i 6. Figure
15 shows that this bound is quite close to the actual result
obtained by simulation. This is also due to the fact that a
large number of nodes are attached to the network only by
a single edge, and for these nodes the bound (14) is exact,
because they cannot be infected if the node to which they are
connected does not get infected as well.

Being quite unusual that an email address has a single
contact with another email address, we changed the parameter
m of GLP algorithm that sets the initial degree of nodes
that are added to the graph. Moreover, we considered the
case in which the infection starts on a node with degree
10, and we used a constant ‘click probability’ equal to 0.5.
Results are shown on Figure 16 for different values of m.

6This formula does not apply to the nodes that are directly connected to
the initial infected node, because they are surely reached by the virus
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We observe that the upper bound (14) is still accurate if we
increase the node connectivity. Moreover, the final number
of infected nodes approaches the upper limit cN already
using m = 4. This means that in this case the number of
different paths connecting the initial infected node to any
other node is so huge that in the long run all of the nodes
are reached by the virus. The model, however, overestimates
the spreading rate of the virus, mainly because it assumes
that Si[0] = PR(i), causing the deviation already pointed out
earlier in this Section.

V. OPEN ISSUES AND FURTHER WORK

In this Section we briefly report on the main modeling
issues left open in our work, suggesting directions for further
research. As far as the percolation problem is concerned, one
could refine the solution on the small-world network model of
Watts and Strogatz, perhaps investigating the case of irregular
connectivity or non-homogeneous ‘click’ probability, or even
try to extend the approach to the case of a two-dimensional
lattice with shortcuts, but it is unclear if this simplified model
indeed applies to the graph defined by email contacts, whose
properties are still unknown. As far as the transient analysis is
concerned, it would be desirable to better understand the nature
of correlations between adjacent nodes, justifying analytically
the shape of the curve relative to the mixing coefficient
introduced in Section IV-A, which has been derived only
empirically. Finally, preliminary results not reported here (see

[1]) show that many effects due to the network structure can
be explained looking at the eigenvalues of the influence matrix
H introduced in Section II-A.

VI. CONCLUSION

In this paper we presented an analytical framework, based
on Interactive Markov Chains, that can be used to study the
dynamics of malware propagation on a network. The exact
solution of a stochastic model intended to capture the proba-
bilistic nature of malware propagation on an arbitrary topology
appears to be a major challenge, because of the high compu-
tational complexity necessary to analyze very large systems.
However, one can resort to simple bounds and approximations
in order to obtain a gross-level prediction of the system
behavior that can help to understand important characteristics
of malware propagation. Although we have focused on the
modeling aspects of the problem, we believe our methodology
can be usefully applied to evaluate different countermeasures
against future malware activity, as well as fundamental issues
on network vulnerability assessment. Moreover, the flexibility
of the approach based on IMCs allows to apply our work
beyond the problem of malware spreading, addressing a wide
variety of dynamic interactions on networks. Our modeling
effort is to be considered a first step in a rather novel research
area that we expect to gain more and more relevance in the
next future.
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